CN107078764A - 一种数据通信方法及相关装置 - Google Patents

一种数据通信方法及相关装置 Download PDF

Info

Publication number
CN107078764A
CN107078764A CN201480081979.8A CN201480081979A CN107078764A CN 107078764 A CN107078764 A CN 107078764A CN 201480081979 A CN201480081979 A CN 201480081979A CN 107078764 A CN107078764 A CN 107078764A
Authority
CN
China
Prior art keywords
access device
data
standard protocol
length
beacon frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480081979.8A
Other languages
English (en)
Other versions
CN107078764B (zh
Inventor
王宁娟
薛鑫
颜敏
于健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202010960040.6A priority Critical patent/CN112153026B/zh
Publication of CN107078764A publication Critical patent/CN107078764A/zh
Application granted granted Critical
Publication of CN107078764B publication Critical patent/CN107078764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Communication Control (AREA)

Abstract

一种数据通信方法及相关装置,该数据通信方法包括:接入设备构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;所述接入设备广播所述信标帧,以使终端从所述信标帧中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用所述可用保护间隔长度与所述接入设备进行数据通信。采用本发明可在接入设备支持多种数据保护间隔长度时,实现接入设备与终端之间的数据通信。

Description

一种数据通信方法及相关装置 技术领域
本发明涉及数据通信技术领域,尤其涉及一种数据通信方法及相关装置。
背景技术
随着通信相关技术的发展,基于IEEE 802.11标准的无线局域网络(Wireless Local Area Networks,WLAN)技术得到了广泛的应用。目前WLAN的多种主流标准(例如:802.11n、802.11ac)中,引入保护间隔(Guard Interval,GI)来消除由于信道的延迟扩展而带来的码间干扰。在终端与接入设备通信的过程中,终端需要选择合适的保护间隔长度,以便在最大程度上消除码间干扰。在802.11ac标准中,所使用的GI长度为0.8us的。在接入设备与终端数据通信过程中,AP与STA使用0.8us的前导码GI长度与0.8us的数据GI长度
IEEE于2013年5月正式启动了下一代WLAN标准,高效无线局域网(High Efficiency WLAN,HEW),HEW的标准将被称作802.11ax。HEW标准工作中提出在GI长度方面给出更多选择,包括:3.2us、2.4、1.6us、1.2us、0.8us、0.4us等GI长度。HEW方案中在多个可选GI长度的情况下,目前还没有为HEW的终端与接入设备之间进行数据通信设置GI长度的方法。
发明内容
本发明实施例提供了一种数据通信方法及相关装置,可在接入设备支持多种数据保护间隔长度时,实现接入设备与终端之间的数据通信。
本发明第一方面提供一种数据通信方法,可包括:
接入设备构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
所述接入设备广播所述信标帧,以使终端从所述信标帧中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用所述可用保护间隔长度与所述接入设备进行数据通信。
基于第一方面,在第一种可行的实施方式中,所述信标帧包括至少一个元素,所述至少一个元素中的特定元素携带所述新增字段,所述特定元素为已有 元素或者新增元素。
基于第一方面第一种可行的实施方式,在第二种可行的实施方式中,所述新增字段包括每一种预设带宽对应的指示索引值,所述指示索引值表征所述接入设备在该预设带宽下所支持的所有数据保护间隔长度中的最小数据保护间隔长度;或者,
所述新增字段包括每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设数据保护间隔长度;或者,
所述新增字段包括每一种预设带宽下每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设带宽下的该预设数据保护间隔长度。
基于第一方面,在第三种可行的实施方式中,所述接入设备构造信标帧之后,还包括:
所述接入设备分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
所述接入设备广播所述信标帧,包括:
所述接入设备广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧。
基于第一方面第三种可行的实施方式,在第四种可行的实施方式中,所述接入设备支持的多种数据保护间隔长度中包括所述接入设备在第一标准中所支持的数据保护间隔长度和所述接入设备在第二标准中所支持的数据保护间隔长度;
所述接入设备分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元,包括:
所述接入设备获取所述接入设备在第一标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第一备选数据保护间隔长度;
所述接入设备获取所述接入设备在第二标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第二备选数据保护间隔长度;
所述接入设备根据所述第一备选数据保护间隔长度和所述第二备选数据保护间隔长度,分别将所述信标帧封装为所述第一标准协议数据单元和所述第 二标准协议数据单元。
基于第一方面第四种可行的实施方式,在第五种可行的实施方式中,所述第一标准协议数据单元包括前导码和承载数据,所述承载数据包括所述信标帧,所述前导码保护间隔长度和所述承载数据的保护间隔长度为所述第一备选数据保护间隔长度。
基于第一方面第四种可行的实施方式,在第六种可行的实施方式中,所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度、所述高效无线局域网前导码的保护间隔长度以及所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度;或者,
所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度为所述第一备选数据保护间隔长度,所述高效无线局域网前导码和所述承载数据的保护间隔长度为所述第二备选数据保护间隔长度;或者,
所述第二标准协议数据单元包括高效无线局域网前导码和承载数据,所述高效无线局域网前导码的保护间隔长度和所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度。
基于第一方面第四种可行的实施方式,在第七种可行的实施方式中,所述接入设备广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧之前,还包括:
所述接入设备在所述第一标准协议数据单元中增加用于指示所述第二标准协议数据单元发送时间的操作字段;
所述接入设备广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧,包括:
所述接入设备以预设周期广播所述包括所述操作字段的第一标准协议数据单元;
所述接入设备在所述操作字段指示的发送时间广播所述第二标准协议数据单元。
本发明第二方面提供一种数据通信方法,可包括:
终端获取接入设备广播的信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
所述终端从所述接入设备支持的多种数据保护间隔长度中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度;
所述终端利用所述可用保护间隔长度与所述接入设备进行数据通信。
基于第二方面,在第一种可行的实施方式中,所述信标帧以第一标准协议数据单元进行封装和第二标准协议数据单元进行封装,所述接入设备以预设周期发送所述第一标准协议数据单元,所述第一标准协议数据单元包括用于指示所述第二标准协议数据单元发送时间的操作字段。
基于第二方面第一种可行的实施方式,在第二种可行的实施方式中,所述终端获取接入设备广播的信标帧,包括:
所述终端获取所述接入设备广播的所述第一标准协议数据单元,并从所述第一标准协议数据单元中解析出所述信标帧;或者,
所述终端获取所述接入设备广播的所述第二标准协议数据单元,并从所述第二标准协议数据单元中解析出所述信标帧;或者,
所述终端获取所述接入设备广播的所述第一标准协议数据单元,从所述第一标准协议数据单元中的操作字段确定所述第二标准协议数据单元的发送时间,并根据所述发送时间获取所述第二标准协议数据单元,从所述第二标准协议数据单元中解析出所述信标帧。
本发明第三方面提供一种接入设备,包括:
构造模块,用于构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
收发模块,用于广播所述信标帧,以及与终端进行数据通信。
基于第三方面,在第一种可行的实施方式中,所述信标帧包括至少一个元素,所述至少一个元素中的特定元素携带所述新增字段,所述特定元素为已有元素或者新增元素。
基于第三方面第一种可行的实施方式,在第二种可行的实施方式中,所述新增字段包括每一种预设带宽对应的指示索引值,所述指示索引值表征所述接入设备在该预设带宽下所支持的所有数据保护间隔长度中的最小数据保护间 隔长度;或者,
所述新增字段包括每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设数据保护间隔长度;或者,
所述新增字段包括每一种预设带宽下每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设带宽下的该预设数据保护间隔长度。
基于第三方面,在第三种可行的实施方式中,所述接入设备还包括:
封装模块,用于分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
所述收发模块具体用于广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧。
基于第三方面第三种可行的实施方式,在第四种可行的实施方式中,所述接入设备支持的多种数据保护间隔长度中包括所述接入设备在第一标准中所支持的数据保护间隔长度和所述接入设备在第二标准中所支持的数据保护间隔长度;所述封装模块包括:
第一获取单元,用于获取所述接入设备在第一标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第一备选数据保护间隔长度;
第二获取单元,用于获取所述接入设备在第二标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第二备选数据保护间隔长度;
封装单元,用于根据所述第一备选数据保护间隔长度和所述第二备选数据保护间隔长度,分别将所述信标帧封装为所述第一标准协议数据单元和所述第二标准协议数据单元。
基于第三方面第四种可行的实施方式,在第五种可行的实施方式中,所述第一标准协议数据单元包括前导码和承载数据,所述承载数据包括所述信标帧,所述前导码保护间隔长度和所述承载数据的保护间隔长度为所述第一备选数据保护间隔长度。
基于第三方面第四种可行的实施方式,在第六种可行的实施方式中,所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度、所述高效无线局域网前导码的保护间隔长度 以及所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度;或者,
所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度为所述第一备选数据保护间隔长度,所述高效无线局域网前导码和所述承载数据的保护间隔长度为所述第二备选数据保护间隔长度;或者,
所述第二标准协议数据单元包括高效无线局域网前导码和承载数据,所述高效无线局域网前导码的保护间隔长度和所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度。
基于第三方面第四种可行的实施方式,在第七种可行的实施方式中,所述接入设备还包括:
处理模块,用于在所述第一标准协议数据单元中增加用于指示所述第二标准协议数据单元发送时间的操作字段;
所述收发模块具体用于以预设周期广播所述包括所述操作字段的第一标准协议数据单元;
所述收发模块还用于在所述操作字段指示的发送时间广播所述第二标准协议数据单元。
本发明第四方面提供一种终端,包括:
收发模块,用于获取接入设备广播的信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
选择模块,用于从所述接入设备支持的多种数据保护间隔长度中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度;
所述收发模块还用于利用所述可用保护间隔长度与所述接入设备进行数据通信。
基于第四方面,在第一种可行的实施方式中,所述信标帧以第一标准协议数据单元进行封装和第二标准协议数据单元进行封装,所述接入设备以预设周期发送所述第一标准协议数据单元,所述第一标准协议数据单元包括用于指示所述第二标准协议数据单元发送时间的操作字段。
基于第四方面第一种可行的实施方式,在第二种可行的实施方式中,所述 收发模块具体用于获取所述接入设备广播的所述第一标准协议数据单元,并从所述第一标准协议数据单元中解析出所述信标帧;或者,
所述收发模块具体用于获取所述接入设备广播的所述第二标准协议数据单元,并从所述第二标准协议数据单元中解析出所述信标帧;或者,
所述收发模块具体用于获取所述接入设备广播的所述第一标准协议数据单元,从所述第一标准协议数据单元中的操作字段确定所述第二标准协议数据单元的发送时间,并根据所述发送时间获取所述第二标准协议数据单元,从所述第二标准协议数据单元中解析出所述信标帧。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为发明提供的一种数据通信方法的应用场景图;
图2为本发明提供的一种数据通信方法的流程示意图;
图3为本发明提供的另一种数据通信方法的流程示意图;
图4为本发明提供的又一种数据通信方法的流程示意图;
图5为本发明提供的又一种数据通信方法的流程示意图;
图6为本发明提供的一种新增元素的结构示意图;
图7为本发明提供的另一种新增元素的结构示意图;
图8为本发明提供的一种在HEW标准中AP支持的数据GI长度表格;
图9为本发明提供的另一种在HEW标准中AP支持的数据GI长度表格;
图10为本发明提供的一种指示索引值对应表格;
图11为本发明提供的一种新增字段的结构示意图;
图12为本发明提供的一种对新增字段解释说明的表格;
图13为本发明提供的另一种新增字段的结构示意图;
图14为本发明提供的另一种对新增字段解释说明的表格;
图15为本发明提供的又一种在HEW标准中AP支持的数据GI长度表格;
图16为本发明提供的又一种新增字段的结构示意图;
图17为本发明提供的又一种对新增字段解释说明的表格;
图18为在802.11ac标准中PPDU1的封装格式;
图19为本发明提供的一种PPDU2的封装格式;
图20为本发明提供的一种对PPDU2中各个字段的解释说明表格;
图21为本发明提供的另一种PPDU2的封装格式;
图22为本发明提供的另一种对PPDU2中各个字段的解释说明表格;
图23为本发明提供的又一种PPDU2的封装格式;
图24为本发明提供又一种对PPDU2中各个字段的解释说明表格;
图25为本发明提供的一种PPDU1和PPDU2的广播方式;
图26为本发明提供的另一种PPDU1和PPDU2的广播方式;
图27为本发明提供的一种接入设备的结构示意图;
图28为本发明提供的一种封装模块的结构示意图;
图29为本发明提供的一种终端的结构示意图;
图30为本发明提供的另一种接入设备的结构示意图;
