CN107070574B - 适用于非对称时延精确时间同步的时钟偏移最优估计方法 - Google Patents

适用于非对称时延精确时间同步的时钟偏移最优估计方法 Download PDF

Info

Publication number
CN107070574B
CN107070574B CN201710022149.3A CN201710022149A CN107070574B CN 107070574 B CN107070574 B CN 107070574B CN 201710022149 A CN201710022149 A CN 201710022149A CN 107070574 B CN107070574 B CN 107070574B
Authority
CN
China
Prior art keywords
vector
time delay
clock
equation
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710022149.3A
Other languages
English (en)
Other versions
CN107070574A (zh
Inventor
谢昊飞
李勇
王平
龙祎
熊辉辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201710022149.3A priority Critical patent/CN107070574B/zh
Publication of CN107070574A publication Critical patent/CN107070574A/zh
Application granted granted Critical
Publication of CN107070574B publication Critical patent/CN107070574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0647Synchronisation among TDM nodes
    • H04J3/065Synchronisation among TDM nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Steroid Compounds (AREA)

Abstract

本发明涉及一种适用于非对称时延精确时间同步的时钟偏移最优估计算法,包括以下两个步骤:(1)通过主从时钟方向及反方向的固定传输时延、传输过程中的随机队列等待时延以及时钟频率偏移产生的时延和时钟相位偏移产生的时延之间的对应关系,建立时延向量方程;(2)引入高斯分布,并利用Pitman估计方法进行估计。本发明通过对精确时间同步非对称时延向量方程的建立,引入向量位置参数问题模型及Pitman估计算法,对高斯随机队列时延下的时钟偏移进行了最优估计,使得估计量的最大均方差值最小化。

Description

适用于非对称时延精确时间同步的时钟偏移最优估计方法
技术领域
本发明属于网络测量和控制系统的精密时钟同步领域,涉及时钟偏移估计,具体涉及非对称时延精确时间同步的时钟偏移最优估计方法。
背景技术
精确时间同步机制以硬件时间戳为基础,使得单跳环境下其精度可达纳秒级,从而实现对从时钟源计时误差的精确补偿,使分布式通信网络能够具有严格的定时同步,并且应用于工业自动化系统。
不同于有线链路,无线链路的传播时延通常具有非对称性,即数据在节点间上下行通信链路中的传播时延差具有不确定性,基于主从节点间的时间偏差主要包括:无线链路的非对称传播时延、中间节点转发的随机队列时延以及从时钟偏移产生的时延,链路非对称传播时延使得主从时钟源间的时间偏差变得更加难以预测。
从时钟本身的偏移主要为其时钟频率及相位影响产生的时间延迟,可基于IEEE1588协议双向信息交互机制的非对称时延传输,建立相应含参数的时延向量方程,将时钟偏移的估计问题转化为统计学问题,但目前传统的最小二乘法,极大似然估计等参数估计方法并不适用于该模型下对向量位置参数的估计。
发明内容
有鉴于此,本发明的目的在于提供一种适用于非对称时延精确时间同步的时钟偏移最优估计方法。
为达到上述目的,本发明提供如下技术方案:
适用于非对称时延精确时间同步的时钟偏移最优估计方法,包括以下两个步骤:
(1)通过主从时钟方向及反方向的固定传输时延、传输过程中的随机队列等待时延以及时钟频率偏移产生的时延和时钟相位偏移产生的时延之间的对应关系,建立时延向量方程;
(2)引入高斯分布,并利用Pitman估计方法进行估计。
优选的,步骤(1)中是以前p次非对称双向传输为观测样本,从而建立时延向量方程,向量方程建立后,判断向量方程是否是Y=Aθ+T形式,是则结束,否则需转化为Y=Aθ+T形式,结束;其中,p为非对称双向传输的次数,为不小于1的正整数。
优选的,步骤(1)具体包括:
步骤(11):建立以第i次主从时钟方向及其反方向的固定传输时延d1和d2,随机队列时延ti,1和ti,2,以及时钟频率偏移时延α和时钟相位偏移产生时延β所组成的时延关系方程组:其中d1≠d2,1≤i≤p,i为正整数,y*i,1、y*i,2分别表示第i次传输主从时钟方向及其反方向的总时延,yi,1、yi,2分别表示第i次传输主从时钟方向及其反方向的非固定传输时延之和;
步骤(12):由步骤(11)及反馈补偿,令d=d1,得到时延关系方程组:
步骤(13):令将步骤(12)中的时延关系方程组转化为以向量Y、向量e、向量T及未知参数α、β组成的向量方程:Y=d·12p+(α+β)e+T,其中Y为非固定传输总时延对应的向量,p为非对称双向传输的次数,为不小于1的正整数,k=1和k=2分别表示第i次的主从时钟及其反方向的传输,y1,k…yp,k分别表示第1次到第p次双向传输过程中主从时钟及其反方向的固定时延、时钟偏移造成时延以及随机队列时延的关系,α、β为未知参数分别代表时钟频率偏移及时钟相位偏移产生的时延,T为随机队列时延对应的向量,12p表示元素为1的2p维列向量,e为所推出向量方程中的一个矩阵,与(α+β)相乘表示一个向量。
进一步优选的,步骤(1)还包括步骤(14),具体方法是:将步骤(13)中的向量方程Y=d·12p+(α+β)e+T,进一步转化为向量方程Y=Aθ+T,其中A表示矩阵 则Y=Aθ+T即为所求时延向量方程,其中1p表示元素为1的p维的列向量,0p表示元素为0的p维列向量。
优选的,步骤(2)具体包括:
步骤(21):判断向量方程是否符合向量坐标位置问题模型(Vector LocationParameter Problem),是则进入步骤(21),否则结束;
步骤(22):求出向量方程中未知参数的Pitman估计量,进入步骤(23);
步骤(23):转化为对ciθk的Pitman最优估计,进入步骤(24);
步骤(24):引入高斯随机队列时延条件,进入步骤(25);
步骤(25):求得最优估计量g*(Y)关于ti,k的表达式,结束;其中,ti,k表示第i次双向传输的随机队列时延,k=1,2。
进一步优选的,步骤(22)的具体方法是:针对时延向量方程Y=Aθ+T,利用函数g(Y)(对线性组合cTθ=α+β进行估计,其中Y表示非固定传输总时延对应的向量,g(Y)为以Y为变量的函数。
进一步优选的,步骤(23)的具体方法是:由Pitman估计算法,对时延向量方程Y=Aθ+T中的向量θ所含未知参数进行估计,可得未知参数α与未知参数β之和α+β的最优估计量为:由Pitman估计准则中的将步骤(22)中的代入g*(Y)表达式,则得到:其中,g*(Y)表示以向量Y为变量的函数g(Y)对向量方程中向量θ所含参数之和α+β的最优估计量,θ为向量方程中的向量,f(Y|θ)为向量Y所服从的概率密度函数;根据Pitman估计准则,g(Y)对向量θ中未知参数的估计等于g(Y1)和g(Y2)对向量θ1和θ2的未知参数估计量之和,Y1、Y2分别为向量Y的分量,θ1、θ2为θ的分量;Y1、Y2分别表示的含义是:主从时钟及其反方向的非固定传输总时延对应的向量,因此服从的概率密度函数分别为fT1(Y11)和fT2(Y22),即fT1(Y11)=fT1(Y11·1P),fT2(Y22)=fT2(Y22·1P)。
进一步优选的,步骤(24)的具体方法是:已知第i次传输,主从时钟方向及其反方向随机队列时延ti,1及ti,2均服从均值为μ,方差为σ2的高斯分布,即:
进一步优选的,步骤(25)的具体方法是:已知及步骤(24)中f1(ti,1)、f2(ti,2)表达式,则根据步骤(23)所得g*(Y)表达式可知,此时g*(Y)为:
其中,步骤(2)包括以下要素:
(2-1)第i次主从方向及其反方向随机队列时延ti,1、ti,2,均服从高斯分布,即:f1(ti,1)、f1(ti,2)~N(μ,σ2);
(2-2)向量方程Y=Aθ+T,其中Y为转移不变量,满足g(Y+Gh)=g(Y)+cTh,G为N×M矩阵(G表示一个N乘以M维的矩阵);
(2-3)延迟向量方程Y=Aθ+T,Y服从概率密度函数f(Y|θ)=f0(Y-Aθ),θ含未知参数,且仅改变概率密度函数的位置,而不改变其形状和大小;
(2-4)对向量方程Y=Aθ+T中向量θ所含未知参数的估计,即对未知参数表示的时钟频率偏移产生的时延α和时钟相位偏移产生的时延β之和α+β的估计;
(2-5)用观测量Y对应的函数g(Y)对向量θ中的未知参数cTθ进行Pitman估计,其最优估计量g*(Y)等于对其各分向量ciθk进行估计所得估计量之和,即:其中ci为常向量c的分量,θ=[θ1,···,θM];
(2-6)随机队列时延向量服从高斯分布的条件及概率密度函数关系 可由此对最终求得的时钟偏移Pitman最优估计量进一步化简。
本发明的有益效果在于:
本发明参考统计学中的向量位置参数问题,将Pitman估计算法引入向量参数估计范围,从而对基于精确时间同步非对称时延向量方程中的参数进行估计,得到时钟偏移的最优估计量应用于对从时钟计时误差的补偿,从而实现高精度的时间同步。具体的说,本发明将Pitman估计算法引入到了向量范畴,同时结合向量位置参数问题及已建立的向量方程,提出一种新的算法;本发明加入了时钟频率偏移时延的考虑,且在通用模型上引入随机时延服从高斯分布的条件进一步进行了推导,实现了对多跳无线网络非对称时延传输过程中的时钟偏移进行了最优估计。
本发明的算法基于精确时间同步的双向信息交互机制,建立了以时钟频率偏移和相位偏移所产生的时间延迟作为未知参数的非对称时延向量方程,并在此基础上引入向量位置参数问题模型,进而基于随机队列时延所服从的高斯分布概率密度函数,运用Pitman估计算法对方程中向量所含未知参数进行估计,从而得到时钟偏移的最优估计量。本发明通过对精确时间同步非对称时延向量方程的建立,引入向量位置参数问题模型及Pitman估计算法,对高斯随机队列时延下的时钟偏移进行了最优估计,使得估计量的最大均方差值最小化。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明的整体框架图;
图2为基于精确时间同步的时延关系图;
图3为时延向量方程实现的流程图;
图4为Pitman时钟偏移最优估计方法实现流程图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
适用于非对称时延精确时间同步的时钟偏移最优估计方法,整体框架图见图1,包括以下两个步骤:
(1)通过主从时钟方向及反方向的固定传输时延、传输过程中的随机队列等待时延以及时钟频率偏移产生的时延和时钟相位偏移产生的时延之间的对应关系,建立时延向量方程;
如图2和图3所示,具体包括:
步骤(11):建立以第i次主从时钟方向及其反方向的固定传输时延d1和d2,随机队列时延ti,1和ti,2,以及时钟频率偏移时延α和时钟相位偏移产生时延β所组成的时延关系方程组:其中d1≠d2,1≤i≤p,i为正整数,y*i,1、y*i,2分别表示第i次传输主从时钟方向及其反方向的总时延,yi,1、yi,2分别表示第i次传输主从时钟方向及其反方向的非固定传输时延之和;
步骤(12):由步骤(11)及反馈补偿,令d=d1,得到时延关系方程组:
步骤(13):令将步骤(12)中的时延关系方程组转化为以向量Y、向量e、向量T及未知参数α、β组成的向量方程:Y=d·12p+(α+β)e+T,其中Y为非固定传输总时延对应的向量,p为非对称双向传输的次数,为不小于1的正整数,k=1和k=2分别表示第i次的主从时钟及其反方向的传输,y1,k…yp,k分别表示第1次到第p次双向传输过程中主从时钟及其反方向的固定时延、时钟偏移造成时延以及随机队列时延的关系,α、β为未知参数分别代表时钟频率偏移及时钟相位偏移产生的时延,T为随机队列时延对应的向量,12p表示元素为1的2p维列向量,e为所推出向量方程中的一个矩阵,与(α+β)相乘表示一个向量;
步骤(14):将步骤(13)中的向量方程Y=d·12p+(α+β)e+T,进一步转化为向量方程Y=Aθ+T,其中A表示矩阵则Y=Aθ+T即为所求时延向量方程,其中1p表示元素为1的p维的列向量,0p表示元素为0的p维列向量。
(2)引入高斯分布,并利用Pitman估计方法进行估计。
如图4所示,具体包括:
步骤(21):判断向量方程是否符合向量坐标位置问题模型,是则进入步骤(21),否则结束;
步骤(22):针对时延向量方程Y=Aθ+T,利用函数g(Y)(对线性组合cTθ=α+β进行估计,其中Y表示非固定传输总时延对应的向量,g(Y)为以Y为变量的函数,进入步骤(23);
步骤(23):由Pitman估计算法,对时延向量方程Y=Aθ+T中的向量θ所含未知参数进行估计,可得未知参数α与未知参数β之和α+β的最优估计量为:由Pitman估计准则中的将步骤(22)中的代入g*(Y)表达式,则得到:其中,g*(Y)表示以向量Y为变量的函数g(Y)对向量方程中向量θ所含参数之和α+β的最优估计量,θ为向量方程中的向量,f(Y|θ)为向量Y所服从的概率密度函数;根据Pitman估计准则,g(Y)对向量θ中未知参数的估计等于g(Y1)和g(Y2)对向量θ1和θ2的未知参数估计量之和,Y1、Y2分别为向量Y的分量,θ1、θ2为θ的分量;Y1、Y2分别表示的含义是:主从时钟及其反方向的非固定传输总时延对应的向量,因此服从的概率密度函数分别为fT1(Y11)和fT2(Y22),即fT1(Y11)=fT1(Y11·1P),fT2(Y22)=fT2(Y22·1P),进入步骤(24);
步骤(24):已知第i次传输,主从时钟方向及其反方向随机队列时延ti,1及ti,2均服从均值为μ,方差为σ2的高斯分布,即:
进一步优选的,步骤(25)的具体方法是:已知及步骤(24)中f1(ti,1)、f2(ti,2)表达式,则根据步骤(23)所得g*(Y)表达式可知,此时g*(Y)为:
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (6)

1.适用于非对称时延精确时间同步的时钟偏移最优估计方法,包括以下两个步骤:
(1)通过主从时钟方向及反方向的固定传输时延、传输过程中的随机队列等待时延以及时钟频率偏移产生的时延和时钟相位偏移产生的时延之间的对应关系,建立数学表达式形式为Y=Aθ+T的时延向量方程,其中A表示矩阵
(2)引入高斯分布,并利用Pitman估计方法进行估计;
步骤(1)中是以前p次非对称双向传输为观测样本,从而建立时延向量方程,向量方程建立后,判断向量方程是否是Y=Aθ+T形式,是则结束,否则需转化为Y=Aθ+T形式,结束;其中,p为非对称双向传输的次数,为不小于1的正整数;
步骤(1)具体包括:
步骤(11):建立以第i次主从时钟方向及其反方向的固定传输时延d1和d2,随机队列时延ti,1和ti,2,以及时钟频率偏移产生时延α和时钟相位偏移产生时延β所组成的时延关系方程组:其中d1≠d2,1≤i≤p,i为正整数,y*i,1、y*i,2分别表示第i次传输主从时钟方向及其反方向的总时延,yi,1、yi,2分别表示第i次传输主从时钟方向及其反方向的非固定传输时延之和;
步骤(12):由步骤(11)及反馈补偿,取d=d1=d2,得到时延关系方程组:
步骤(13):令Y=[Y1 T,Y2 T]T,Yk=[y1,k···yp,k]、T=[T1 T,T2 T]T,Tk=[t1,k···tp,k],k=1,2,将步骤(12)中的时延关系方程组转化为以向量Y、向量e、向量T及未知参数α、β组成的向量方程:Y=d·12p+(α+β)e+T,其中Y表示为包含固定时延和非固定传输总时延所对应的向量,p为非对称双向传输的次数,为不小于1的正整数,k=1和k=2分别表示第i次的主从时钟及其反方向的传输,y1,k…yp,k分别表示第1次到第p次双向传输过程中主从时钟及其反方向的固定时延、时钟偏移造成时延以及随机队列时延的关系,α、β为未知参数并分别代表时钟频率偏移及时钟相位偏移产生的时延,T为随机队列时延对应的向量,12p表示元素为1的2p维列向量,e为所推出向量方程中的一个矩阵,与(α+β)相乘表示一个向量;
步骤(2)具体包括:
步骤(21):判断向量方程是否符合向量坐标位置问题模型,是则进入步骤(21),否则结束;
步骤(22):求出向量方程中未知参数的Pitman估计量,进入步骤(23);
步骤(23):转化为对ciθk的Pitman最优估计,进入步骤(24);
步骤(24):引入高斯随机队列时延条件,进入步骤(25);
步骤(25):求得最优估计量g*(Y)关于ti,k的表达式,结束;其中,ti,k表示第i次双向传输的随机队列时延,k=1,2,其中g*(Y)表示以向量Y为变量的函数g(Y)对向量方程中向量θ所含参数之和α+β的最优估计量。
2.根据权利要求1所述的时钟偏移最优估计方法,其特征在于,步骤(1)还包括步骤(14),具体方法是:将步骤(13)中的向量方程Y=d·12p+(α+β)e+T,进一步转化为向量方程Y=Aθ+T,其中A表示矩阵则Y=Aθ+T即为所求时延向量方程,其中1p表示元素为1的p维的列向量,0p表示元素为0的p维列向量。
3.根据权利要求1所述的时钟偏移最优估计方法,其特征在于,步骤(22)的具体方法是:针对时延向量方程Y=Aθ+T,利用函数g(Y)对线性组合cTθ=α+β进行估计,其中Y表示非固定传输总时延对应的向量,g(Y)为以Y为变量的函数。
4.根据权利要求3所述的时钟偏移最优估计方法,其特征在于,步骤(23)的具体方法是:由Pitman估计算法,对时延向量方程Y=Aθ+T中的向量θ所含未知参数进行估计,可得未知参数α与未知参数β之和α+β的最优估计量为:由Pitman估计准则中的将步骤(22)中的代入g*(Y)表达式,则得到:其中,g*(Y)表示以向量Y为变量的函数g(Y)对向量方程中向量θ所含参数之和α+β的最优估计量,θ为向量方程中的向量,f(Y|θ)为向量Y所服从的概率密度函数;根据Pitman估计准则,g(Y)对向量θ中未知参数的估计等于g(Y1)和g(Y2)对向量θ1和θ2的未知参数估计量之和,Y1、Y2分别为向量Y的分量,θ1、θ2为θ的分量;Y1、Y2分别表示的含义是:主从时钟及其反方向的非固定传输总时延对应的向量,因此服从的概率密度函数分别为fT1(Y11)和fT2(Y22),即fT1(Y11)=fT1(Y11·1P),fT2(Y22)=fT2(Y22·1P)。
5.根据权利要求4所述的时钟偏移最优估计方法,其特征在于,步骤(24)的具体方法是:已知第i次传输,主从时钟方向及其反方向随机队列时延ti,1及ti,2均服从均值为μ,方差为σ2的高斯分布,即:
6.根据权利要求5所述的时钟偏移最优估计方法,其特征在于,步骤(25)的具体方法是:已知k=1,2及步骤(24)中f1(ti,1)、f2(ti,2)表达式,则根据步骤(23)所得g*(Y)表达式可知,此时g*(Y)为:
CN201710022149.3A 2017-01-12 2017-01-12 适用于非对称时延精确时间同步的时钟偏移最优估计方法 Active CN107070574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710022149.3A CN107070574B (zh) 2017-01-12 2017-01-12 适用于非对称时延精确时间同步的时钟偏移最优估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710022149.3A CN107070574B (zh) 2017-01-12 2017-01-12 适用于非对称时延精确时间同步的时钟偏移最优估计方法

Publications (2)

Publication Number Publication Date
CN107070574A CN107070574A (zh) 2017-08-18
CN107070574B true CN107070574B (zh) 2019-03-22

Family

ID=59599332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710022149.3A Active CN107070574B (zh) 2017-01-12 2017-01-12 适用于非对称时延精确时间同步的时钟偏移最优估计方法

Country Status (1)

Country Link
CN (1) CN107070574B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505683B (zh) * 2019-09-23 2021-06-08 重庆邮电大学 一种面向平均一致性时钟同步的频率偏移估计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888237A (zh) * 2014-04-04 2014-06-25 瑞斯康达科技发展股份有限公司 一种实现时钟时间同步的方法及装置
CN105594146A (zh) * 2013-10-02 2016-05-18 哈利法科学技术研究大学 用于补偿路径不对称的方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257133B2 (en) * 2002-09-30 2007-08-14 Lucent Technologies Inc. Method for estimating offset for clocks at network elements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594146A (zh) * 2013-10-02 2016-05-18 哈利法科学技术研究大学 用于补偿路径不对称的方法和设备
CN103888237A (zh) * 2014-04-04 2014-06-25 瑞斯康达科技发展股份有限公司 一种实现时钟时间同步的方法及装置

Also Published As

Publication number Publication date
CN107070574A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN103888237B (zh) 一种实现时钟时间同步的方法及装置
US9671822B2 (en) Method and devices for time transfer using end-to-end transparent clocks
KR101749202B1 (ko) 타임스탬프를 생성하는 방법, 장치, 그리고 시스템
CN102137023B (zh) 基于可用带宽预测的组播拥塞控制方法
CN103812595B (zh) 一种基于ieee1588同步机制的tps时间同步改进算法
CN106452650A (zh) 适用于多跳无线传感器网络的时钟同步频率偏移估计方法
JP5548305B2 (ja) パケット交換通信ネットワークにおけるパケットの累積滞留時間の更新
US20170366287A1 (en) Time synchronization error compensation method for multi-hop wireless backhaul network based on ptp
US20140177528A1 (en) Method for Synchronizing Clocks in a Communication Network
CN104468017B (zh) 执行节点之间的时间同步的网络同步方法及装置
CN110460553B (zh) 一种免时间戳交互的隐含节点时钟频率偏移估计方法
US20180048457A1 (en) Method, system and device for clock synchronization over time-varying and lossy networks
CN106160914B (zh) 一种基于干扰观测反馈控制技术的ieee1588时钟同步方法
WO2023077760A1 (zh) 一种面向工业无线与tsn融合的跨网时间同步方法
US8913633B2 (en) System and method for time synchronization in a communication network
CN107070574B (zh) 适用于非对称时延精确时间同步的时钟偏移最优估计方法
CN105594146A (zh) 用于补偿路径不对称的方法和设备
WO2021026023A1 (en) Systems for timestamping events on edge devices
CN102754369A (zh) 用于在通信网络中进行时间同步的方法
WO2018098791A1 (zh) 适用于多跳无线传感器网络的时钟同步频率偏移估计方法
Hajikhani et al. A recursive method for clock synchronization in asymmetric packet-based networks
CN103874177A (zh) 基于移动参考节点的无线传感器网络实时同步方法
WO2016092243A1 (en) Method and devices for time transfer using end to end transparent clocks
CN103338472A (zh) 一种无线网络链路质量估计方法
CN106604387B (zh) 一种基于博弈论的无线传感器时间同步方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant