CN107075936A - 用于对高级三维井底钻具组件进行建模的方法和系统 - Google Patents

用于对高级三维井底钻具组件进行建模的方法和系统 Download PDF

Info

Publication number
CN107075936A
CN107075936A CN201480082730.9A CN201480082730A CN107075936A CN 107075936 A CN107075936 A CN 107075936A CN 201480082730 A CN201480082730 A CN 201480082730A CN 107075936 A CN107075936 A CN 107075936A
Authority
CN
China
Prior art keywords
drill string
drill
drilling
renewal
drilling parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480082730.9A
Other languages
English (en)
Inventor
R·塞缪尔
C·孙
A·科扎克
A·冯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CN107075936A publication Critical patent/CN107075936A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/007Measuring stresses in a pipe string or casing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/08Measuring diameters or related dimensions at the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Algebra (AREA)
  • Pathology (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Earth Drilling (AREA)
  • Operations Research (AREA)

Abstract

根据本公开的一些实施例,公开了用于对高级三维井底钻具组件进行建模的方法和系统。所述方法可以包括确定具有旋转可导向钻头的钻柱的钻柱性质;确定钻井操作的钻井参数;基于所述钻柱性质和所述钻井参数生成所述钻柱的有限元模型;对所述有限元模型执行振动分析;以及基于所述振动分析预测在所述钻井操作期间的钻柱行为,所述钻柱行为包括所述旋转可导向钻头的定向行为、钻速或钻井效率。

Description

用于对高级三维井底钻具组件进行建模的方法和系统
技术领域
本公开总体上涉及地下钻探操作,并且更具体地,涉及用于建模高级三维井底钻具组件的方法和系统。
背景技术
自然资源,例如碳氢化合物和水,通常从位于陆上或海上的地下地层获得。地下作业的开发和从地下岩层中移除自然资源所涉及的过程通常包括许多不同的步骤,例如在期望的井场处钻井筒,处理井筒以优化自然资源的生产,并执行必要的步骤以生产和处理来自地下岩层的自然资源。
各种类型的工具用于在地下岩层中形成井筒。这样的工具的例子包括可导向旋转钻头。井底钻具组件可以包括钻柱、电动离合器组件和耦接到钻头的驱动轴。这些部件一起工作以提供导向动力以使驱动轴弯曲,从而使钻头沿期望的方向导向。
地面处的操作者可以通过为钻井组件的元件设置钻井参数来控制钻井操作的各方面。例如,操作者可以设置控制使钻头导向的离合器组件的参数。钻井参数可以影响钻井操作的性能,包括但不限于钻井组件进入地层中的定向行为和钻速(ROP)。
附图说明
为了更完全地理解本公开和其特征与优点,现结合附图来参考以下描述,在附图中:
图1示出了示例性钻井系统的正视图;
图2示出了示例性计算子系统;
图3示出了示例性钻柱的节段和作用于钻柱上的力的正视图;
图4示出了示例性钻柱的有限元模型的局部视图;以及
图5示出了用于对高级三维井底钻具组件进行建模的示例性方法的流程图。
具体实施方式
本公开描述了用于执行钻柱的振动分析的有限元模型用于在钻井操作期间使用。在钻井操作期间,位于钻柱下端的井底钻具组件(BHA)中的传感器可收集关于钻柱、包含该钻柱的井筒和周围地下区域的信息。有限元模型可以通过将钻柱和井筒表示为由多个节点连接的离散梁元件的集合来生成,每个离散梁元件包括性质或参数的有限集。可以通过在每个时间点计算基于周围元素和节点的每个元素和节点的行为来预测整个系统的行为。以这种方式,复杂的物理问题可以通过将其分成解多个较小的块、求解每个块、然后组合所有解来解决。因此,可以根据本公开的教导设计系统和方法以创建钻柱的有限元模型并预测其行为。模型的有限元分析或有限元分析的结果可用于评估钻井操作的效率并预测钻头(例如旋转可导向钻头)的定向性能和钻速(ROP)。在一些实施例中,例如在钻井操作期间实时地动态识别和显示有限元分析或有限元分析的结果。在一些实施例中,本文描述的技术可以向用户(例如,现场工程师、操作工程师和分析人员及其他人)提供用于可视化钻井操作的可靠和直接工具,以评估当前钻井参数的效率,修改或以其他方式管理钻井参数,或执行其他类型的分析或设计。
通过参考图1至图5最好地理解本公开的实施方案和其优点,各图中相同编号用于指示相同和对应部分。
图1示出了钻井系统的示例性实施例的正视图。钻井系统100可包括井表面或井场106。诸如旋转台、钻井液泵和钻井液槽(未明确地示出)的各种类型的钻井装备可位于井表面或井场106处。例如,井场106可包括可具有与“陆地钻机”相关联的各种特性和特征的钻机102。然而,包含本公开的教导的钻井系统可以令人满意地与位于海上平台、钻井船、半潜船和钻井驳船(未明确地示出)上的钻井装备一起使用。井场106和钻机102可以坐于位于地表面下方的地下区域107的顶部。
钻井系统100还可包括与旋转可导向钻头(“钻头”)101相关联的钻柱103,钻柱103可用于形成各种井筒或钻孔,例如总体垂直的井筒114a,总体水平的井筒114b或其任何组合。各种定向钻井技术和钻柱103的井下钻具组件(BHA)120的相关联部件可用于形成水平井筒114b。例如,法向力可以在起动位置113附近施加到BHA 120,以形成从总体垂直的井筒114a延伸的总体水平的井筒114b。术语“定向钻井”可用于描述钻探井筒或者井筒的部分,所述井筒或者井筒的部分以相对于垂直的一个或多个所需角度延伸。所需角度可大于与垂直井筒相关联的正常变化。定向钻井还可描述为钻探偏离垂直的井筒。术语“水平钻井”可用于包括在相对于垂直大约九十度(90°)的方向上钻探。“井上”可以用于指更接近井表面106的井筒114的一部分。“井下”可以用于指更远离井表面106的井筒114的一部分。
BHA 120可由被配置来形成井筒114的各种各样的部件形成。例如,BHA 120的部件122a、122b和122c可以包括但不限于钻头(例如钻头101)、取芯钻头、钻铤、旋转导向工具、定向钻井工具、井下钻井马达、铰刀、扩孔器、稳定器、传感器、随钻测井工具或遥测子系统。包括在BHA 120中的部件122的数量和类型可取决于预期的井下钻井条件和将由钻柱103和旋转钻头101形成的井筒的类型。
BHA 120可包括收集各种钻井参数(诸如位置、取向、钻压(WOB)、扭矩、振动、井孔直径、井下温度和压力或其他合适参数)的测量值的传感器。在一些实施例中,BHA 120的部件可包括传感器、控制器、通信装备或其他合适的部件。例如,部件122c可包括磁力计、倾斜计、加速度计、陀螺仪或其他合适的传感器。钻头101的取向可根据工具面角度(旋转取向)、倾斜角度(工具面的斜率)和罗盘方向来指定,其中每一个可以从部件122c中的传感器的测量值得出。在一些实施例中,部件122c可包括3轴磁通门磁力计和3轴加速度计。
BHA 120可包括一个或多个随钻测井(LWD)工具,用于在钻探井筒114时测量地下区域107的参数。在一些实施例中,部件122b可包括旋转并收集电阻率、密度、孔隙率、声波速度、放射性、中子或伽马射线衰减、磁共振衰减率或任何其他合适的物理参数的测量值的LWD工具。部件122b还可包括将时间戳和当前工具位置及取向与每个测量值相关联的井下控制器。这样的测量值可以被存储在内部存储器中并由井下控制器处理或被传送到井表面106处的部件。井下控制器可以在传送该测量值之前格式化、封装或以其他方式处理与该测量值相关联的信息。在一些实施例中,井下控制器可以在任何给定时间仅传送测量值的一部分。
BHA 120可以包括遥测子系统,其保持与井表面106处的部件的通信链路,从井表面106处的部件接收命令并且传送来自与钻柱103相关联的井下工具的测量值。在一些实施例中,部件122a可以包括与部件122c中的传感器以及部件122b中的井下控制器和LWD工具通信的泥浆脉冲遥测系统。然而,可以使用任何合适的地下到地面的通信机制。
BHA 120可以包括其他类型的测井仪器(未明确地示出)以及与井筒的定向钻井相关联的和其他井下工具。测井工具和/或定向钻井工具的实例可包括但不限于声学、中子、γ射线、密度、光电、核磁共振、旋转导向工具和/或任何其他可商购的井工具。此外,BHA120还可包括旋转驱动(未明确地示出),所述旋转驱动连接至部件122a、122b和122c并与部件122a、122b和122c一起旋转钻柱103的至少一部分。
尽管本公开描述了具体的部件122a、122b和122c,但是可以使用BHA的任何合适的部件。此外,尽管本公开讨论了部件122a、122b和122c的特定布置,但是BHA 120的部件可以布置在BHA 120内的任何合适的位置。
井筒114可部分地由套管柱110限定,所述套管柱110可从井表面106延伸至所选井下位置。井筒114的不包括套管柱110的部分可以被描述为“裸眼井”。各种类型的钻井流体可以从井表面106通过钻柱103泵送到钻头101。钻井流体可以被引导以从钻柱103流动到穿过旋转钻头101的各自喷嘴。钻井流体可以通过环空108循环回井表面106。在裸眼井的实施例中,环空108可以由钻柱103的外径112和井筒114的内径118部分地限定。在使用套管柱110的实施例中,环空108可以由钻柱103的外径112和套管柱110的内径111限定。
钻头101可以包括一个或多个刀片126,其可以从钻头101的旋转钻头体124的外部部分向外设置。刀片126可以是从旋转钻头体124向外延伸的任何适合类型的突出。钻头101可在由方向箭头105限定的方向上相对于钻头旋转轴104旋转。刀片126可包括从每个刀片126的外部部分向外设置的一个或多个切削元件128。刀片126还可包括被配置来控制切削元件128的切削深度的一个或多个切削深度控制器(未明确地示出)。刀片126可进一步包括设置在刀片126上的一个或多个保径垫(未明确地示出)。根据钻头101的特定应用,钻头101可以具有许多不同的设计、构造和/或尺寸。
钻井系统100还可以包括与井筒114中的传感器、LWD工具、测井仪器和其他井下工具通信的计算子系统180。如图1所示,计算子系统180可以位于井表面106处。在其他实施例中,计算子系统180或计算子系统180的部件可以位于井筒114内。计算子系统180可以包括位于井场106处的一个或多个计算设备或系统。计算子系统180或其任何部件可以位于与图1所示的其他部件相分离的位置。例如,计算子系统180可以位于数据处理中心、计算设施或另外合适的位置。在一些情况下,计算子系统180的全部或部分可以被包含在井场处的技术指挥中心中、远程位置处的实时操作中心中、另外适当位置或这些的任何合适的组合中。
计算子系统180可以接收并分析来自井筒114中的传感器、LWD工具、测井仪器和其他井下工具的信息。计算子系统180可以在任何合适的时间从井下工具和传感器接收信息。例如,计算子系统180可以在钻井操作期间实时地或接近实时地从井下工具和传感器接收信息。使用该信息,计算子系统180可以生成钻头101和钻柱103的模型。该模型可以包括关于钻柱的已知信息,例如构成钻柱103的钻管段的数量、长度、物理性质和布置。该模型可以包括关于BHA 120和钻头101的信息,例如钻头中的牙轮或刀片的数量和布置。该模型可以包括关于钻井操作的信息,例如钻柱在井表面106处的旋转速度或地下区域107的地质性质。该模型可以包括从BHA 120中的传感器或钻井系统100中包括的其他合适的传感器收集的实时或接近实时的信息。
在操作中,计算子系统180可以在当它们在钻井操作中使用时使用该模型来执行对钻柱103和钻头101的有限元分析。例如,该分析可用于在钻井操作期间预测钻柱的振动模式及其对钻头101的定向行为和钻速(ROP)的影响。计算子系统180可以进一步基于钻头101和钻柱103的模型计算改善的钻井参数,并将改善的钻井参数传送到与钻柱103相关联的井下控制器以便提高钻井操作的效率。另外,在一些实施例中,计算子系统180可以经由显示器向用户呈现传感器和工具信息。在一些实施例中,计算子系统180可以向用户呈现对钻头101的定向行为的预测,以允许操作者和工程师基于该信息对钻井参数或钻井操作的其他方面进行调整。
钻井系统100和计算子系统180可以包括或访问任何合适的通信基础设施。例如,钻井系统100可以包括多个单独的通信链路,或互连通信链路的网络。这些通信链路可以包括有线或无线通信系统。例如,计算子系统180的部件可以通过有线或无线链路或网络彼此通信。这些通信链路可以包括公共数据网络、专用数据网络、卫星链路、专用通信信道、远程通信链路或这些和其他通信链路的任何合适的组合。
钻井系统100可以包括额外的或不同的特征,并且钻井系统100的这些特征可以被布置为如图1所示,或者被布置为另外合适的结构。这里描述的一些技术和操作可以由被配置成提供所描述的功能的计算子系统来实现。在各种实施例中,计算系统可以包括各种类型的设备中的任何一种,包括但不限于个人计算机系统、台式计算机、膝上型计算机、笔记本计算机、大型计算机系统、手持计算机、工作站、平板、应用服务器、存储设备、计算集群或任何类型的计算或电子设备。
图2示出了一个示例性计算子系统。计算子系统180可以位于钻井系统100的一个或多个井筒处或附近或在远程位置处。计算子系统180的全部或部分可操作为钻井系统100的部件或独立于钻井系统100,或独立于图1所示的任何其他部件。计算子系统180可以包括通过总线240通信地耦接的存储器220、处理器210和输入/输出控制器230。
处理器210可以包括用于执行指令的硬件,诸如构成诸如应用228的计算机程序的那些指令。作为例子而不当作限制,为了执行指令,处理器210可以从内部寄存器、内部高速缓存、存储器220中检索(或获取)指令;解码和执行它们;然后将一个或多个结果写入内部寄存器、内部高速缓存或存储器220。在一些实施例中,处理器210可以例如基于数据输入来执行指令以生成输出数据。例如,处理器210可以通过执行或解释包含在应用228中的软件、脚本、程序、功能、可执行文件或其他模块来运行应用228。处理器210可以执行与图2-5相关的一个或多个操作。由处理器210接收的输入数据或由处理器210产生的输出数据可以包括井筒数据221、钻柱数据222、流体数据223、地质数据224、钻井参数226或其他合适的数据。
存储器220可以包括例如随机存取存储器(RAM)、存储设备(例如,可写只读存储器(ROM)等)、硬盘、固态存储设备或另外类型的存储介质。计算子系统180可以是预编程的,或者其可以通过从另外的源(例如,从CD-ROM、从另外的计算机设备通过数据网络或以另外的方式)加载程序来编程(和重新编程)。在一些实施例中,输入/输出控制器230可以耦接到输入/输出设备(例如,监视器250、鼠标、键盘或其他输入/输出设备)和通信链路260。输入/输出设备可以通过通信链路260以模拟或数字形式接收和发送数据。
存储器220可以存储与操作系统、计算机应用和其他资源相关联的指令(例如,计算机代码)。存储器220还可以存储可由在计算子系统180上运行的一个或多个应用或虚拟机解释的应用数据和数据对象。存储器220可以包括井筒数据221、钻柱数据222、流体数据223、地质数据223、钻井参数226和应用228。在一些实现中,计算设备的存储器可以包括额外或不同的数据、应用、模型或其他信息。
井筒数据221可以包括关于井筒的尺寸和取向的信息。例如,参考图1,井筒数据221可以包括总体垂直的井筒114a、总体水平的井筒114b或其任何组合的倾斜角、方位角、直径和深度。
钻柱数据222可以包括关于存在于井筒中的钻柱的性质的信息。例如,参考图1,钻柱数据222可以包括钻柱103中的钻杆段的数量;每段的长度;每段的外径和内径;每段的重量和长度;每段的材料性质,诸如其极惯性矩、其剪切模量和其他合适的性质;诸如稳定器的钻柱设备的位置;钻柱和井筒之间已知接触点的位置;和钻柱的其他性质。在一些实施例中,钻柱数据222可以包括关于BHA 120中包括的传感器、LWD工具和其他井下工具的类型的信息和/或关于钻头101的信息。例如,钻柱数据222可以包括钻头101的直径、钻头101中的牙轮或切割器的数量、钻头101的使用小时数以及钻头101的其它性质。
流体数据223可以包括关于存在于井筒中的流体的信息。例如,参考图1,流体数据223可以包括存在于井筒114中的钻井液的密度和粘度参数。
地质数据224可以包括关于地下区域107的地质性质的信息。例如,参考图1,地质数据224可以包括关于地下区域107中的一个或多个岩层的岩性、流体含量、应力分布、,压力分布、空间范围、厚度、各向异性或其他属性的信息。在一些实施例中,地质数据224可以包括从测井、岩石样品、露头、地震勘测、微震成像或其他数据源收集的信息。
钻井参数226可以包括关于用于导向旋转可导向钻头的机构的信息。例如,参考图1,钻井参数226可以包括关于钻头101中包括的偏心机构、偏心机构允许的偏心设置的范围、钻压(WOB)、钻柱103的旋转速度、流量、勘测间隔及其他适当的参数的信息。在一些实施例中,钻井参数226可以包括关于钻头101的当前方向和面向的信息和/或关于将来要钻探的井筒段的期望倾斜角、方位角和直径的信息。
应用程序228可以包括可由处理器210解释或执行的软件应用、脚本、程序、功能、可执行程序或其他模块。应用228可以包括用于执行与图2-5相关的一个或多个操作的机器可读指令。例如,参考图1,应用228可以包括用于生成钻头101和钻柱103的模型的机器可读指令,以预测在钻井操作期间钻头101的定向行为和钻速(ROP)。应用228还可以包括用于将来自传感器和从BHA 120中继的其他井下工具的测量结合到模型中和/或计算改进的钻井参数的机器可读指令。应用228可以从存储器220、从另外的本地源或从一个或多个远程源(例如,经由通信链路260)接收或获取诸如井筒数据221、钻柱数据222、流体数据223、地质数据224、钻井参数226的输入数据或其他类型的输入数据。应用228可以生成输出数据并将输出数据存储在存储器220中、另外的本地介质中、或者一个或多个远程设备中(例如,通过经由通信链路260发送输出数据)。
通信链路260可以包括任何类型的通信信道、连接器、数据通信网络或其他链路。例如,通信链路260可以包括无线或有线网络、局域网(LAN)、广域网(WAN)、专用网络、公共网络(例如因特网)、WiFi网络、包括卫星链路、串行链路、无线链路(例如,红外、射频等)、并行链路的网络或另外类型的数据通信网络。在一些实施例中,通信链路260可以包括多个通信链路。例如,通信链路260可以包括有线网络、卫星网络和泥浆脉冲遥测网络。
图3示出了示例性钻柱的节段和作用于钻柱上的力的正视图。例如,参考图1,钻柱305可以是钻柱103或钻柱103的一部分。钻柱305可以包括钻管段310a-c。钻管段310a-c中的每一个可以是钻管的单段。管接头320a可以连接钻管段310a和310b。管接头320b可以连接钻管段310b和310c。钻柱305可以位于井筒330内。例如,参考图1,钻柱305可以位于井筒114内。
在钻井操作期间,钻柱305可能经受各种力或振动。为了准确地描述每个力或振动,每个管接头320可以由索引来表示。例如,管接头320a可以由指数n来表示,而管接头320b可以由指数n+1来表示。钻柱305在特定位置经受的力或振动可以类似地由指数n来表示以指示经受的位置。尽管本公开示出了在表面以n=0开始并随深度增加的指数n,但可以使用随深度减小的指数或任何其他合适的指数。力或振动也可以按照三个正交轴来描述。在一些实施例中,z轴可以沿着钻柱305的轴线并且随着深度而增加,而x轴和y轴垂直于z轴并且彼此垂直。然而,可以使用任何合适的轴系来描述力和振动。
在一些实施例中,在管接头320a的大致位置处,钻柱305可能经受沿x轴的法向力350a,称为Fx(n),以及围绕x轴的扭转力351a,称为Mx(n)。在大致相同位置处,钻柱305可能还经受沿y轴的法向力360a,称为Fy(n),以及围绕y轴的扭转力361a,称为My(n)。在大致相同位置处,钻柱305可能还经受沿z轴的轴向力370a,称为Fx(n),以及围绕z轴的扭转力371a,称为Mz(n)。类似地,在管接头320b的大致位置处,钻柱305可能经受力350b、351b、360b、361b、370b和371b,分别称为Fx(n+1)、Mx(n+1)、Fy(n+1)、My(n+1)、Fz(n+1)和Mz(n+1)。力350-371可以是恒定的、变化的或周期性的(例如振动)。作用于一个节点(例如管接头320a)上的力350-371可被传递或部分地传递到钻柱305的相邻或附近部分。例如,钻杆段310b可以将扭转力361a的一部分从管接头320a传递到管接头320b。因此,作用在钻柱305的任何部分上的力可以直接或间接地影响在钻柱的端部(例如在钻头101处)操作的力。
图4示出了根据本公开的一些实施例的示例性钻柱的有限元模型的局部视图。有限元模型400可以包括张弦梁405,其包括以线串排列的梁元件410。在一些实施例中,每个梁元件410可以表示一个钻杆段。例如,参考图3,梁元件410a可以表示钻杆段310a,梁元件410b可以表示钻杆段310b,梁元件410c可以表示钻杆段310c。模型400可以包括表示每个梁元件的各种性质的参数。例如,每个梁元件410的参数可以包括压缩、扭转和弯曲性质。
有限元模型400还可以包括连接梁元件410的节点420。例如,节点420a可以连接梁元件410a和梁元件410b。在一些实施例中,每个节点420可以表示连接两个钻管段的管接头。例如,参考图3,节点420a可以表示管接头320a,节点420b可以表示管接头420b。在一些实施例中,节点420可以具有六个或更多个自由度,包括沿x轴、y轴和z轴的每一个平移和绕其旋转。有限元模型400还可以包括表示每个节点420处的力的参数。例如,参考图3,节点420a的参数可以包括Fx(n)、Mx(n)、Fy(n)、My(n)、Fz(n)和Mz(n)的表示。
有限元模型400还可以包括钻孔元件430。在一些实施例中,孔元件430可以表示包含钻柱的井筒。例如,参考图3,孔元件430可以表示井筒330。
有限元模型400还可以包括连接梁元件410和孔元件430的接触元件440。接触元件440可以表示钻柱和井筒之间的间隙。例如,参考图3,接触元件440可以表示钻柱305与井筒330之间的间隙。在一些实施例中,接触元件440可以表示作用在梁元件410上的一个或多个力。例如,参考图3,接触元件440a可以表示在节点320a上平行于Fx(n)的压缩力。在一些实施例中,接触元件440还可以表示与梁元件410相切的摩擦力。例如,接触元件440a还可以表示在节点320a上平行于Fy(n)和Fz(n)的的摩擦力。在一些实施例中,接触元件440还可以包括滑动摩擦系数。例如,参考图1,接触元件440可以包括取决于井筒114中存在的钻井液的物理特性以及井筒114是裸眼井还是替代地在对应于接触元件的位置处包括套管柱110的滑动摩擦系数。
在一些实施例中,有限元模型400是二维模型。例如,有限元模型400可以包括位于每个节点420的相对侧上的两个接触元件440。在其他实施例中,有限元模型400是三维模型。例如,有限元模型400可以包括用于每个节点420的四个接触元件440,这些接触元件440相对成对布置,每对配置成垂直于另一对。
在一些实施例中,可以使用有限元模型400来对钻柱执行有限元分析。例如,可以基于节点n处的法向力Fx(n)和Fy(n)以及摩擦系数来计算每个梁段410上的阻力。在一些实施例中,节点n处的阻力可以根据以下方程计算为克服节点n处的摩擦力所需的增量力矩ΔM(n):
ΔFt(n)=WcosθA±μFn(n) (2)
ΔM(n)=μ(ii)Fn(n)r (3)
其中
Fn(n)=作用于梁元件n上的净法向力;
Ft(n)=作用于梁元件n的下端的轴向张力;
ΔFt(n)=在梁元件n长度上的张力增加;
ΔM(n)=在梁元件n长度上的扭力增加(即摩擦力的阻力);
r=梁元件n的半径;
W=梁元件n由任何钻井液浮起的重量;
Δα(n)=在梁元件n长度上的方位角增加;
Δθ(n)=在梁元件n长度上的倾斜角增加;
ΔθA(n)=梁元件n的平均倾斜角;以及
μ(n)=梁元件n与孔元件430之间的滑动摩擦系数。
整个钻柱的总阻力可以通过对每个梁段的阻力求和来计算。
也可以计算每个梁段的扭转力。在一些实施例中,该计算可以以施加到第一梁元件的扭矩T0开始。例如,参考图1,扭矩T0可以表示在井场106处由旋转系统施加的扭矩。可以基于节点1处的扭矩T0和阻力来计算第一梁段的扭转力。然后可以根据以下方程计算其他节点处的扭矩T(n):
其中
θ(n)=梁元件n的角位移;
J(n)=梁元件n的极惯性矩;
G(n)=梁元件n的剪切模量;以及
L(n)=梁元件n的长度。
在某些情况下,某些节点n处的阻力可能超过该节点处的扭矩T(n)。在这种情况下,该模型预测梁元件n将“粘”靠孔元件。如果扭矩T(n)稍后超过该节点处的阻力,则梁元件可以释放自己。这被称为“滑”。通过计算模型中每个节点处的扭矩和阻力,该模型可以预测粘滑事件的发生。此外,通过计算钻柱底部的最终梁元件处的扭矩,该模型可用于计算BHA处的扭矩(从而计算钻头处的扭矩)。通过将该扭矩与钻头上的阻力进行比较,还可以计算BHA和钻头的转动频率。在一些实施例中,可以将计算得到的BHA处的扭矩和转动频率与由传感器所报告的BHA处的实际扭矩和转动频率进行比较,从而允许调整模型以匹配实际性能。
在一些实施例中,有限元分析还可包括对孔元件430内的每个梁元件410的位置的静态分析。例如,有限元分析可包括计算每个节点沿着x轴和y轴的横向位移,沿z轴的轴向位移以及每个节点和孔元件430之间的距离。
在一些实施例中,有限元分析还可包括对张弦梁405的振动模式的分析。在一些实施例中,振动分析可以包括一个或多个激励因子以表示由于钻头与井筒的端部或侧面接触而作用于钻头上的力。激励因子可以基于钻头和钻柱的性质以及当前的钻井参数。例如,当钻柱转动从而钻头转动时,钻头的切削表面与井筒的端部周期性接触。为了表示由井筒端部施加在钻头上的力,励磁因素可以包括最低节点的正弦轴向激励,其频率大致等于钻头的转动频率乘以钻头中的牙轮或刀片的数量。类似地,由于稳定叶片或刀片与井筒的侧面之间的接触,钻柱可能会经受横向力。为了表示这些力,励磁因素可以包括最低节点的正弦横向激励,其频率大致等于钻头的转动频率乘以钻头上的叶片或刀片的数量。在一些实施例中,这些激励因子的振幅可以等于WOB。在一些实施例中,由模型预测的粘滑事件可能导致额外的激励因子。尽管在本公开中描述了特定的激励因子,但是可以使用任何合适的激励因子。这些激励因子的影响可以根据上述方程通过模型传播,并且可以计算每个节点410处的振动的振幅和频率。
在一些实施例中,振动分析包括对张弦梁405中的节点410的谐波分析。例如,一个或多个激励因子可能导致张弦梁405的某些部分以固有频率进行振动,引起一个或多个节点410的大的横向位移。在钻井操作期间,这种振动可能导致钻井效率的损失或钻头的ROP和定向行为的改变。例如,参考图1,BHA 120处的横向振动可以改变钻头101的侧切角度,从而引起钻头101的定向行为的改变。BHA 120处的轴向振动可以减小或增加钻头101的有效WOB,从而引起钻头101的ROP的改变。沿着钻柱103的滑移事件可能导致钻头101处的额外振动或扭矩损失,从而引起钻井操作效率的改变。以这种方式,该有限元分析可以用于基于使用的实际钻井参数来预测钻井方向、ROP和效率。
在一些实施例中,当钻柱以预定间隔前进时,可以重复有限元分析。例如,参考图1,可以每当BHA 120穿透到地下区域107中五到十英尺即重复有限元分析。尽管本公开讨论了特定范围的预定间隔,但是可以使用任何合适的预定间隔。在一些实施例中,可以当其他输入参数改变时重复有限元分析。例如,当BHA 120进入具有不同性质的新的地下区域时,当钻柱的WOB或转速改变时,或者响应于钻井操作中的其他适当改变时,可以重复有限元分析。在一些实施例中,可以以预定的时间间隔重复有限元分析。例如,可以每十秒重复有限元分析。
在一些实施例中,可以执行有限元分析用于基于更新后的钻井参数来预测钻井方向、ROP和效率。例如,操作者可以测试改变钻柱的WOB或转速的效果。在一些实施例中,可以使用迭代算法来寻找使ROP或钻井效率最大化或导致遵从钻头的期望定向行为的钻井参数。
图5示出了根据本公开的一些实施例的用于对高级三维井底钻具组件进行建模的示例性方法的流程图。示例性方法500的全部或部分可以是计算机实现的,例如,使用图1-2所示的示例性计算子系统180或其他计算系统的特征和属性。可以同时迭代或执行方法500、方法500的单个操作、或方法500的操作组以实现期望的结果。在一些情况下,方法500可以包括以相同或不同顺序执行的相同的、额外的、较少的或不同的操作。可以在靠近井筒、远程位置或在另外位置的现场执行方法500。在一些实施例中,可以在井筒的内部或底部执行方法500、方法500的单个操作、或方法500的操作组。例如,可以由位于BHA 120中的井下控制器执行方法500、方法500的单个操作、或方法500的操作组。
在步骤510,可以确定一个或多个输入性质。在一些实施例中,输入性质集合可以包括基于在钻井操作中使用的钻柱的钻柱性质。例如,参考图1-2,钻柱数据222可以由操作者输入,或者基于钻柱103的性质从自动系统加载。在一些实施例中,钻柱可以包括旋转可导向钻头。例如,钻柱103可以包括BHA 120,其包括旋转可导向钻头101。输入性质集合可以包括基于在钻井操作中使用的井筒的井筒性质集合。例如,参考图1-2,井筒数据221可以由操作者输入,或者基于井筒114的性质从自动系统加载。输入性质集合可以包括基于在钻井操作中使用的流体的流体性质集合。例如,参考图1-2,流体数据223可以由操作者输入,或者基于存在于井筒114中的流体的性质从自动系统加载。输入性质集合可以包括基于被钻井操作穿透的一个或多个地下区域的地质性质集合。例如,参考图1-2,地质数据224可以由操作者输入,或者基于地下区域107的性质从自动系统加载。
在步骤520,可以确定一个或多个钻井参数。例如,参考图2,钻井参数226可以由操作者输入,或者基于在钻井现场101的钻井操作的当前参数从自动系统加载。
在步骤530,可以生成钻柱的有限元模型。有限元模型可用于表示钻柱的部件并评估其在钻井操作期间的行为。在一些实施例中,有限元模型可以基于钻柱性质集合、井筒性质集合、流体性质集合、地质性质集合和/或钻井参数集合。例如,参考图2和图4,可以基于钻柱性质221、井筒性质222和钻井参数226来生成有限元模型400。在一些实施例中,有限元模型可以包括二维模型。在一些实施例中,有限元模型可以包括三维模型。
在步骤535,可以对有限元模型执行振动分析。例如,如上面结合图4所讨论的,可以计算张弦梁405中的每个节点处的阻力、扭转力和扭矩。在一些实施例中,可以基于钻头和钻柱的性质以及当前钻井参数来计算表示作用在钻头上的力的激励因子集合。例如,如上面结合图4所讨论的,该激励因子集合可以包括基于钻头性质的横向和轴向激励。在一些实施例中,振动分析可以包括对有限元模型的谐波分析。在一些实施例中,可以进一步对每个梁元件的位置执行静态分析。在一些实施例中,可以实时或接近实时地执行振动分析。
在步骤540,可以基于有限元模型和振动分析来预测一个或多个钻柱行为。在一些实施例中,钻柱行为集合可以包括旋转可导向钻头的定向行为、钻速或钻井效率。在一些实施例中,可以实时或接近实时地执行对钻柱行为的预测。在一些实施例中,钻柱行为集合可以进一步显示给操作者,操作员可以使用该信息来监视钻井操作或检查对钻井计划的遵从性(例如,通过将钻头的预测的定向行为和ROP与期望的定向行为和ROP进行比较)。
在步骤545,可以检测钻头的前进。在一些实施例中,当钻头在钻井方向上前进至少预定间隔时,可以检测到前进。例如,如上参照图1结合图4所讨论的,由于执行了步骤530-540,可以检测到BHA120和钻头101已经向地下区域107中穿透了五至十英尺或任何其他合适的距离。响应于检测到钻头的前进,方法500可以返回到步骤505。否则,方法500可以继续到步骤550。
在步骤550,可以检测到输入性质或钻井参数的改变。例如,当添加新的钻柱段时,或者当操作者改变钻头的期望定向行为时,可以检测到改变。响应于检测到改变,方法500可以返回到步骤505。否则,方法500可以继续到步骤555。
在步骤555,可以确定一个或多个更新后的钻井参数。例如,在一些实施例中,操作者可以选择一组更新后的钻井参数以与现有的钻井参数进行比较。在一些实施例中,可以选择一组更新后的钻井参数作为迭代搜索算法的一部分。
在步骤560,可以生成钻柱的更新后的有限元模型。例如,可以基于钻柱性质221、井筒性质222和更新后的钻井参数来生成与有限元模型400类似的更新后的有限元模型。
在步骤565,可以对更新后的有限元模型执行更新后的振动分析。在一些实施例中,以与在步骤535中对有限元模型执行振动分析相同的方式在更新后的有限元模型上执行更新后的振动分析。
在步骤570,可以基于更新后的振动分析来预测一个或多个更新后的钻柱行为。在一些实施例中,以与在步骤540中基于振动分析来预测钻柱行为相同的方式基于更新后的振动分析来预测更新后的钻柱行为。
在步骤575,过程500可以确定在步骤570中预测的更新后的钻柱行为是否表示相对于在步骤540中预测的钻柱行为的改进。例如,如果与在步骤555中确定的更新后的钻井参数相对应的钻头的预测定向行为比与在步骤530中确定的钻井参数相对应的钻头的预测定向行为更接近于期望的定向行为,则可能发生了改进。响应于检测到改进,方法500可以继续到步骤580。否则,方法500可以终止。
在步骤580,可以利用更新后的钻井参数集合来替换钻井参数集合。方法500然后可以返回到步骤525。
在一些实施例中,示例性方法(例如方法500)中的部分或全部步骤在钻井操作期间实时地执行。可以实时地执行步骤,例如通过响应于接收数据(例如来自传感器或监视系统)没有实质性延迟地执行该步骤。可以实时地执行步骤,例如通过在监视来自井下控制器或遥测子系统的额外数据的同时执行该步骤。一些实时步骤可以在钻井操作期间接收输入并产生输出;某些情况下,输出在允许用户响应输出的时间范围内可供用户使用,例如通过修改钻井操作。
在一些实施例中,示例性方法(例如方法500)中的部分或全部步骤在钻井操作期间动态地执行。可以动态地执行步骤,例如当输入可用时基于额外的输入例如通过迭代地或重复地执行该步骤。在一些情况下,响应于从井下控制器或遥测子系统接收数据来执行动态步骤。
本文所公开的实施例包括:
A.一种方法,其包括(a)确定具有旋转可导向钻头的钻柱的钻柱性质;(b)确定钻井操作的钻井参数;(c)基于钻柱性质和钻井参数生成钻柱的有限元模型;(d)对有限元模型执行振动分析;以及(e)基于振动分析来预测在钻井操作期间的钻柱行为,钻柱行为包括旋转可导向钻头的定向行为、钻速或钻井效率。
B.一种系统,其包括处理器;与处理器通信的存储器;以及存储在存储器上的指令,当由处理器执行时该指令使得处理器(a)确定具有旋转可导向钻头的钻柱的钻柱性质;(b)确定钻井操作的钻井参数;(c)基于钻柱性质和钻井参数生成钻柱的有限元模型;(d)对有限元模型执行振动分析;以及(e)基于振动分析来预测在钻井操作期间的钻柱行为,钻柱行为包括旋转可导向钻头的定向行为、钻速或钻井效率。
C.一种制品,其包括存储指令的非易失性计算机可读介质,当由处理器执行时该指令使得处理器(a)确定具有旋转可导向钻头的钻柱的钻柱性质;(b)确定钻井操作的钻井参数;(c)基于钻柱性质和钻井参数生成钻柱的有限元模型;(d)对有限元模型执行振动分析;以及(e)基于振动分析来预测在钻井操作期间的钻柱行为,钻柱行为包括旋转可导向钻头的定向行为、钻速或钻井效率。
实施例A、B和C中的每一个可以具有任何组合的一个或多个以下附加元件。要素1:其中执行振动分析包括基于旋转可导向钻头来计算激励因子的影响。要素2:其中有限元模型包括三维模型。要素3:还包括确定用于钻井操作的更新后的钻井参数;基于钻柱性质和更新后的钻井参数生成钻柱的更新后的有限元模型;对更新后的有限元模型执行更新后的振动分析;基于更新后的振动分析来预测更新后的钻柱行为;并确定更新后的钻柱行为是否表示相对于钻柱行为的改进。要素4:还包括检测旋转可导向钻头是否在钻井方向上已经前进至少预定长度;以及响应于检测到钻头已经前进至少预定长度而重复步骤(c)-(e)。要素5:还包括检测钻柱性质或钻井参数的改变;以及响应于检测到钻柱性质或钻井参数的改变而重复步骤(c)-(e)。要素6:其中步骤(d)-(e)实时或接近实时地执行。
虽然本说明书含有许多细节,但是这些细节不应被解释为限制权利要求书的范围,反而应被解释为对特定实例所特有的特征的描述。在本说明书中在独立实现的环境中描述的某些特征也可以组合。相反,在单个实现的环境中描述的各个特征也可以在多个实现中独立地或以任何合适的子组合来实现。
已描述了多个例子。然而,应当理解,可以向本领域技术人员建议各种改变和修改。因此,本公开旨在涵盖落入所附权利要求的范围内的这些改变和修改。

Claims (20)

1.一种方法,其包括:
(a)确定具有旋转可导向钻头的钻柱的钻柱性质;
(b)确定钻井操作的钻井参数;
(c)基于所述钻柱性质和所述钻井参数生成所述钻柱的有限元模型;
(d)对所述有限元模型执行振动分析;以及
(e)基于所述振动分析来预测在所述钻井操作期间的钻柱行为,所述钻柱行为包括所述旋转可导向钻头的定向行为、钻速或钻井效率。
2.根据权利要求1所述的方法,其中执行所述振动分析包括基于所述旋转可导向钻头来计算激励因子的影响。
3.根据权利要求1所述的方法,其中所述有限元模型包括三维模型。
4.根据权利要求1所述的方法,还包括:
确定所述钻井操作的更新后的钻井参数;
基于所述钻柱性质和所述更新后的钻井参数生成所述钻柱的更新后的有限元模型;
对所述更新后的有限元模型执行更新后的振动分析;
基于所述更新后的振动分析来预测更新后的钻柱行为;以及
确定所述更新后的钻柱行为是否表示相对于钻柱行为的改进。
5.根据权利要求1所述的方法,还包括:
检测所述旋转可导向钻头是否在钻井方向上已经前进至少预定长度;以及
响应于检测到所述钻头已经前进至少预定长度而重复步骤(c)-(e)。
6.根据权利要求1所述的方法,还包括:
检测所述钻柱性质或所述钻井参数的改变;以及
响应于检测到所述钻柱性质或所述钻井参数的改变而重复步骤(c)-(e)。
7.根据权利要求1所述的方法,其中步骤(d)-(e)实时或接近实时地执行。
8.一种计算机系统,包括:
处理器;
与所述处理器通信的存储器;以及
存储在所述存储器上的指令,当由所述处理器执行时所述指令使得所述处理器:
(a)确定具有旋转可导向钻头的钻柱的钻柱性质;
(b)确定钻井操作的钻井参数;
(c)基于所述钻柱性质和所述钻井参数生成所述钻柱的有限元模型;
(d)对所述有限元模型执行振动分析;以及
(e)基于所述振动分析来预测在所述钻井操作期间的钻柱行为,所述钻柱行为包括所述旋转可导向钻头的定向行为、钻速或钻井效率。
9.根据权利要求8所述的系统,其中执行所述振动分析包括基于所述旋转可导向钻头来计算激励因子的影响。
10.根据权利要求8所述的系统,其中所述有限元模型包括三维模型。
11.根据权利要求8所述的系统,所述指令还使得所述处理器:
确定所述钻井操作的更新后的钻井参数;
基于所述钻柱性质和所述更新后的钻井参数生成所述钻柱的更新后的有限元模型;
对所述更新后的有限元模型执行更新后的振动分析;
基于所述更新后的振动分析来预测更新后的钻柱行为;以及
确定所述更新后的钻柱行为是否表示相对于钻柱行为的改进。
12.根据权利要求8所述的系统,所述指令还使得所述处理器:
检测所述旋转可导向钻头是否在钻井方向上已经前进至少预定长度;以及
响应于检测到所述钻头已经前进至少预定长度而重复步骤(c)-(e)。
13.根据权利要求8所述的系统,所述指令还使得所述处理器:
检测所述钻柱性质或所述钻井参数的改变;以及
响应于检测到所述钻柱性质或所述钻井参数的改变而重复步骤(c)-(e)。
14.根据权利要求8所述的系统,其中所述执行和预测实时或接近实时地执行。
15.一种制品,其包括存储指令的非易失性计算机可读介质,当由处理器执行时所述指令使得所述处理器:
(a)确定具有旋转可导向钻头的钻柱的钻柱性质;
(b)确定钻井操作的钻井参数;
(c)基于所述钻柱性质和所述钻井参数生成所述钻柱的有限元模型;
(d)对所述有限元模型执行振动分析;以及
(e)基于所述振动分析来预测在所述钻井操作期间的钻柱行为,所述钻柱行为包括所述旋转可导向钻头的定向行为、钻速或钻井效率。
16.根据权利要求15所述的非易失性计算机可读介质,其中执行所述振动分析包括基于所述旋转可导向钻头来计算激励因子的影响。
17.根据权利要求15所述的非易失性计算机可读介质,其中所述有限元模型包括三维模型。
18.根据权利要求15所述的非易失性计算机可读介质,所述指令还使得所述处理器:
确定所述钻井操作的更新后的钻井参数;
基于所述钻柱性质和所述更新后的钻井参数生成所述钻柱的更新后的有限元模型;
对所述更新后的有限元模型执行更新后的振动分析;
基于所述更新后的振动分析来预测更新后的钻柱行为;以及
确定所述更新后的钻柱行为是否表示相对于钻柱行为的改进。
19.根据权利要求15所述的非易失性计算机可读介质,所述指令还使得所述处理器:
检测所述旋转可导向钻头是否在钻井方向上已经前进至少预定长度;以及
响应于检测到所述钻头已经前进至少预定长度而重复步骤(c)-(e)。
20.根据权利要求15所述的非易失性计算机可读介质,所述指令还使得所述处理器:
检测所述钻柱性质或所述钻井参数的改变;以及
响应于检测到所述钻柱性质或所述钻井参数的改变而重复步骤(c)-(e)。
CN201480082730.9A 2014-12-31 2014-12-31 用于对高级三维井底钻具组件进行建模的方法和系统 Pending CN107075936A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/072925 WO2016108866A1 (en) 2014-12-31 2014-12-31 Methods and systems for modeling an advanced 3-dimensional bottomhole assembly

Publications (1)

Publication Number Publication Date
CN107075936A true CN107075936A (zh) 2017-08-18

Family

ID=56284816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480082730.9A Pending CN107075936A (zh) 2014-12-31 2014-12-31 用于对高级三维井底钻具组件进行建模的方法和系统

Country Status (10)

Country Link
US (1) US10922455B2 (zh)
CN (1) CN107075936A (zh)
BR (1) BR112017007415B1 (zh)
CA (1) CA2964228C (zh)
GB (1) GB2544699B (zh)
MX (1) MX2017007454A (zh)
NO (1) NO20170443A1 (zh)
RU (1) RU2679151C1 (zh)
SA (1) SA517381416B1 (zh)
WO (1) WO2016108866A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109614694A (zh) * 2018-12-10 2019-04-12 天津大学 一种板材推送机设计方法及装置
CN111364969A (zh) * 2020-03-28 2020-07-03 西安石油大学 一种用于生成井筒钻井参数的可视化表示的方法
CN112219008A (zh) * 2018-05-15 2021-01-12 吉奥奎斯特系统公司 钻井动力学数据的自动解释
CN114630952A (zh) * 2019-09-12 2022-06-14 地质探索系统公司 在热图椭圆中显示带有不确定性的转向响应

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054917B2 (en) * 2014-12-30 2018-08-21 National Oilwell Varco, L.P. Drilling direct control user interface
CN107576353B (zh) * 2017-07-31 2019-07-23 上海大学 一种预弯底部钻具组合工作状态的快速评价方法
US11421520B2 (en) * 2018-03-13 2022-08-23 Ai Driller, Inc. Drilling parameter optimization for automated well planning, drilling and guidance systems
WO2019222300A1 (en) * 2018-05-15 2019-11-21 Schlumberger Technology Corporation Adaptive downhole acquisition system
CN112930427B (zh) 2018-09-28 2024-03-19 斯伦贝谢技术有限公司 弹性自适应井下采集系统
US20200182038A1 (en) * 2018-12-10 2020-06-11 National Oilwell Varco, L.P. High-speed analytics and virtualization engine
US11920454B2 (en) 2019-12-05 2024-03-05 Schlumberger Technology Corporation System and method for predicting stick-slip
RU2770874C1 (ru) * 2021-04-30 2022-04-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Способ скважинной инклинометрии и скважинная система для его реализации

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401880A (zh) * 2001-08-16 2003-03-12 中海油田服务有限公司 水平井钻头前进方向的预测方法、控制方法及其控制系统
US6785641B1 (en) * 2000-10-11 2004-08-31 Smith International, Inc. Simulating the dynamic response of a drilling tool assembly and its application to drilling tool assembly design optimization and drilling performance optimization
CN1910589A (zh) * 2004-03-04 2007-02-07 哈利伯顿能源服务公司 建模、测量、再校准、和优化控制井孔钻探的方法和系统
CN102822752A (zh) * 2010-02-01 2012-12-12 Aps技术公司 用于监视和控制地下钻探的系统和方法
CN104005750A (zh) * 2014-05-23 2014-08-27 西南石油大学 基于钻柱-钻头-岩石-井筒系统全尺寸钻进模拟的钻井提速评价方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804051A (en) 1987-09-25 1989-02-14 Nl Industries, Inc. Method of predicting and controlling the drilling trajectory in directional wells
US6205851B1 (en) 1998-05-05 2001-03-27 Baker Hughes Incorporated Method for determining drill collar whirl in a bottom hole assembly and method for determining borehole size
US7251590B2 (en) * 2000-03-13 2007-07-31 Smith International, Inc. Dynamic vibrational control
US6438495B1 (en) 2000-05-26 2002-08-20 Schlumberger Technology Corporation Method for predicting the directional tendency of a drilling assembly in real-time
CA2482922C (en) * 2002-04-19 2008-06-17 Mark W. Hutchinson Method and apparatus for determining drill string movement mode
US7027925B2 (en) 2004-04-01 2006-04-11 Schlumberger Technology Corporation Adaptive borehole assembly visualization in a three-dimensional scene
US8672055B2 (en) * 2006-12-07 2014-03-18 Canrig Drilling Technology Ltd. Automated directional drilling apparatus and methods
US8014987B2 (en) 2007-04-13 2011-09-06 Schlumberger Technology Corp. Modeling the transient behavior of BHA/drill string while drilling
US7814989B2 (en) 2007-05-21 2010-10-19 Schlumberger Technology Corporation System and method for performing a drilling operation in an oilfield
BRPI0921881A2 (pt) * 2008-11-13 2015-12-29 Halliburton Energy Services Inc aparelho de calibração de sensor de furo abaixo , e, método para calibrar um sensor respositivo à orientação
AU2009318062B2 (en) 2008-11-21 2015-01-29 Exxonmobil Upstream Research Company Methods and systems for modeling, designing, and conducting drilling operations that consider vibrations
BR122013000451A2 (pt) * 2010-01-05 2016-05-10 Halliburton Energy Services Inc método e sistema de modelo de interação de broca e alargador
US9057245B2 (en) 2011-10-27 2015-06-16 Aps Technology, Inc. Methods for optimizing and monitoring underground drilling
US9739139B2 (en) * 2012-05-18 2017-08-22 Schlumberger Technology Corporation Intervention operations with high rate telemetry
US20140062716A1 (en) * 2012-08-28 2014-03-06 Intelliserv, Llc System and method for determining fault location

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785641B1 (en) * 2000-10-11 2004-08-31 Smith International, Inc. Simulating the dynamic response of a drilling tool assembly and its application to drilling tool assembly design optimization and drilling performance optimization
CN1401880A (zh) * 2001-08-16 2003-03-12 中海油田服务有限公司 水平井钻头前进方向的预测方法、控制方法及其控制系统
CN1910589A (zh) * 2004-03-04 2007-02-07 哈利伯顿能源服务公司 建模、测量、再校准、和优化控制井孔钻探的方法和系统
CN102822752A (zh) * 2010-02-01 2012-12-12 Aps技术公司 用于监视和控制地下钻探的系统和方法
CN104005750A (zh) * 2014-05-23 2014-08-27 西南石油大学 基于钻柱-钻头-岩石-井筒系统全尺寸钻进模拟的钻井提速评价方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219008A (zh) * 2018-05-15 2021-01-12 吉奥奎斯特系统公司 钻井动力学数据的自动解释
US11821299B2 (en) 2018-05-15 2023-11-21 Schlumberger Technology Corporation Automatic interpretation of drilling dynamics data
CN109614694A (zh) * 2018-12-10 2019-04-12 天津大学 一种板材推送机设计方法及装置
CN109614694B (zh) * 2018-12-10 2023-06-23 天津大学 一种板材推送机设计方法及装置
CN114630952A (zh) * 2019-09-12 2022-06-14 地质探索系统公司 在热图椭圆中显示带有不确定性的转向响应
CN111364969A (zh) * 2020-03-28 2020-07-03 西安石油大学 一种用于生成井筒钻井参数的可视化表示的方法

Also Published As

Publication number Publication date
CA2964228A1 (en) 2016-07-07
BR112017007415B1 (pt) 2022-02-22
NO20170443A1 (en) 2017-03-22
CA2964228C (en) 2019-08-20
US10922455B2 (en) 2021-02-16
US20170308634A1 (en) 2017-10-26
BR112017007415A2 (pt) 2018-01-23
MX2017007454A (es) 2017-09-07
GB2544699B (en) 2021-06-30
GB2544699A (en) 2017-05-24
GB201704104D0 (en) 2017-04-26
SA517381416B1 (ar) 2022-12-03
WO2016108866A1 (en) 2016-07-07
RU2679151C1 (ru) 2019-02-06

Similar Documents

Publication Publication Date Title
CN107075936A (zh) 用于对高级三维井底钻具组件进行建模的方法和系统
US10851637B2 (en) Modeling and simulation of complete drill strings
US10267136B2 (en) Methods for analyzing and optimizing casing while drilling assemblies
EP2850556B1 (en) Modeling stress around a wellbore
RU2461707C2 (ru) Моделирование переходного режима кнбк/бурильной колонны в процессе бурения
CN103608545B (zh) 用于预测钻孔的几何形状的系统、方法和计算机程序
Abbas et al. Drilling rate of penetration prediction of high-angled wells using artificial neural networks
EP3236385B1 (en) Methods and systems for modeling, designing, and conducting drilling operations that consider vibrations
CA2826854C (en) Three-dimensional modeling of parameters for oilfield drilling
US20180334897A1 (en) Drilling control based on brittleness index correlation
US11016466B2 (en) Method of designing and optimizing fixed cutter drill bits using dynamic cutter velocity, displacement, forces and work
US20140136168A1 (en) Drill bit simulation and optimization
US10920561B2 (en) Drilling assessment system
US10364663B2 (en) Downhole operational modal analysis
US20140122034A1 (en) Drill bit body rubbing simulation
US10718187B2 (en) Methods for analyzing and optimizing drilling tool assemblies
US20230193740A1 (en) Estimation of maximum load amplitudes in drilling systems using multiple independent measurements
Bahrehdar et al. Effect of eccentricity on breakout propagation around noncircular boreholes
WO2016179767A1 (en) Fatigue analysis procedure for drill string
EP3526627B1 (en) Petrophysical field evaluation using self-organized map

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170818