图31为本发明提供的另一种终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
接入设备可以是接入点(简称:AP,英文:Access Point),也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。目前AP主要采用的标准为IEEE(英文:Institute of Electrical and Electronics Engineers,中文:电气和电子工程师协会)802.11系列。具体地,AP可以是带有WiFi芯片的终端设备或者网络设备。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN(英文:Wireless Local Area Network,中文:无线局域网)制式的设备。
终端可以是无线通讯芯片、无线传感器或无线通信终端。例如:支持无线保真(英文:Wireless Fidelity,简称:WiFi)通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒和支持WiFi通讯功能的计算机。可选地,终端可以支持802.11ax制式,进一步可选地,终端支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
现有技术中,例如在802.11ac标准中,AP与STA之间进行数据通信的过程中,所使用的数据GI长度为0.8us,在HEW标准中,提出了在数据GI长度方面更多的选择,包括:0.4us、0.8us、1.2us、1.6us、2.4us、3.2us等数据长度GI,现有技术中固化的数据GI长度就无法满足新的HEW标准中AP与STA之间的数据通信,如图1所示,在AP同时支持HEW标准的STA2、STA3和802.11ac标准的STA1,当AP与STA之间使用0.8us的数据GI长度时,由于STA1和STA2在0.8us的覆盖范围内,因此可以与AP之间进行数 据通信,但是STA3在0.8us之外,因此无法与AP之间进行数据通信。
本发明实施例可以应用于图1的应用场景中,AP向所有的STA广播信标帧,该信标帧中携带新增字段,该新增字段用于表征AP所支持的多种数据GI长度,以使终端在接收到AP广播的信标帧时,解析出AP所支持的多种数据GI长度,并选择与终端所支持的数据GI长度中匹配的数据GI长度作为与AP之间进行数据通信时所使用的数据GI长度,因此本发明实施例可以在HEW标准中所提出的多种数据GI长度情况下,成功实现AP与STA之间的数据通信。
请参照图2为本发明实施例提供的一种数据通信方法,如图所示,本实施例的数据通信方法包括步骤S100-S101;
S100,接入设备构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
具体实施例中,当前标准组正在研究的新一代标准方案HEW支持的数据GI长度是{0.4us、0.8us、1.6us、2.4us、3.2us},接入设备可以是无线接入点(Access Point,AP),AP为了更好的指示数据GI长度信息,本发明在信标帧Beacon帧中添加新增字段,记作“HE支持GI”字段,该新增字段用于表征AP支持的多种GI长度。所述的“HE支持GI”用于AP与STA之间交换各自支持的数据GI长度。下面分别从“HE支持GI”字段的位置、“HE支持GI”字段的格式等方面详细描述。
“HE支持GI”字段可放置在Beacon帧中的任意位置,例如,该字段可以放置在Beacon帧的一个已有元素中,也可以在Beacon帧中创立一个新增元素来放置。除此之外,该字段还可以放在携带该Beacon帧的物层的表示层协议数据单元(Presentation Protocol Data Unit,PPDU)帧的SIG域中。下面考虑新创立一个新增元素来放置“HE支持GI”字段的情况。新创立元素记作HE能力元素。此时,可以采取下面的方式来放置“HE支持GI”字段。
在第一种可选的实施方式中,“HE支持GI”字段直接放置在“HE能力”元素中,“HE能力”信息元素包含用来描述支持某种WLAN方案的AP的可 选能力的字段。“HE支持GI”字段放置在“HE能力”元素中,例如可采用如图6所示的方式放置。
在第二种可选的实施方式中,“HE支持GI”字段放置在“HE能力”元素的一个字段中,如图7所示,“HE能力”元素中包含一个“HE能力信息”字段,该字段用来指示AP的能力信息。可将“HE支持GI”字段放置在上述“HE能力信息”字段中。
本发明中新增字段“HE支持GI”字段指示AP支持的数据GI长度,新一代标准HEW方案中,支持的带宽有20MHz、40MHz、80MHz或160MHz。不同的带宽下数据GI长度有多种,如图8所示。其中AP支持数据GI长度是0.4us的N(N=1、2、3……32)倍的长度。HE支持GI”的字段的表示方式有很多种,下面分别举例几种表示方式进行说明,需要说明的是,具体的表示方式在此不作限定。
在第一种可选的实施方式中,新增字段包括每一种预设带宽对应的指示索引值,所述指示索引值表征所述接入设备在该预设带宽下所支持的所有数据保护间隔长度中的最小数据保护间隔长度,预设带宽可以包括20MHz、40MHz、80MHz以及160MHz,具体的表示方式可以是,为了描述方便:此处从图8的表中所示的不同带宽支持的所有数据GI长度中任意选择M个数据GI长度作为AP支持的GI长度,如图9所示。其中N表示序号,N的值为{1、2、…、M},m表示指示位的bit数,N与指示位值一一对应。假设选择了6种数据GI长度,即M=6。则N={1、2、…、6},m=3,N与指示位关系如图9所示。为了描述方便,假设AP不支持某些数据GI长度,“-”表示对应带宽下AP不支持该GI长度。
假设AP支持的最小数据GI长度记为min_GI,min_GI对应的索引值是N,并且不同的带宽下都对应有一个min_GI。由图9获得在不同带宽下AP支持的min_GI以及其与序号、指示位的关系如图10所示。
所述“HE支持GI”字段包括的指示索引值是指“HE支持GI”字段指示不同带宽下的min_GI对应的索引值。所述“HE支持GI”字段指示不同带宽下的min_GI对应的索引值是指“HE支持GI”字段携带每种带宽下支持的min_GI对应的序号。举例说明:在20MHz带宽下支持的数据GI长度是{0.8us、 1.2us、1.6us、2.0、2.4us、2.8、3.2us},假设20MHz带宽支持的min_GI是0.8us。则20M序号的指示索引值是2。40MHz、80MHz以及160MHz处理参考20MHz。具体的,在Beacon帧中“HE支持GI”字段的指示索引值的表示方式是以二进制编码形式存在,即是以指示位的形式存在,具体的表示形式如图11所示,“HE支持GI”字段包括每一种预设带宽下的指示索引值,指示索引值GI_Idx是以比特信息进行表示。具体的比特信息表示如图12所示。
在第二种可选的实施方式中,新增字段包括每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设数据保护间隔长度;在本实施方式中不考虑带宽的影响,从图8所示的数据GI长度中任意选择M个数据GI长度作为预设数据GI长度,例如:预设数据GI长度为{0.4us、0.8us、1.2us、1.6us、2.0us、2.4us、2.8us、3.2us}。
所述“HE支持GI”字段利用指示位指示AP是否支持该预设数据GI长度,“HE支持GI”字段可以使用单个比特的指示位来指示所有预设数据GI长度中的每一种数据GI长度,每一个比特信息位指示一种数据GI长度,“HE支持GI”字段的表示方式如13所示,一个比特位指示一种数据GI长度。具体的比特信息指示如图14所示。
在第三种可选的实施方式中,所述新增字段包括每一种预设带宽下每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设带宽下的该预设数据保护间隔长度。本实施方式从图8所示的不同带宽支持的所有数据GI长度中任意选择M个数据GI长度作为AP支持的数据GI长度,此处M=5,如图15所示。所述“HE支持GI”字段指示每种带宽下支持的数据GI长度是指“HE支持GI”字段使用单个比特指示位指示AP支持的数据GI长度,即每一个bit分别指示不同带宽下支持的数据GI长度,“HE支持GI”字段的表示形式如图16所示。具体比特信息见图17。
S101,所述接入设备广播所述信标帧,以使终端从所述信标帧中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用所述可用保护间隔长度与所述接入设备进行数据通信。
具体实施例中,接入设备广播所构造的信标帧,具体的广播方法可以是将信标帧进行封装,封装为PPDU格式进行广播,PPDU格式的封装方式可以多 种,例如,可以按照现有标准中的802.11ac进行封装为PPDU1,也可以重新根据新一代标准HEW创立一种封装方式,将信标帧封装为PPDU2,具体的创立方式请参照图3的描述,支持新一代标准HEW的终端即可以识别解析PPDU2。
当广播范围内同时存在支持标准802.11ac的终端STA1和支持新一代标准HEW的终端STA2时,为了能够将STA1和STA2均接入网络,则接入设备AP需要广播所封装的PPDU1和PPDU2,对PPDU1的广播方式可以按照现有标准中,以一定的预设周期广播PPDU1,对于PPDU2的广播可以是在PPDU1中增加操作字段,该操作字段指示PPDU2的广播时间,则在操作字段指示的时间广播PPDU2。
STA1接收到AP广播的封装为PPDU1格式的信标帧后,按照现有的802.11ac标准接入网络,STA2检测PPDU1和/或PPDU2后,解析出信标帧Beacon帧,并分析Beacon帧的各个能力元素,并解析能力元素中“HE支持GI”字段获取AP支持的数据GI长度,STA2根据自身支持数据GI长度来获取与AP通信时的可用数据GI长度,可用数据GI长度指,AP支持的数据GI长度中与STA2支持的数据GI长度中匹配的数据GI长度。例如,STA2支持的数据GI长度为{0.8us、1.6us、2.4us、3.2us},AP支持的数据GI长度为{0.4us、0.8us、1.6us、2.0us、2.4us、3.2us},可见AP与STA2都支持的数据GI长度是{0.8us、1.6us、2.4us、3.2us},此时{0.8us、1.6us、2.4us、3.2us}即所述的可用数据GI长度。后续STA2即利用可选数据GI长度与AP进行数据通信,具体的,STA2可以根据信道状况从可用数据GI长度中选择一种数据GI长度与AP进行数据通信。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之 间的数据通信。
请参照图3,为本发明实施例提供的另一种数据通信方法,如图所示,本实施例的数据通信方法包括步骤S200-S202;
S200,接入设备构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
S201,所述接入设备分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
具体实施例中,考虑在一个网络中同时存在支持第一标准与第二标准的STA的情况。例如,STA1支持第一标准,STA2支持第二标准。上述第一标准或者第二标准为不同的WIFI方案,可以是已有WIFI标准方案例如802.11ac,也可以是当前标准组正在研究的新一代标准方案HEW,还可以是其它类似的WIFI方案。
接入设备AP在将信标帧封装为PPDU格式时,需要封装为两种PPDU格式,分别为第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2,PPDU1按照第一标准进行封装,PPDU2按照第二标准进行封装。以下对具体的封装方式进行详细介绍,具体包括步骤S20-S22;
S20,所述接入设备获取所述接入设备在第一标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第一备选数据保护间隔长度;
具体实施例中,AP在第一标准与第二标准分别支持一组数据GI长度。所述第一备选数据GI长度指第一标准中AP支持的一组GI中的最大数据GI长度。举例说明,假设AP在第一标准中支持的数据GI长度是{0.4us、0.8us},那么所述第一备选数据GI长度指长度为0.8us的数据GI长度。
S21,所述接入设备获取所述接入设备在第二标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第二备选数据保护间隔长度;
具体实施例中,AP在第二标准中也支持一组数据GI长度,所述第二备选数据保护间隔长度指第二标准中AP支持的一组GI中的最大数据GI长度。举例说明,假设AP在第二标准中支持的一组数据GI长度为{0.4us、0.8us、1.6 us、2.4us、3.2us},则第二备选数据GI长度指3.2us的数据GI长度。
需要说明的是,在一个网络中支持不同标准的STA更加多样性的情况下,即是存在多种类型的STA,不同类型的STA所支持的标准不同,但是支持不同标准的STA之间可能存在兼容,但是只能前向兼容,不能后向兼容。例如,支持HEW的STA能够兼容支持802.11ac标准的STA,但支持802.11ac标准的STA不能支持HEW标准的STA。当网络中存在多种类型的STA时,例如网络中多样性的STA支持的不同标准的数量为3、4或者更多,可对应确定所述备选数据GI长度,此时所述备选数据GI长度的数量对应的为3、4或者更多。为便于表述,下面均假设网络中存在两个STA分别支持第一标准(例如802.11ac标准方案)和第二标准(例如当前HEW标准方案),来描述本发明内容,而所述备选数据GI长度记作GI1与GI2。
S22,所述接入设备根据所述第一备选数据保护间隔长度和所述第二备选数据保护间隔长度,分别将所述信标帧封装为所述第一标准协议数据单元和所述第二标准协议数据单元。
具体实施例中,接入设备根据第一备选数据保护间隔长度GI1和第二备选数据保护间隔长度GI2,将信标帧封装为第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2,构造得到的PPDU1与PPDU2需符合各自标准中的PPDU格式。下面分别介绍PPDU2与PPDU2的格式。
可选的,PPDU1格式包括前导码和承载数据,该承载数据在包括信标帧,PPDU1格式中前导码GI长度与数据GI长度为GI1,如图18所示。AP发送PPDU1的目的是让支持第一标准的STA1检测到网络。第一标准可以是802.11ac标准。
可选的,第二标准可以是HEW标准,结合HEW标准,PPDU2格式有多种设计方法,在此不作限定,下面列举三种可选的PPDU2格式设计:
在第一种可选的实施方式中,PPDU2包括传统前导码、高效无线局域网前导码和承载数据,如19所示,其中,L-STF、L-LTF与L-SIG的组合称为传统前导码,HE-SIG、HE-STF等其它可能的字段的组合称为HEW前导码。传统前导码的GI长度、HEW前导码的GI长度以及承载数据的GI长度均为GI2。AP发送PPDU2是为了让支持第二标准的STA2检测到网络,需要说明 的是STA2也能够检测到PPDU1,并对其进行处理。图19中各个字段的解释如图20所示。
在第二种可选的实施方式中,如图21所示,PPDU2的格式中包括传统前导码、高效无线局域网前导码和承载数据,其中传统前导码的GI长度为GI1,HEW前导码的GI长度与承载数据的GI长度为GI2。AP发送PPDU2是为了让支持第二标准的STA2检测到网络。由图20得到在第一种可选的实施方式中PPDU2格式的传统前导码长度是80us,由图22得到在第二种可选的实施方式中PPDU2格式的传统前导码是20us,在其余字段长度都一样的情况下,使用第二种可选的实施方式时传输开销可减少60us。图21中各个字段的解释如图22所示。
在第三种可选的实施方式中,PPDU2的格式如图23所示,PPDU2包括高效无线局域网前导码和承载数据。图23中各个字段的解释如图24所示。其中,HEW前导码的GI长度与承载数据的GI长度均为GI2,AP发送PPDU2是为了让支持第二标准的STA2检测到网络。与第一种可选实施方式中PPDU格式相比,第三种可选实施方式中PPDU格式中去除了传统前导码。因此在其余字段长度一样的情况下,与第一种可选实施方式中的PPDU格式相比,传输开销减少80us。
S202,所述接入设备广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧。
具体实施例中,接入设备广播封装为PPDU1的信标帧和封装为PPDU2的信标帧,具体的广播方式可以是,对PPDU1的广播按照预设周期进行广播,对PPDU2的广播可以指定广播时间,但是需要在PPDU1里面增加操作字段,并指示PPDU2的发送时间。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多 种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
请参照图4,为本发明实施例提供的又一种数据通信方法,如图所示,本实施例的数据通信方法包括步骤S300-S304;
S300,接入设备构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
S301,所述接入设备分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
S302,所述接入设备在所述第一标准协议数据单元中增加用于指示所述第二标准协议数据单元发送时间的操作字段;
具体实施例中,所述AP发送所构造的PPDU1和PPDU2。假设PPDU1是按照802.11ac标准进行构造,在802.11ac标准中规定的PPDU1的发送周期是T1,AP发送PPDU2的时间可以任意指定,例如:AP交替发PPDU1与PPDU2;也可以在PPDU1中增加操作字段进行指示,也可以在PPDU2中增加操作字段进行指示。操作字段用来指示PPDU2的发送时间。对于操作字段如何指示PPDU2的发送时间,可以有多种指示方式,下面仅列出两种。
在第一种可选的实施方式中,HE操作字段只用一个比特,用来指示下一个m*T(例如:m=2/3)周期是否有PPDU2,其中T为广播PPDU1的预设周期。即如果HE操作字段的值是1,则表示下一个m*T周期有PPDU2;如果HE操作字段的值是0,则表示下一个m*T周期没有PPDU2。如25所示,从左边开始第一个PPDU1中的HE操作字段值为1,则表示在下一个m*T周期有PPDU2;第二个PPDU1中的HE操作字段值为0,则在下一个m*T周期没有PPDU2。
在第二种可选的实施方式中,HE操作字段有两个或者多个比特,记为x个,HE操作字段可以用来指示下一个(n+m*T)(例如:m=2/3,n是x个比特数表示的自然数)周期是否有PPDU2。即如果HE操作字段的值是n,则表示在下一个(n+m*T)周期有PPDU2。如图26所示,从左边开始的第一个PPDU1的HE操作字段的值是1,表示下一个m*T周期有PPDU2;第二个PPDU1的HE操作字段的值 是2,表示下两个m*T周期有PPDU2。
S303,所述接入设备以预设周期广播所述包括所述操作字段的第一标准协议数据单元;
具体实施例中,接入设备以一定的预设周期广播包括操作字段的PPDU1,PPDU1可以是按照802.11ac标准进行封装的,因此广播PPDU1也可以按照802.11ac标准中的预设周期进行广播。
S304,所述接入设备在所述操作字段指示的发送时间广播所述第二标准协议数据单元。
具体实施例中,如图25或26所示,接入设备在操作字段指示的发送时间广播PPDU2,终端在接收到PPDU1时可以根据操作字段获知PPDU2的发送时间,并在所获知的发送时间接收PPDU2。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
请参照图5,为本发明实施例提供的又一种数据通信方法,如图所示,本实施例数据通信方法包括步骤S400-S402;
S400,终端获取接入设备广播的信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
具体实施例中,终端STA获取接入设备所广播的信标帧,信标帧可以是Beacon帧,信标帧中包括新增字段,新增字段表征接入设备支持的多种数据GI长度。STA处理流程与上述接入设备AP处理流程对应。AP侧将Beacon帧以第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2进行封装,第一标准可以是802.11ac标准,第二标准可以是HEW标准。本实施方式中,当网络 中存在支持第一标准的STA1和支持第二标准的STA2,STA1仅能对PPDU1进行正常的检测处理。检测处理的方法可参见802.11ac标准方案,这里不再赘述。此处描述的STA处理流程指前述STA2的处理流程。
AP以预设周期发送PPDU1,PPDU1包括用于指示PPDU2发送时间的操作字段,该操作字段指示PPDU2的发送时间。具体的,STA获取AP广播的Beacon帧方法可以有三种可选的实施方式:
在第一种可选的实施方式中,STA获取的是AP广播的PPDU1,则STA处理PPDU1,从PPDU1中解析出Beacon帧,同时STA根据PPDU1的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU1的前导码为GI1,则STA设置后续数据通信的前导码为GI1。
在第二种可选的实施方式中,STA获取的是AP广播的PPDU2,则STA处理PPDU2,从PPDU2里面解析出Beacon帧,同时STA根据PPDU2的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU2的前导码为GI2,则STA设置后续数据通信的前导码为GI2。
在第三种可选的实施方式中,STA接收到PPDU1,则从PPDU1中通过解析“HE操作”字段获取下一个PPDU2的发送时间。举例说明:假设“HE操作”字段使用一个比特指示下一个周期是否有PPDU2。如果“HE操作”字段指示0,则表示STA需要在下一个周期上检测PPDU2;如果“HE操作”字段指示位1,则表示STA不需要在下一个周期上检测PPDU2。STA从检测到的PPDU2里面解析出Beacon帧。同时STA根据PPDU2的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU2的前导码为GI2,则STA设置后续数据通信的前导码为GI2。
S401,所述终端从所述接入设备支持的多种数据保护间隔长度中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度;
具体实施例中,终端STA获取到信标帧Beacon帧后进行分析,具体分析方式可以是,STA检测Beacon帧的各个能力元素,通过解析“HE支持GI”字段获取AP支持的数据GI长度,STA根据自己支持的数据GI长度与获取的AP支持的数据GI长度设置可用数据GI长度。举例说明,假设“HE支持GI”字段信息指示的数据GI长度是{0.8us、1.6us、2.4us},则AP支持的数据GI 长度是{0.8us、1.6us、2.4us}。STA自身支持的GI长度是{0.4us、0.8us、1.6us、2.4us、3.2us},可见AP与STA2都支持的数据GI长度是{0.8us、1.6us、},此时{0.8us、1.6us}即所述的可用数据GI长度。在后续STA与AP通信中,会根据信道状况从可用数据GI长度中选择一个数据GI长度构造PPDU。
S402,所述终端利用所述可用保护间隔长度与所述接入设备进行数据通信。
具体实施例中,STA获取了可用数据GI长度后,即可以利用可用数据GI长度与AP之间进行数据通信,具体的,在后续STA与AP的通信中,会根据信道状况从可用数据GI长度中选择一个数据GI长度构造PPDU。
进一步,STA会根据可用数据GI长度生成关联请求帧,并将关联请求帧发给AP。AP接收到关联请求帧后对其进行分析,若允许STA接入网络则向STA返回关联响应帧。STA接收关联响应帧后对其进行解析,此时,STA与AP之间建立关联,后续AP与STA之间可以进行数据通信传输数据。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
请参照图27,为本发明提供的一种接入设备的结构示意图,如图所示,本实施提供的接入设备包括构造模块100、封装模块101、处理模块102以及收发模块103;
构造模块100,用于构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
具体实施例中,当前标准组正在研究的新一代标准方案HEW支持的数据GI长度是{0.4us、0.8us、1.6us、2.4us、3.2us},接入设备可以是无线接入 点(Access Point,AP),AP为了更好的指示数据GI长度信息,本发明构造模块100在信标帧Beacon帧中添加新增字段,记作“HE支持GI”字段,该新增字段用于表征AP支持的多种GI长度。所述的“HE支持GI”用于AP与STA之间交换各自支持的数据GI长度。下面分别从“HE支持GI”字段的位置、“HE支持GI”字段的格式等方面详细描述。
“HE支持GI”字段可放置在Beacon帧中的任意位置,例如,该字段可以放置在Beacon帧的一个已有元素中,也可以在Beacon帧中创立一个新增元素来放置。除此之外,该字段还可以放在携带该Beacon帧的物层的表示层协议数据单元(Presentation Protocol Data Unit,PPDU)帧的SIG域中。下面考虑新创立一个新增元素来放置“HE支持GI”字段的情况。新创立元素记作HE能力元素。此时,可以采取下面的方式来放置“HE支持GI”字段。
在第一种可选的实施方式中,“HE支持GI”字段直接放置在“HE能力”元素中,“HE能力”信息元素包含用来描述支持某种WLAN方案的AP的可选能力的字段。“HE支持GI”字段放置在“HE能力”元素中,例如可采用如图6所示的方式放置。
在第二种可选的实施方式中,“HE支持GI”字段放置在“HE能力”元素的一个字段中,如图7所示,“HE能力”元素中包含一个“HE能力信息”字段,该字段用来指示AP的能力信息。可将“HE支持GI”字段放置在上述“HE能力信息”字段中。
本发明中新增字段“HE支持GI”字段指示AP支持的数据GI长度,新一代标准HEW方案中,支持的带宽有20MHz、40MHz、80MHz或160MHz。不同的带宽下数据GI长度有多种,如图8所示。其中AP支持数据GI长度是0.4us的N(N=1、2、3……32)倍的长度。HE支持GI”的字段的表示方式有很多种,下面分别举例几种表示方式进行说明,需要说明的是,具体的表示方式在此不作限定。
在第一种可选的实施方式中,新增字段包括每一种预设带宽对应的指示索引值,所述指示索引值表征所述接入设备在该预设带宽下所支持的所有数据保护间隔长度中的最小数据保护间隔长度,预设带宽可以包括20MHz、40MHz、80MHz以及160MHz,具体的表示方式可以是,为了描述方便:此处从图8 的表中所示的不同带宽支持的所有数据GI长度中任意选择M个数据GI长度作为AP支持的GI长度,如图9所示。其中N表示序号,N的值为{1、2、…、M},m表示指示位的bit数,N与指示位值一一对应。假设选择了6种数据GI长度,即M=6。则N={1、2、…、6},m=3,N与指示位关系如图9所示。为了描述方便,假设AP不支持某些数据GI长度,“-”表示对应带宽下AP不支持该GI长度。
假设AP支持的最小数据GI长度记为min_GI,min_GI对应的索引值是N,并且不同的带宽下都对应有一个min_GI。由图9获得在不同带宽下AP支持的min_GI以及其与序号、指示位的关系如图10所示。
所述“HE支持GI”字段包括的指示索引值是指“HE支持GI”字段指示不同带宽下的min_GI对应的索引值。所述“HE支持GI”字段指示不同带宽下的min_GI对应的索引值是指“HE支持GI”字段携带每种带宽下支持的min_GI对应的序号。举例说明:在20MHz带宽下支持的数据GI长度是{0.8us、1.2us、1.6us、2.0、2.4us、2.8、3.2us},假设20MHz带宽支持的min_GI是0.8us。则20M序号的指示索引值是2。40MHz、80MHz以及160MHz处理参考20MHz。具体的,在Beacon帧中“HE支持GI”字段的指示索引值的表示方式是以二进制编码形式存在,即是以指示位的形式存在,具体的表示形式如图11所示,“HE支持GI”字段包括每一种预设带宽下的指示索引值,指示索引值GI_Idx是以比特信息进行表示。具体的比特信息表示如图12所示。
在第二种可选的实施方式中,新增字段包括每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设数据保护间隔长度;在本实施方式中不考虑带宽的影响,从图8所示的数据GI长度中任意选择M个数据GI长度作为预设数据GI长度,例如:预设数据GI长度为{0.4us、0.8us、1.2us、1.6us、2.0us、2.4us、2.8us、3.2us}。
所述“HE支持GI”字段利用指示位指示AP是否支持该预设数据GI长度,“HE支持GI”字段可以使用单个比特的指示位来指示所有预设数据GI长度中的每一种数据GI长度,每一个比特信息位指示一种数据GI长度,“HE支持GI”字段的表示方式如图13所示,一个比特位指示一种数据GI长度。具体的比特信息指示如图14所示。
在第三种可选的实施方式中,所述新增字段包括每一种预设带宽下每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设带宽下的该预设数据保护间隔长度。本实施方式从图8所示的不同带宽支持的所有数据GI长度中任意选择M个数据GI长度作为AP支持的数据GI长度,此处M=5,如图15所示。所述“HE支持GI”字段指示每种带宽下支持的数据GI长度是指“HE支持GI”字段使用单个比特指示位指示AP支持的数据GI长度,即每一个bit分别指示不同带宽下支持的数据GI长度,“HE支持GI”字段的表示形式如图16所示。具体比特信息见图17。
收发模块103,用于广播所述信标帧,以及与终端进行数据通信。
具体实施例中,接入设备收发模块103广播所构造的信标帧,具体的广播方法可以是将信标帧进行封装,封装为PPDU格式进行广播,PPDU格式的封装方式可以多种,例如,可以按照现有标准中的802.11ac进行封装为PPDU1,也可以重新根据新一代标准HEW创立一种封装方式,将信标帧封装为PPDU2,具体的创立方式请参照后续实施例的描述,支持新一代标准HEW的终端即可以识别解析PPDU2。
当广播范围内同时存在支持标准802.11ac的终端STA1和支持新一代标准HEW的终端STA2时,为了能够将STA1和STA2均接入网络,则接入设备AP需要广播所封装的PPDU1和PPDU2,对PPDU1的广播方式可以按照现有标准中,以一定的预设周期广播PPDU1,对于PPDU2的广播可以是在PPDU1中增加操作字段,该操作字段指示PPDU2的广播时间,则在操作字段指示的时间广播PPDU2。
STA1接收到AP广播的封装为PPDU1格式的信标帧后,按照现有的802.11ac标准接入网络,STA2检测PPDU1和/或PPDU2后,解析出信标帧Beacon帧,并分析Beacon帧的各个能力元素,并解析能力元素中“HE支持GI”字段获取AP支持的数据GI长度,STA2根据自身支持数据GI长度来获取与AP通信时的可用数据GI长度,可用数据GI长度指,AP支持的数据GI长度中与STA2支持的数据GI长度中匹配的数据GI长度。例如,STA2支持的数据GI长度为{0.8us、1.6us、2.4us、3.2us},AP支持的数据GI长度为{0.4us、0.8us、1.6us、2.0us、2.4us、3.2us},可见AP与STA2都支持的数据GI长 度是{0.8us、1.6us、2.4us、3.2us},此时{0.8us、1.6us、2.4us、3.2us}即所述的可用数据GI长度。后续STA2即利用可选数据GI长度与AP进行数据通信,具体的,STA2可以根据信道状况从可用数据GI长度中选择一种数据GI长度与AP进行数据通信。
可选的,接入设备可以进一步包括封装模块101;
封装模块101,用于分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
具体实施例中,考虑在一个网络中同时存在支持第一标准与第二标准的STA的情况。例如,STA1支持第一标准,STA2支持第二标准。上述第一标准或者第二标准为不同的WIFI方案,可以是已有WIFI标准方案例如802.11ac,也可以是当前标准组正在研究的新一代标准方案HEW,还可以是其它类似的WIFI方案。
接入设备AP的封装模块101在将信标帧封装为PPDU格式时,需要封装为两种PPDU格式,分别为第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2,PPDU1按照第一标准进行封装,PPDU2按照第二标准进行封装。
具体的封装方式请参照图28的描述;
所述收发模块103具体用于广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧。
具体实施例中,接入设备收发模块103广播封装为PPDU1的信标帧和封装为PPDU2的信标帧,具体的广播方式可以是,对PPDU1的广播按照预设周期进行广播,对PPDU2的广播可以指定广播时间,但是需要在PPDU1里面增加操作字段,并指示PPDU2的发送时间。
可选的,接入设备可以进一步包括处理模块102;
处理模块102,用于在所述第一标准协议数据单元中增加用于指示所述第二标准协议数据单元发送时间的操作字段;
具体实施例中,所述AP发送所构造的PPDU1和PPDU2。假设PPDU1是按照802.11ac标准进行构造,在802.11ac标准中规定的PPDU1的发送周期是T1,AP发送PPDU2的时间可以任意指定,例如:AP交替发PPDU1与PPDU2;处理模块102可以在PPDU1中增加操作字段进行指示,也可以在PPDU2中增加操作 字段进行指示。操作字段用来指示PPDU2的发送时间。对于操作字段如何指示PPDU2的发送时间,可以有多种指示方式,下面仅列出两种。
在第一种可选的实施方式中,HE操作字段只用一个比特,用来指示下一个m*T(例如:m=2/3)周期是否有PPDU2,其中T为广播PPDU1的预设周期。即如果HE操作字段的值是1,则表示下一个m*T周期有PPDU2;如果HE操作字段的值是0,则表示下一个m*T周期没有PPDU2。如图25所示,从左边开始第一个PPDU1中的HE操作字段值为1,则表示在下一个m*T周期有PPDU2;第二个PPDU1中的HE操作字段值为0,则在下一个m*T周期没有PPDU2。
在第二种可选的实施方式中,HE操作字段有两个或者多个比特,记为x个,HE操作字段可以用来指示下一个(n+m*T)(例如:m=2/3,n是x个比特数表示的自然数)周期是否有PPDU2。即如果HE操作字段的值是n,则表示在下一个(n+m*T)周期有PPDU2。如图26所示,从左边开始的第一个PPDU1的HE操作字段的值是1,表示下一个m*T周期有PPDU2;第二个PPDU1的HE操作字段的值是2,表示下两个m*T周期有PPDU2。
所述收发模块103具体用于以预设周期广播所述包括所述操作字段的第一标准协议数据单元;
具体实施例中,接入设备收发模块103以一定的预设周期广播包括操作字段的PPDU1,PPDU1可以是按照802.11ac标准进行封装的,因此广播PPDU1也可以按照802.11ac标准中的预设周期进行广播。
所述收发模块103还用于在所述操作字段指示的发送时间广播所述第二标准协议数据单元。
具体实施例中,如图25或26所示,接入设备收发模块103在操作字段指示的发送时间广播PPDU2,终端在接收到PPDU1时可以根据操作字段获知PPDU2的发送时间,并在所获知的发送时间接收PPDU2。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本 实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
请参照图28,为本发明提供的一种封装模块的结构示意图,如图所示,本实施例的封装包括第一获取单元1030、第二获取单元1031和封装单元1032;
第一获取单元1030,用于获取所述接入设备在第一标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第一备选数据保护间隔长度;
具体实施例中,AP在第一标准与第二标准分别支持一组数据GI长度。所述第一备选数据GI长度指第一标准中AP支持的一组GI中的最大数据GI长度。举例说明,假设AP在第一标准中支持的数据GI长度是{0.4us、0.8us},那么所述第一备选数据GI长度指长度为0.8us的数据GI长度。
第二获取单元1031,用于获取所述接入设备在第二标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第二备选数据保护间隔长度;
具体实施例中,AP在第二标准中也支持一组数据GI长度,所述第二备选数据保护间隔长度指第二标准中AP支持的一组GI中的最大数据GI长度。举例说明,假设AP在第二标准中支持的一组数据GI长度为{0.4us、0.8us、1.6us、2.4us、3.2us},则第二备选数据GI长度指3.2us的数据GI长度。
需要说明的是,在一个网络中支持不同标准的STA更加多样性的情况下,即是存在多种类型的STA,不同类型的STA所支持的标准不同,但是支持不同标准的STA之间可能存在兼容,但是只能前向兼容,不能后向兼容。例如,支持HEW的STA能够兼容支持802.11ac标准的STA,但支持802.11ac标准的STA不能支持HEW标准的STA。当网络中存在多种类型的STA时,例如网络中多样性的STA支持的不同标准的数量为3、4或者更多,可对应确定所述备选数据GI长度,此时所述备选数据GI长度的数量对应的为3、4或者更多。为便于表述,下面均假设网络中存在两个STA分别支持第一标准(例如802.11ac标准方案) 和第二标准(例如当前HEW标准方案),来描述本发明内容,而所述备选数据GI长度记作GI1与GI2。
封装单元1032,用于根据所述第一备选数据保护间隔长度和所述第二备选数据保护间隔长度,分别将所述信标帧封装为所述第一标准协议数据单元和所述第二标准协议数据单元。
具体实施例中,接入设备封装单元1032根据第一备选数据保护间隔长度GI1和第二备选数据保护间隔长度GI2,将信标帧封装为第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2,构造得到的PPDU1与PPDU2需符合各自标准中的PPDU格式。下面分别介绍PPDU2与PPDU2的格式。
可选的,PPDU1格式包括前导码和承载数据,该承载数据在包括信标帧,PPDU1格式中前导码GI长度与数据GI长度为GI1,如图18所示。AP发送PPDU1的目的是让支持第一标准的STA1检测到网络。第一标准可以是802.11ac标准。
可选的,第二标准可以是HEW标准,结合HEW标准,PPDU2格式有多种设计方法,在此不作限定,下面列举三种可选的PPDU2格式设计:
在第一种可选的实施方式中,PPDU2包括传统前导码、高效无线局域网前导码和承载数据,如图19所示,其中,L-STF、L-LTF与L-SIG的组合称为传统前导码,HE-SIG、HE-STF等其它可能的字段的组合称为HEW前导码。传统前导码的GI长度、HEW前导码的GI长度以及承载数据的GI长度均为GI2。AP发送PPDU2是为了让支持第二标准的STA2检测到网络,需要说明的是STA2也能够检测到PPDU1,并对其进行处理。图19中各个字段的解释如图20所示。
在第二种可选的实施方式中,如图21所示,PPDU2的格式中包括传统前导码、高效无线局域网前导码和承载数据,其中传统前导码的GI长度为GI1,HEW前导码的GI长度与承载数据的GI长度为GI2。AP发送PPDU2是为了让支持第二标准的STA2检测到网络。由图20得到在第一种可选的实施方式中PPDU2格式的传统前导码长度是80us,由图22得到在第二种可选的实施方式中PPDU2格式的传统前导码是20us,在其余字段长度都一样的情况下, 使用第二种可选的实施方式时传输开销可减少60us。图21中各个字段的解释如图22所示。
在第三种可选的实施方式中,PPDU2的格式如图23所示,PPDU2包括高效无线局域网前导码和承载数据。图23中各个字段的解释如图24所示。其中,HEW前导码的GI长度与承载数据的GI长度均为GI2,AP发送PPDU2是为了让支持第二标准的STA2检测到网络。与第一种可选实施方式中PPDU格式相比,第三种可选实施方式中PPDU格式中去除了传统前导码。因此在其余字段长度一样的情况下,与第一种可选实施方式中的PPDU格式相比,传输开销减少80us。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
请参照图29,为本发明实施例提供的一种终端的结构示意图;如图所示,本发明实施例的终端包括收发模块200、选择模块201;
收发模块200,用于获取接入设备广播的信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
具体实施例中,终端STA收发模块200获取接入设备所广播的信标帧,信标帧可以是Beacon帧,信标帧中包括新增字段,新增字段表征接入设备支持的多种数据GI长度。STA处理流程与上述接入设备AP处理流程对应。AP侧将Beacon帧以第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2进行封装,第一标准可以是802.11ac标准,第二标准可以是HEW标准。本实施方式中,当网络中存在支持第一标准的STA1和支持第二标准的STA2,STA1仅能对PPDU1进行正常的检测处理。检测处理的方法可参见802.11ac标准方案, 这里不再赘述。此处描述的STA处理流程指前述STA2的处理流程。
AP以预设周期发送PPDU1,PPDU1包括用于指示PPDU2发送时间的操作字段,该操作字段指示PPDU2的发送时间。具体的,STA获取AP广播的Beacon帧方法可以有三种可选的实施方式:
可选的,收发模块200具体用于获取所述接入设备广播的所述第一标准协议数据单元,并从所述第一标准协议数据单元中解析出所述信标帧;
在第一种可选的实施方式中,STA获取的是AP广播的PPDU1,则STA处理PPDU1,从PPDU1中解析出Beacon帧,同时STA根据PPDU1的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU1的前导码为GI1,则STA设置后续数据通信的前导码为GI1。
可选的,所述收发模块200具体用于获取所述接入设备广播的所述第二标准协议数据单元,并从所述第二标准协议数据单元中解析出所述信标帧;
在第二种可选的实施方式中,STA获取的是AP广播的PPDU2,则STA处理PPDU2,从PPDU2里面解析出Beacon帧,同时STA根据PPDU2的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU2的前导码为GI2,则STA设置后续数据通信的前导码为GI2。
可选的,所述收发模块200具体用于获取所述接入设备广播的所述第一标准协议数据单元,从所述第一标准协议数据单元中的操作字段确定所述第二标准协议数据单元的发送时间,并根据所述发送时间获取所述第二标准协议数据单元,从所述第二标准协议数据单元中解析出所述信标帧。
在第三种可选的实施方式中,STA接收到PPDU1,则从PPDU1中通过解析“HE操作”字段获取下一个PPDU2的发送时间。举例说明:假设“HE操作”字段使用一个比特指示下一个周期是否有PPDU2。如果“HE操作”字段指示0,则表示STA需要在下一个周期上检测PPDU2;如果“HE操作”字段指示位1,则表示STA不需要在下一个周期上检测PPDU2。STA从检测到的PPDU2里面解析出Beacon帧。同时STA根据PPDU2的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU2的前导码为GI2,则STA设置后续数据通信的前导码为GI2。
选择模块201,用于从所述接入设备支持的多种数据保护间隔长度中选择 与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度;
具体实施例中,终端STA获取到信标帧Beacon帧后进行分析,具体分析方式可以是,STA检测Beacon帧的各个能力元素,通过解析“HE支持GI”字段获取AP支持的数据GI长度,STA选择模块201根据自己支持的数据GI长度与获取的AP支持的数据GI长度设置可用数据GI长度。举例说明,假设“HE支持GI”字段信息指示的数据GI长度是{0.8us、1.6us、2.4us},则AP支持的数据GI长度是{0.8us、1.6us、2.4us}。STA自身支持的GI长度是{0.4us、0.8us、1.6us、2.4us、3.2us},可见AP与STA2都支持的数据GI长度是{0.8us、1.6us、},此时{0.8us、1.6us}即所述的可用数据GI长度。在后续STA与AP通信中,会根据信道状况从可用数据GI长度中选择一个数据GI长度构造PPDU。
所述收发模块200还用于利用所述可用保护间隔长度与所述接入设备进行数据通信。
具体实施例中,STA获取了可用数据GI长度后,收发模块200即可以利用可用数据GI长度与AP之间进行数据通信,具体的,在后续STA与AP的通信中,会根据信道状况从可用数据GI长度中选择一个数据GI长度构造PPDU。
进一步,STA会根据可用数据GI长度生成关联请求帧,并将关联请求帧发给AP。AP接收到关联请求帧后对其进行分析,若允许STA接入网络则向STA返回关联响应帧。STA接收关联响应帧后对其进行解析,此时,STA与AP之间建立关联,后续AP与STA之间可以进行数据通信传输数据。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
请参照图30,为本发明提供的另一种接入设备的结构示意图,图30的接入设备30可用于实现上述方法实施例中各步骤及方法。图30的实施例中,接入设备30包括处理器300、收发器301、存储器302、天线303以及总线304。处理器300控制接入设备30的操作,并可用于处理信号。存储器302可以包括只读存储器和随机存取存储器,并向处理器300提供指令和数据。收发器301可以耦合到天线303。接入设备30的各个组件通过总线系统304耦合在一起,其中总线系统304除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统304。接入设备30可以为图1所示的AP。下面对各个组件进行详细描述:
所述处理器用于构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
所述收发器用于广播所述信标帧,以及与终端进行数据通信。
可选的,当前标准组正在研究的新一代标准方案HEW支持的数据GI长度是{0.4us、0.8us、1.6us、2.4us、3.2us},接入设备可以是无线接入点(Access Point,AP),AP为了更好的指示数据GI长度信息,本发明在信标帧Beacon帧中添加新增字段,记作“HE支持GI”字段,该新增字段用于表征AP支持的多种GI长度。所述的“HE支持GI”用于AP与STA之间交换各自支持的数据GI长度。下面分别从“HE支持GI”字段的位置、“HE支持GI”字段的格式等方面详细描述。
“HE支持GI”字段可放置在Beacon帧中的任意位置,例如,该字段可以放置在Beacon帧的一个已有元素中,也可以在Beacon帧中创立一个新增元素来放置。除此之外,该字段还可以放在携带该Beacon帧的物层的表示层协议数据单元(Presentation Protocol Data Unit,PPDU)帧的SIG域中。下面考虑新创立一个新增元素来放置“HE支持GI”字段的情况。新创立元素记作HE能力元素。此时,可以采取下面的方式来放置“HE支持GI”字段。
在第一种可选的实施方式中,“HE支持GI”字段直接放置在“HE能力”元素中,“HE能力”信息元素包含用来描述支持某种WLAN方案的AP的可 选能力的字段。“HE支持GI”字段放置在“HE能力”元素中,例如可采用如图6所示的方式放置。
在第二种可选的实施方式中,“HE支持GI”字段放置在“HE能力”元素的一个字段中,如图7所示,“HE能力”元素中包含一个“HE能力信息”字段,该字段用来指示AP的能力信息。可将“HE支持GI”字段放置在上述“HE能力信息”字段中。
本发明中新增字段“HE支持GI”字段指示AP支持的数据GI长度,新一代标准HEW方案中,支持的带宽有20MHz、40MHz、80MHz或160MHz。不同的带宽下数据GI长度有多种,如图8所示。其中AP支持数据GI长度是0.4us的N(N=1、2、3……32)倍的长度。HE支持GI”的字段的表示方式有很多种,下面分别举例几种表示方式进行说明,需要说明的是,具体的表示方式在此不作限定。
在第一种可选的实施方式中,新增字段包括每一种预设带宽对应的指示索引值,所述指示索引值表征所述接入设备在该预设带宽下所支持的所有数据保护间隔长度中的最小数据保护间隔长度,预设带宽可以包括20MHz、40MHz、80MHz以及160MHz,具体的表示方式可以是,为了描述方便:此处从图8的表中所示的不同带宽支持的所有数据GI长度中任意选择M个数据GI长度作为AP支持的GI长度,如图9所示。其中N表示序号,N的值为{1、2、…、M},m表示指示位的bit数,N与指示位值一一对应。假设选择了6种数据GI长度,即M=6。则N={1、2、…、6},m=3,N与指示位关系如图9所示。为了描述方便,假设AP不支持某些数据GI长度,“-”表示对应带宽下AP不支持该GI长度。
假设AP支持的最小数据GI长度记为min_GI,min_GI对应的索引值是N,并且不同的带宽下都对应有一个min_GI。由图9获得在不同带宽下AP支持的min_GI以及其与序号、指示位的关系如图10所示。
所述“HE支持GI”字段包括的指示索引值是指“HE支持GI”字段指示不同带宽下的min_GI对应的索引值。所述“HE支持GI”字段指示不同带宽下的min_GI对应的索引值是指“HE支持GI”字段携带每种带宽下支持的min_GI对应的序号。举例说明:在20MHz带宽下支持的数据GI长度是{0.8us、 1.2us、1.6us、2.0、2.4us、2.8、3.2us},假设20MHz带宽支持的min_GI是0.8us。则20M序号的指示索引值是2。40MHz、80MHz以及160MHz处理参考20MHz。具体的,在Beacon帧中“HE支持GI”字段的指示索引值的表示方式是以二进制编码形式存在,即是以指示位的形式存在,具体的表示形式如图11所示,“HE支持GI”字段包括每一种预设带宽下的指示索引值,指示索引值GI_Idx是以比特信息进行表示。具体的比特信息表示如图12所示。
在第二种可选的实施方式中,新增字段包括每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设数据保护间隔长度;在本实施方式中不考虑带宽的影响,从图8所示的数据GI长度中任意选择M个数据GI长度作为预设数据GI长度,例如:预设数据GI长度为{0.4us、0.8us、1.2us、1.6us、2.0us、2.4us、2.8us、3.2us}。
所述“HE支持GI”字段利用指示位指示AP是否支持该预设数据GI长度,“HE支持GI”字段可以使用单个比特的指示位来指示所有预设数据GI长度中的每一种数据GI长度,每一个比特信息位指示一种数据GI长度,“HE支持GI”字段的表示方式如图13所示,一个比特位指示一种数据GI长度。具体的比特信息指示如图14所示。
在第三种可选的实施方式中,所述新增字段包括每一种预设带宽下每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设带宽下的该预设数据保护间隔长度。本实施方式从图8所示的不同带宽支持的所有数据GI长度中任意选择M个数据GI长度作为AP支持的数据GI长度,此处M=5,如图15所示。所述“HE支持GI”字段指示每种带宽下支持的数据GI长度是指“HE支持GI”字段使用单个比特指示位指示AP支持的数据GI长度,即每一个bit分别指示不同带宽下支持的数据GI长度,“HE支持GI”字段的表示形式如图16所示。具体比特信息见图17。
可选的,接入设备广播所构造的信标帧,具体的广播方法可以是将信标帧进行封装,封装为PPDU格式进行广播,PPDU格式的封装方式可以多种,例如,可以按照现有标准中的802.11ac进行封装为PPDU1,也可以重新根据新一代标准HEW创立一种封装方式,将信标帧封装为PPDU2,具体的创立方式请参照图3的描述,支持新一代标准HEW的终端即可以识别解析PPDU2。
当广播范围内同时存在支持标准802.11ac的终端STA1和支持新一代标准HEW的终端STA2时,为了能够将STA1和STA2均接入网络,则接入设备AP需要广播所封装的PPDU1和PPDU2,对PPDU1的广播方式可以按照现有标准中,以一定的预设周期广播PPDU1,对于PPDU2的广播可以是在PPDU1中增加操作字段,该操作字段指示PPDU2的广播时间,则在操作字段指示的时间广播PPDU2。
STA1接收到AP广播的封装为PPDU1格式的信标帧后,按照现有的802.11ac标准接入网络,STA2检测PPDU1和/或PPDU2后,解析出信标帧Beacon帧,并分析Beacon帧的各个能力元素,并解析能力元素中“HE支持GI”字段获取AP支持的数据GI长度,STA2根据自身支持数据GI长度来获取与AP通信时的可用数据GI长度,可用数据GI长度指,AP支持的数据GI长度中与STA2支持的数据GI长度中匹配的数据GI长度。例如,STA2支持的数据GI长度为{0.8us、1.6us、2.4us、3.2us},AP支持的数据GI长度为{0.4us、0.8us、1.6us、2.0us、2.4us、3.2us},可见AP与STA2都支持的数据GI长度是{0.8us、1.6us、2.4us、3.2us},此时{0.8us、1.6us、2.4us、3.2us}即所述的可用数据GI长度。后续STA2即利用可选数据GI长度与AP进行数据通信,具体的,STA2可以根据信道状况从可用数据GI长度中选择一种数据GI长度与AP进行数据通信。
所述处理器还用于分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
所述收发器还用于广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧。
可选的,考虑在一个网络中同时存在支持第一标准与第二标准的STA的情况。例如,STA1支持第一标准,STA2支持第二标准。上述第一标准或者第二标准为不同的WIFI方案,可以是已有WIFI标准方案例如802.11ac,也可以是当前标准组正在研究的新一代标准方案HEW,还可以是其它类似的WIFI方案。
接入设备AP在将信标帧封装为PPDU格式时,需要封装为两种PPDU格式,分别为第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2, PPDU1按照第一标准进行封装,PPDU2按照第二标准进行封装。
可选的,接入设备广播封装为PPDU1的信标帧和封装为PPDU2的信标帧,具体的广播方式可以是,对PPDU1的广播按照预设周期进行广播,对PPDU2的广播可以指定广播时间,但是需要在PPDU1里面增加操作字段,并指示PPDU2的发送时间。
所述处理器还用于获取所述接入设备在第一标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第一备选数据保护间隔长度;
所述处理器还用于获取所述接入设备在第二标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第二备选数据保护间隔长度;
所述处理器还用于根据所述第一备选数据保护间隔长度和所述第二备选数据保护间隔长度,分别将所述信标帧封装为所述第一标准协议数据单元和所述第二标准协议数据单元。
可选的,AP在第一标准与第二标准分别支持一组数据GI长度。所述第一备选数据GI长度指第一标准中AP支持的一组GI中的最大数据GI长度。举例说明,假设AP在第一标准中支持的数据GI长度是{0.4us、0.8us},那么所述第一备选数据GI长度指长度为0.8us的数据GI长度。
可选的,AP在第二标准中也支持一组数据GI长度,所述第二备选数据保护间隔长度指第二标准中AP支持的一组GI中的最大数据GI长度。举例说明,假设AP在第二标准中支持的一组数据GI长度为{0.4us、0.8us、1.6us、2.4us、3.2us},则第二备选数据GI长度指3.2us的数据GI长度。
需要说明的是,在一个网络中支持不同标准的STA更加多样性的情况下,即是存在多种类型的STA,不同类型的STA所支持的标准不同,但是支持不同标准的STA之间可能存在兼容,但是只能前向兼容,不能后向兼容。例如,支持HEW的STA能够兼容支持802.11ac标准的STA,但支持802.11ac标准的STA不能支持HEW标准的STA。当网络中存在多种类型的STA时,例如网络中多样性的STA支持的不同标准的数量为3、4或者更多,可对应确定所述备选数据GI长度,此时所述备选数据GI长度的数量对应的为3、4或者更多。为便于表述,下面均假设网络中存在两个STA分别支持第一标准(例如802.11ac标准方案) 和第二标准(例如当前HEW标准方案),来描述本发明内容,而所述备选数据GI长度记作GI1与GI2。
可选的,接入设备根据第一备选数据保护间隔长度GI1和第二备选数据保护间隔长度GI2,将信标帧封装为第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2,构造得到的PPDU1与PPDU2需符合各自标准中的PPDU格式。下面分别介绍PPDU2与PPDU2的格式。
可选的,PPDU1格式包括前导码和承载数据,该承载数据在包括信标帧,PPDU1格式中前导码GI长度与数据GI长度为GI1,如图18所示。AP发送PPDU1的目的是让支持第一标准的STA1检测到网络。第一标准可以是802.11ac标准。
可选的,第二标准可以是HEW标准,结合HEW标准,PPDU2格式有多种设计方法,在此不作限定,下面列举三种可选的PPDU2格式设计:
在第一种可选的实施方式中,PPDU2包括传统前导码、高效无线局域网前导码和承载数据,如图19所示,其中,L-STF、L-LTF与L-SIG的组合称为传统前导码,HE-SIG、HE-STF等其它可能的字段的组合称为HEW前导码。传统前导码的GI长度、HEW前导码的GI长度以及承载数据的GI长度均为GI2。AP发送PPDU2是为了让支持第二标准的STA2检测到网络,需要说明的是STA2也能够检测到PPDU1,并对其进行处理。图19中各个字段的解释如图20所示。
在第二种可选的实施方式中,如图21所示,PPDU2的格式中包括传统前导码、高效无线局域网前导码和承载数据,其中传统前导码的GI长度为GI1,HEW前导码的GI长度与承载数据的GI长度为GI2。AP发送PPDU2是为了让支持第二标准的STA2检测到网络。由图20得到在第一种可选的实施方式中PPDU2格式的传统前导码长度是80us,由图22得到在第二种可选的实施方式中PPDU2格式的传统前导码是20us,在其余字段长度都一样的情况下,使用第二种可选的实施方式时传输开销可减少60us。图21中各个字段的解释如图22所示。
在第三种可选的实施方式中,PPDU2的格式如图23所示,PPDU2包括高效无线局域网前导码和承载数据。图23中各个字段的解释如图24所示。其 中,HEW前导码的GI长度与承载数据的GI长度均为GI2,AP发送PPDU2是为了让支持第二标准的STA2检测到网络。与第一种可选实施方式中PPDU格式相比,第三种可选实施方式中PPDU格式中去除了传统前导码。因此在其余字段长度一样的情况下,与第一种可选实施方式中的PPDU格式相比,传输开销减少80us。
所述处理器还用于在所述第一标准协议数据单元中增加用于指示所述第二标准协议数据单元发送时间的操作字段;
所述收发器还用于以预设周期广播所述包括所述操作字段的第一标准协议数据单元;
所述收发器还用于在所述操作字段指示的发送时间广播所述第二标准协议数据单元。
可选的,所述AP发送所构造的PPDU1和PPDU2。假设PPDU1是按照802.11ac标准进行构造,在802.11ac标准中规定的PPDU1的发送周期是T1,AP发送PPDU2的时间可以任意指定,例如:AP交替发PPDU1与PPDU2;也可以在PPDU1中增加操作字段进行指示,也可以在PPDU2中增加操作字段进行指示。操作字段用来指示PPDU2的发送时间。对于操作字段如何指示PPDU2的发送时间,可以有多种指示方式,下面仅列出两种。
在第一种可选的实施方式中,HE操作字段只用一个比特,用来指示下一个m*T(例如:m=2/3)周期是否有PPDU2,其中T为广播PPDU1的预设周期。即如果HE操作字段的值是1,则表示下一个m*T周期有PPDU2;如果HE操作字段的值是0,则表示下一个m*T周期没有PPDU2。如图25所示,从左边开始第一个PPDU1中的HE操作字段值为1,则表示在下一个m*T周期有PPDU2;第二个PPDU1中的HE操作字段值为0,则在下一个m*T周期没有PPDU2。
在第二种可选的实施方式中,HE操作字段有两个或者多个比特,记为x个,HE操作字段可以用来指示下一个(n+m*T)(例如:m=2/3,n是x个比特数表示的自然数)周期是否有PPDU2。即如果HE操作字段的值是n,则表示在下一个(n+m*T)周期有PPDU2。如图26所示,从左边开始的第一个PPDU1的HE操作字段的值是1,表示下一个m*T周期有PPDU2;第二个PPDU1的HE操作字段的值是2,表示下两个m*T周期有PPDU2。
可选的,接入设备以一定的预设周期广播包括操作字段的PPDU1,PPDU1可以是按照802.11ac标准进行封装的,因此广播PPDU1也可以按照802.11ac标准中的预设周期进行广播。
可选的,如图25或26所示,接入设备在操作字段指示的发送时间广播PPDU2,终端在接收到PPDU1时可以根据操作字段获知PPDU2的发送时间,并在所获知的发送时间接收PPDU2。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
请参照图31,为本发明提供的另一种终端的结构示意图,图31的终端40可用于实现上述方法实施例中各步骤及方法。图31的实施例中,终端40包括处理器400、收发器401、存储器402、天线403和总线404。处理器400控制终端40的操作,并可用于处理信号。存储器402可以包括只读存储器和随机存取存储器,并向处理器400提供指令和数据。收发器401可以耦合到天线403。终端40的各个组件通过总线系统404耦合在一起,其中总线系统404除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统404。例如,终端40可以为图1所示的STA1、STA2和STA3。下面对终端40的各个组件进行详细介绍。
所述收发器用于获取接入设备广播的信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
所述处理器用于从所述接入设备支持的多种数据保护间隔长度中选择与 所述终端支持的数据保护间隔长度匹配的可用保护间隔长度;
所述收发器用于利用所述可用保护间隔长度与所述接入设备进行数据通信。
可选的,终端STA获取接入设备所广播的信标帧,信标帧可以是Beacon帧,信标帧中包括新增字段,新增字段表征接入设备支持的多种数据GI长度。STA处理流程与上述接入设备AP处理流程对应。AP侧将Beacon帧以第一标准协议数据单元PPDU1和第二标准协议数据单元PPDU2进行封装,第一标准可以是802.11ac标准,第二标准可以是HEW标准。本实施方式中,当网络中存在支持第一标准的STA1和支持第二标准的STA2,STA1仅能对PPDU1进行正常的检测处理。检测处理的方法可参见802.11ac标准方案,这里不再赘述。此处描述的STA处理流程指前述STA2的处理流程。
AP以预设周期发送PPDU1,PPDU1包括用于指示PPDU2发送时间的操作字段,该操作字段指示PPDU2的发送时间。具体的,STA获取AP广播的Beacon帧方法可以有三种可选的实施方式:
在第一种可选的实施方式中,STA获取的是AP广播的PPDU1,则STA处理PPDU1,从PPDU1中解析出Beacon帧,同时STA根据PPDU1的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU1的前导码为GI1,则STA设置后续数据通信的前导码为GI1。
在第二种可选的实施方式中,STA获取的是AP广播的PPDU2,则STA处理PPDU2,从PPDU2里面解析出Beacon帧,同时STA根据PPDU2的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU2的前导码为GI2,则STA设置后续数据通信的前导码为GI2。
在第三种可选的实施方式中,STA接收到PPDU1,则从PPDU1中通过解析“HE操作”字段获取下一个PPDU2的发送时间。举例说明:假设“HE操作”字段使用一个比特指示下一个周期是否有PPDU2。如果“HE操作”字段指示0,则表示STA需要在下一个周期上检测PPDU2;如果“HE操作”字段指示位1,则表示STA不需要在下一个周期上检测PPDU2。STA从检测到的PPDU2里面解析出Beacon帧。同时STA根据PPDU2的前导码确定后续STA与AP之间进行数据通信的前导码长度,例如PPDU2的前导码为GI2,则STA设置后续数据通信的 前导码为GI2。
可选的,终端STA获取到信标帧Beacon帧后进行分析,具体分析方式可以是,STA检测Beacon帧的各个能力元素,通过解析“HE支持GI”字段获取AP支持的数据GI长度,STA根据自己支持的数据GI长度与获取的AP支持的数据GI长度设置可用数据GI长度。举例说明,假设“HE支持GI”字段信息指示的数据GI长度是{0.8us、1.6us、2.4us},则AP支持的数据GI长度是{0.8us、1.6us、2.4us}。STA自身支持的GI长度是{0.4us、0.8us、1.6us、2.4us、3.2us},可见AP与STA2都支持的数据GI长度是{0.8us、1.6us、},此时{0.8us、1.6us}即所述的可用数据GI长度。在后续STA与AP通信中,会根据信道状况从可用数据GI长度中选择一个数据GI长度构造PPDU。
可选的,STA获取了可用数据GI长度后,即可以利用可用数据GI长度与AP之间进行数据通信,具体的,在后续STA与AP的通信中,会根据信道状况从可用数据GI长度中选择一个数据GI长度构造PPDU。
进一步,STA会根据可用数据GI长度生成关联请求帧,并将关联请求帧发给AP。AP接收到关联请求帧后对其进行分析,若允许STA接入网络则向STA返回关联响应帧。STA接收关联响应帧后对其进行解析,此时,STA与AP之间建立关联,后续AP与STA之间可以进行数据通信传输数据。
所述收发器还用于获取所述接入设备广播的所述第一标准协议数据单元,并从所述第一标准协议数据单元中解析出所述信标帧;或者,
所述收发器还用于获取所述接入设备广播的所述第二标准协议数据单元,并从所述第二标准协议数据单元中解析出所述信标帧;或者,
所述收发器还用于获取所述接入设备广播的所述第一标准协议数据单元,从所述第一标准协议数据单元中的操作字段确定所述第二标准协议数据单元的发送时间,并根据所述发送时间获取所述第二标准协议数据单元,从所述第二标准协议数据单元中解析出所述信标帧。
本发明实施例中,接入设备构造信标帧,该信标帧包括新增字段,该新增字段表征接入设备支持的多种数据保护间隔长度,接入设备广播所构造的信标帧,终端从接入设备所广播的信标帧中选择与终端支持的数据保护间隔长度匹 配的可用保护间隔长度,并利用该可用保护间隔长度与接入设备进行通信。本实施方式中,在提出多种数据保护间隔长度的标准中,可将接入设备支持的多种数据保护间隔长度封装进信标帧的新增字段中,成功实现接入设备与终端之间的数据通信。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (22)

  1. 一种数据通信方法,其特征在于,包括:
    接入设备构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
    所述接入设备广播所述信标帧,以使终端从所述信标帧中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度,并利用所述可用保护间隔长度与所述接入设备进行数据通信。
  2. 如权利要求1所述的方法,其特征在于,所述信标帧包括至少一个元素,所述至少一个元素中的特定元素携带所述新增字段,所述特定元素为已有元素或者新增元素。
  3. 如权利要求2所述的方法,其特征在于,所述新增字段包括每一种预设带宽对应的指示索引值,所述指示索引值表征所述接入设备在该预设带宽下所支持的所有数据保护间隔长度中的最小数据保护间隔长度;或者,
    所述新增字段包括每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设数据保护间隔长度;或者,
    所述新增字段包括每一种预设带宽下每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设带宽下的该预设数据保护间隔长度。
  4. 如权利要求1所述的方法,其特征在于,所述接入设备构造信标帧之后,还包括:
    所述接入设备分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
    所述接入设备广播所述信标帧,包括:
    所述接入设备广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧。
  5. 如权利要求4所述的方法,其特征在于,所述接入设备支持的多种数据保护间隔长度中包括所述接入设备在第一标准中所支持的数据保护间隔长度和所述接入设备在第二标准中所支持的数据保护间隔长度;
    所述接入设备分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元,包括:
    所述接入设备获取所述接入设备在第一标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第一备选数据保护间隔长度;
    所述接入设备获取所述接入设备在第二标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第二备选数据保护间隔长度;
    所述接入设备根据所述第一备选数据保护间隔长度和所述第二备选数据保护间隔长度,分别将所述信标帧封装为所述第一标准协议数据单元和所述第二标准协议数据单元。
  6. 如权利要求5所述的方法,其特征在于,所述第一标准协议数据单元包括前导码和承载数据,所述承载数据包括所述信标帧,所述前导码保护间隔长度和所述承载数据的保护间隔长度为所述第一备选数据保护间隔长度。
  7. 如权利要求5所述的方法,其特征在于,所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度、所述高效无线局域网前导码的保护间隔长度以及所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度;或者,
    所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度为所述第一备选数据保护间隔长度,所述高效无线局域网前导码和所述承载数据的保护间隔长度为所述第二备选数据保护间隔长度;或者,
    所述第二标准协议数据单元包括高效无线局域网前导码和承载数据,所述高效无线局域网前导码的保护间隔长度和所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度。
  8. 如权利要求5所述的方法,其特征在于,所述接入设备广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧之前,还包括:
    所述接入设备在所述第一标准协议数据单元中增加用于指示所述第二标准协议数据单元发送时间的操作字段;
    所述接入设备广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧,包括:
    所述接入设备以预设周期广播所述包括所述操作字段的第一标准协议数据单元;
    所述接入设备在所述操作字段指示的发送时间广播所述第二标准协议数据单元。
  9. 一种数据通信方法,其特征在于,包括:
    终端获取接入设备广播的信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
    所述终端从所述接入设备支持的多种数据保护间隔长度中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度;
    所述终端利用所述可用保护间隔长度与所述接入设备进行数据通信。
  10. 如权利要求9所述的方法,其特征在于,所述信标帧以第一标准协议数据单元进行封装和第二标准协议数据单元进行封装,所述接入设备以预设周期发送所述第一标准协议数据单元,所述第一标准协议数据单元包括用于指示所述第二标准协议数据单元发送时间的操作字段。
  11. 如权利要求10所述的方法,其特征在于,所述终端获取接入设备广播的信标帧,包括:
    所述终端获取所述接入设备广播的所述第一标准协议数据单元,并从所述第一标准协议数据单元中解析出所述信标帧;或者,
    所述终端获取所述接入设备广播的所述第二标准协议数据单元,并从所述 第二标准协议数据单元中解析出所述信标帧;或者,
    所述终端获取所述接入设备广播的所述第一标准协议数据单元,从所述第一标准协议数据单元中的操作字段确定所述第二标准协议数据单元的发送时间,并根据所述发送时间获取所述第二标准协议数据单元,从所述第二标准协议数据单元中解析出所述信标帧。
  12. 一种接入设备,其特征在于,所述接入设备包括:
    构造模块,用于构造信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
    收发模块,用于广播所述信标帧,以及与终端进行数据通信。
  13. 如权利要求12所述的接入设备,其特征在于,所述信标帧包括至少一个元素,所述至少一个元素中的特定元素携带所述新增字段,所述特定元素为已有元素或者新增元素。
  14. 如权利要求13所述的接入设备,其特征在于,所述新增字段包括每一种预设带宽对应的指示索引值,所述指示索引值表征所述接入设备在该预设带宽下所支持的所有数据保护间隔长度中的最小数据保护间隔长度;或者,
    所述新增字段包括每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设数据保护间隔长度;或者,
    所述新增字段包括每一种预设带宽下每一种预设数据保护间隔长度的指示位,所述指示位用于指示所述接入设备是否支持该预设带宽下的该预设数据保护间隔长度。
  15. 如权利要求12所述的接入设备,其特征在于,所述接入设备还包括:
    封装模块,用于分别将所述信标帧封装为第一标准协议数据单元和第二标准协议数据单元;
    所述收发模块具体用于广播所述封装为所述第一标准协议数据单元的信标帧和所述封装为所述第二标准协议数据单元的信标帧。
  16. 如权利要求15所述的接入设备,其特征在于,所述接入设备支持的多种数据保护间隔长度中包括所述接入设备在第一标准中所支持的数据保护间隔长度和所述接入设备在第二标准中所支持的数据保护间隔长度;所述封装模块包括:
    第一获取单元,用于获取所述接入设备在第一标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第一备选数据保护间隔长度;
    第二获取单元,用于获取所述接入设备在第二标准中所支持的数据保护间隔长度中最大数据保护间隔长度,并将其确定为第二备选数据保护间隔长度;
    封装单元,用于根据所述第一备选数据保护间隔长度和所述第二备选数据保护间隔长度,分别将所述信标帧封装为所述第一标准协议数据单元和所述第二标准协议数据单元。
  17. 如权利要求16所述的接入设备,其特征在于,所述第一标准协议数据单元包括前导码和承载数据,所述承载数据包括所述信标帧,所述前导码保护间隔长度和所述承载数据的保护间隔长度为所述第一备选数据保护间隔长度。
  18. 如权利要求16所述的接入设备,其特征在于,所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度、所述高效无线局域网前导码的保护间隔长度以及所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度;或者,
    所述第二标准协议数据单元包括传统前导码、高效无线局域网前导码和承载数据,所述传统前导码的保护间隔长度为所述第一备选数据保护间隔长度,所述高效无线局域网前导码和所述承载数据的保护间隔长度为所述第二备选数据保护间隔长度;或者,
    所述第二标准协议数据单元包括高效无线局域网前导码和承载数据,所述高效无线局域网前导码的保护间隔长度和所述承载数据的保护间隔长度均为所述第二备选数据保护间隔长度。
  19. 如权利要求16所述的接入设备,其特征在于,所述接入设备还包括:
    处理模块,用于在所述第一标准协议数据单元中增加用于指示所述第二标准协议数据单元发送时间的操作字段;
    所述收发模块具体用于以预设周期广播所述包括所述操作字段的第一标准协议数据单元;
    所述收发模块还用于在所述操作字段指示的发送时间广播所述第二标准协议数据单元。
  20. 一种终端,其特征在于,所述终端包括:
    收发模块,用于获取接入设备广播的信标帧,所述信标帧包括新增字段,所述新增字段表征所述接入设备支持的多种数据保护间隔长度;
    选择模块,用于从所述接入设备支持的多种数据保护间隔长度中选择与所述终端支持的数据保护间隔长度匹配的可用保护间隔长度;
    所述收发模块还用于利用所述可用保护间隔长度与所述接入设备进行数据通信。
  21. 如权利要求20所述的终端,其特征在于,所述信标帧以第一标准协议数据单元进行封装和第二标准协议数据单元进行封装,所述接入设备以预设周期发送所述第一标准协议数据单元,所述第一标准协议数据单元包括用于指示所述第二标准协议数据单元发送时间的操作字段。
  22. 如权利要求21所述的终端,其特征在于,
    所述收发模块具体用于获取所述接入设备广播的所述第一标准协议数据单元,并从所述第一标准协议数据单元中解析出所述信标帧;或者,
    所述收发模块具体用于获取所述接入设备广播的所述第二标准协议数据单元,并从所述第二标准协议数据单元中解析出所述信标帧;或者,
    所述收发模块具体用于获取所述接入设备广播的所述第一标准协议数据单元,从所述第一标准协议数据单元中的操作字段确定所述第二标准协议数据 单元的发送时间,并根据所述发送时间获取所述第二标准协议数据单元,从所述第二标准协议数据单元中解析出所述信标帧。
CN201480081979.8A 2014-09-25 2014-09-25 一种数据通信方法及相关装置 Active CN107078764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010960040.6A CN112153026B (zh) 2014-09-25 2014-09-25 一种数据通信方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087403 WO2016045036A1 (zh) 2014-09-25 2014-09-25 一种数据通信方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010960040.6A Division CN112153026B (zh) 2014-09-25 2014-09-25 一种数据通信方法及相关装置

Publications (2)

Publication Number Publication Date
CN107078764A true CN107078764A (zh) 2017-08-18
CN107078764B CN107078764B (zh) 2020-09-25

Family

ID=55580084

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010960040.6A Active CN112153026B (zh) 2014-09-25 2014-09-25 一种数据通信方法及相关装置
CN201480081979.8A Active CN107078764B (zh) 2014-09-25 2014-09-25 一种数据通信方法及相关装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010960040.6A Active CN112153026B (zh) 2014-09-25 2014-09-25 一种数据通信方法及相关装置

Country Status (7)

Country Link
US (4) US10833828B2 (zh)
EP (4) EP3190716B1 (zh)
JP (1) JP2017532884A (zh)
KR (2) KR102024110B1 (zh)
CN (2) CN112153026B (zh)
ES (2) ES2720752T3 (zh)
WO (1) WO2016045036A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867004A (zh) * 2020-06-06 2020-10-30 烽火通信科技股份有限公司 一种Wi-Fi6场景下无线终端接入的方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065169A1 (en) * 2014-10-24 2016-04-28 Interdigital Patent Holdings, Inc. Wlan designs for supporting an outdoor propagation channel
WO2019079935A1 (en) 2017-10-23 2019-05-02 Hewlett Packard Enterprise Development Lp AUTOMATIC SELECTION CALL INTERVAL VALUE
CN111050289B (zh) * 2019-12-18 2022-04-19 展讯通信(上海)有限公司 信标发送、接收方法及装置、存储介质、终端
US11496926B2 (en) 2020-05-12 2022-11-08 Nxp Usa, Inc. EHT padding and packet extension method and apparatus
US11722354B2 (en) 2020-07-27 2023-08-08 Nxp Usa, Inc. EHT capability design for PPE threshold
CN117813884A (zh) * 2022-08-02 2024-04-02 北京小米移动软件有限公司 一种传输能力信息的方法、装置以及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618054A (zh) * 2001-12-07 2005-05-18 艾利森电话股份有限公司 无线局域网中的无线站及传输方法
CN100373829C (zh) * 1993-03-25 2008-03-05 松下电器产业株式会社 正交频分复用型接收机
US20080117879A1 (en) * 2006-11-16 2008-05-22 Industrial Technology Research Institute Handoff method in a wireless local area network and apparatus using the same
US20110070836A1 (en) * 2009-09-22 2011-03-24 Samsung Electronics Co., Ltd. Method for operating multi-type beacons
WO2013085270A1 (ko) * 2011-12-05 2013-06-13 엘지전자 주식회사 채널 파라메터 정보 전송 방법 및 장치
WO2013089404A1 (ko) * 2011-12-11 2013-06-20 엘지전자 주식회사 짧은 가드 인터벌을 사용한 프레임의 송신 및 수신 방법 및 장치

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046651B2 (en) 2003-04-04 2006-05-16 Nokia Corporation System topologies for optimum capacity transmission over wireless local area networks
JP2005130010A (ja) * 2003-10-21 2005-05-19 Toshiba Corp 無線lanシステムおよびその通信制御方法
US7586881B2 (en) * 2004-02-13 2009-09-08 Broadcom Corporation MIMO wireless communication greenfield preamble formats
CN1697356B (zh) * 2004-05-07 2013-07-03 美国博通公司 多入多出无线通信系统的前导信息格式
US20060250940A1 (en) * 2005-04-15 2006-11-09 Olav Tirkkonen Constant broadcast channel timing in a wireless communication system
JP4722931B2 (ja) * 2005-08-26 2011-07-13 シャープ株式会社 通信制御装置、通信端末装置、無線通信システムおよび送信方法
JP4775703B2 (ja) * 2005-10-05 2011-09-21 カシオ計算機株式会社 無線テレビシステム、無線テレビ受信装置及び送信装置
JP5108232B2 (ja) * 2006-01-20 2012-12-26 富士通株式会社 無線通信システム及び無線通信方法
US8798202B2 (en) * 2007-06-15 2014-08-05 Motorola Mobility Llc Method and apparatus using sounding PPDUs to provide range extension to IEEE 802.11n signals
WO2009114612A1 (en) * 2008-03-11 2009-09-17 Broadcom Corporation Method and system for dual mode operation in wireless networks
US20090279619A1 (en) * 2008-05-08 2009-11-12 Legend Silicon Corp. Method and apparatus for cell edge transmission performance enhancement for tds-ofdm
JPWO2009145326A1 (ja) * 2008-05-27 2011-10-20 日本電気株式会社 コグニティブ無線システム、コグニティブ無線機および無線信号検出方法
WO2010120692A1 (en) * 2009-04-13 2010-10-21 Marvell World Trade Ltd. Physical layer frame format for wlan
KR20110027533A (ko) * 2009-09-09 2011-03-16 엘지전자 주식회사 다중 안테나 시스템에서 제어정보 전송 방법 및 장치
KR101638917B1 (ko) * 2010-02-09 2016-07-13 엘지전자 주식회사 무선랜에서 ppdu 프레임 전송 방법 및 장치
US8717957B2 (en) * 2010-02-10 2014-05-06 Broadcom Corporation Preamble and header bit allocation for power savings within multiple user, multiple access, and/or MIMO wireless communications
US8665908B1 (en) * 2010-05-11 2014-03-04 Marvell International Ltd. Signaling guard interval capability in a communication system
US8719684B2 (en) * 2010-08-31 2014-05-06 Qualcomm Incorporated Guard interval signaling for data symbol number determination
KR101595525B1 (ko) * 2010-12-21 2016-02-26 한국전자통신연구원 위성 통신 시스템에서의 주파수 선택성 구현을 위한 송신 장치 및 방법
KR101497856B1 (ko) * 2011-01-16 2015-03-03 엘지전자 주식회사 무선랜 시스템에서 식별 정보 할당을 기반으로 한 통신 방법 및 이를 지원하는 장치
US8565082B1 (en) * 2011-03-25 2013-10-22 Sprint Spectrum L.P. Method and system for selecting cyclic prefix length based on access point load
US8774124B2 (en) * 2011-04-24 2014-07-08 Broadcom Corporation Device coexistence within single user, multiple user, multiple access, and/or MIMO wireless communications
EP2702737A4 (en) * 2011-04-26 2015-03-04 Intel Corp METHOD AND ARRANGEMENTS FOR WIRELESS POWER NETWORKS
CA2844598C (en) * 2011-08-07 2016-09-27 Lg Electronics Inc. Method and apparatus for transmitting and receiving frame on the basis of frequency selection transmission
CN103138870B (zh) * 2011-11-22 2015-09-30 华为技术有限公司 数据传输方法和数据传输装置
US9525474B2 (en) 2011-11-24 2016-12-20 Lg Electronics Inc. Method for performing channel sounding in wireless LAN system and apparatus for supporting same
US9467890B2 (en) * 2012-02-18 2016-10-11 Lg Electronics Inc. Method for transmitting and receiving traffic indication maps in wireless communication systems and apparatus for same
EP2833565B1 (en) * 2012-03-26 2020-04-29 LG Electronics Inc. Method for changing association id in wireless communication system and apparatus therefor
WO2013154405A1 (ko) * 2012-04-13 2013-10-17 엘지전자 주식회사 무선랜 시스템에서 비콘 프레임의 선택적 디코딩을 위한 방법 및 장치
US9585058B2 (en) * 2012-04-24 2017-02-28 Lg Electronics Inc. Method and apparatus for transmitting and receiving frame including partial association identifier in wireless LAN system
US9338660B2 (en) * 2012-05-08 2016-05-10 Electronics And Telecommunications Research Institute Apparatus and method for extending coverage in wireless communication system
CN103686881A (zh) * 2012-09-11 2014-03-26 华为技术有限公司 信道切换方法、设备及系统
US9504032B2 (en) 2012-09-13 2016-11-22 Interdigital Patent Holdings, Inc. Method, wireless transmit/receive unit (WTRU) and base station for transferring small packets
EP2933932B1 (en) * 2012-12-12 2020-06-17 LG Electronics Inc. Method for transmitting/receiving information related to association identifier in wireless communication system and device therefor
EP3709730A1 (en) * 2013-01-16 2020-09-16 Interdigital Patent Holdings, Inc. Discovery signal generation and reception
US9853794B2 (en) 2013-02-20 2017-12-26 Qualcomm, Incorporated Acknowledgement (ACK) type indication and deferral time determination
US9397805B2 (en) * 2013-04-15 2016-07-19 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US9408230B2 (en) 2013-05-03 2016-08-02 Qualcomm Incorporated Transmit opportunity (TXOP) based channel reuse
AU2014263335B2 (en) * 2013-05-07 2017-11-23 Lg Electronics Inc. Method and device for transmitting data unit
US9197473B2 (en) 2013-06-06 2015-11-24 Broadcom Corporation Preamble with modified signal field (SIG) for use in wireless communications
US9780919B2 (en) * 2013-07-05 2017-10-03 Quallcomm, Incorporated High efficiency WLAN preamble structure
US9439161B2 (en) 2013-07-17 2016-09-06 Qualcomm Incorporated Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
US20160173662A1 (en) * 2013-08-20 2016-06-16 Lg Electronics Inc. Method and device for transmitting and receiving short frame fragment in wireless lan system
JP6253784B2 (ja) * 2013-09-10 2017-12-27 マーベル ワールド トレード リミテッド 屋外wlanのための拡張ガードインターバル
US9991940B2 (en) * 2013-09-10 2018-06-05 Qualcomm Incorporated Multi-user multiple-input multiple-output (MU-MIMO) feedback protocol
US9860893B2 (en) * 2013-11-19 2018-01-02 Intel IP Corporation Frame structure with reduced signal field and method for high-efficiency Wi-Fi (HEW) communication
US9325463B2 (en) * 2013-11-19 2016-04-26 Intel IP Corporation High-efficiency WLAN (HEW) master station and methods to increase information bits for HEW communication
WO2015076917A1 (en) * 2013-11-19 2015-05-28 Li Guoqing C Master station and method for hew communication with signal field configuration for hew ofdma mu-mimo wideband channel operation
US20160302156A1 (en) * 2013-11-25 2016-10-13 Lg Electronics Inc. Method and device for transmitting uplink frame in wireless lan
CN103747534B (zh) * 2013-12-31 2018-03-09 上海华为技术有限公司 随机接入方法及装置
CN103974450B (zh) * 2014-03-10 2018-04-06 魅族科技(中国)有限公司 一种无线通信方法、相关设备及系统
KR101901450B1 (ko) * 2014-03-11 2018-09-21 엘지전자 주식회사 무선랜에서 프레임을 전송하는 방법 및 장치
CN103916964B (zh) * 2014-03-31 2018-01-23 魅族科技(中国)有限公司 一种无线通信方法和接入点设备
KR20170013905A (ko) 2014-06-02 2017-02-07 마벨 월드 트레이드 리미티드 고효율 직교 주파수 분할 멀티플렉싱(ofdm) 물리 계층(phy)
JP6645676B2 (ja) 2014-06-11 2020-02-14 マーベル ワールド トレード リミテッド 無線通信システムにおける圧縮された直交周波数分割多重(ofdm)シンボル
KR102024601B1 (ko) * 2014-08-19 2019-11-04 엘지전자 주식회사 무선 통신 시스템에서 non-cazac 시퀀스를 이용하여 파일럿 시퀀스를 생성하고 전송하는 방법
JP2017526243A (ja) * 2014-08-19 2017-09-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて時間軸上のシフトによって非対称シーケンスセットを構成することによってパイロットシーケンスを生成し送信する方法
US10412744B2 (en) * 2014-08-21 2019-09-10 Lg Electronics Inc. Data transmission method in wireless communication system, and apparatus therefor
RU2658322C1 (ru) * 2014-08-21 2018-06-20 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ для передачи восходящей линии связи в системе беспроводной связи и устройство для этого
KR20220153665A (ko) * 2014-08-27 2022-11-18 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US10420120B2 (en) * 2016-12-15 2019-09-17 Lg Electronics Inc. Method for transmitting uplink frame in wireless LAN system and wireless device using the same
US20210195622A1 (en) * 2018-06-14 2021-06-24 Lg Electronics Inc. Method and device for receiving uplink data in wireless lan system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373829C (zh) * 1993-03-25 2008-03-05 松下电器产业株式会社 正交频分复用型接收机
CN1618054A (zh) * 2001-12-07 2005-05-18 艾利森电话股份有限公司 无线局域网中的无线站及传输方法
US20080117879A1 (en) * 2006-11-16 2008-05-22 Industrial Technology Research Institute Handoff method in a wireless local area network and apparatus using the same
US20110070836A1 (en) * 2009-09-22 2011-03-24 Samsung Electronics Co., Ltd. Method for operating multi-type beacons
WO2013085270A1 (ko) * 2011-12-05 2013-06-13 엘지전자 주식회사 채널 파라메터 정보 전송 방법 및 장치
WO2013089404A1 (ko) * 2011-12-11 2013-06-20 엘지전자 주식회사 짧은 가드 인터벌을 사용한 프레임의 송신 및 수신 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867004A (zh) * 2020-06-06 2020-10-30 烽火通信科技股份有限公司 一种Wi-Fi6场景下无线终端接入的方法和装置

Also Published As

Publication number Publication date
EP3863187B1 (en) 2023-12-27
US10833828B2 (en) 2020-11-10
EP3512109B1 (en) 2021-03-03
EP3863187A1 (en) 2021-08-11
US20230239116A1 (en) 2023-07-27
EP3512109A1 (en) 2019-07-17
ES2936459T3 (es) 2023-03-17
US20170201364A1 (en) 2017-07-13
EP3591855A1 (en) 2020-01-08
KR20170057419A (ko) 2017-05-24
US20210176025A1 (en) 2021-06-10
JP2017532884A (ja) 2017-11-02
WO2016045036A1 (zh) 2016-03-31
US11569962B2 (en) 2023-01-31
ES2720752T3 (es) 2019-07-24
EP3190716B1 (en) 2019-01-30
EP3190716A1 (en) 2017-07-12
EP3863187C0 (en) 2023-12-27
CN107078764B (zh) 2020-09-25
US20190245669A1 (en) 2019-08-08
EP3591855B1 (en) 2022-11-02
KR102024110B1 (ko) 2019-09-23
US10873436B2 (en) 2020-12-22
CN112153026B (zh) 2021-12-03
CN112153026A (zh) 2020-12-29
KR20190016136A (ko) 2019-02-15
EP3190716A4 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
CN107078764A (zh) 一种数据通信方法及相关装置
US11737092B2 (en) Method and apparatus for transmitting wireless local area network data
EP3986062B1 (en) Data transmission method and apparatus
CN107078790B (zh) 一种无线局域网数据传输方法及装置
KR102164280B1 (ko) Wlan 시스템 자원 지시 방법 및 장치
JP6946521B2 (ja) データ通信方法および関連装置
JP6724178B2 (ja) データ通信方法および関連装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant