CN107069745A - 一种新型无变压器式电能质量综合调节器控制策略 - Google Patents

一种新型无变压器式电能质量综合调节器控制策略 Download PDF

Info

Publication number
CN107069745A
CN107069745A CN201610816091.5A CN201610816091A CN107069745A CN 107069745 A CN107069745 A CN 107069745A CN 201610816091 A CN201610816091 A CN 201610816091A CN 107069745 A CN107069745 A CN 107069745A
Authority
CN
China
Prior art keywords
voltage
mrow
control strategy
phase
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610816091.5A
Other languages
English (en)
Other versions
CN107069745B (zh
Inventor
刘闯
蔡国伟
张树东
刘梦琪
孙琰
张晔
池澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Jilin Electric Power Corp
Northeast Electric Power University
Original Assignee
Northeast Dianli University
State Grid Jilin Electric Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University, State Grid Jilin Electric Power Corp filed Critical Northeast Dianli University
Priority to CN201610816091.5A priority Critical patent/CN107069745B/zh
Publication of CN107069745A publication Critical patent/CN107069745A/zh
Application granted granted Critical
Publication of CN107069745B publication Critical patent/CN107069745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种新型无变压器式电能质量综合调节器控制策略,包括相互独立的串联侧控制策略和并联侧控制策略,具体包括如下步骤:测量负荷交流电压,测量输电线路损耗后电压,得到串联电压源型逆变器补偿电压;以追踪串联电压源型逆变器补偿电压为目标,给定一个电压参考值,得出调制比,来实现低电压提升或过电压降落等功能;测量交流配电网非线性三相不对称负荷电流,测量并联侧电压源型逆变器并网端口处三相电压,测量变压器出口端电压及各自相角,求出并联电压源型逆变器并网电流参考值;通过脉宽调制控制得到每相相应的补偿电流,来实现电网侧三相电流平衡的功能。

Description

一种新型无变压器式电能质量综合调节器控制策略
技术领域
本发明涉及低压配电网电能质量调节领域,具体涉及一种新型无变压器式电能质量综合调节器控制策略。
背景技术
传统电能质量综合调节器由两个背靠背逆变器组成,其往往需要庞大和复杂的曲折变压器隔离和达到高电压。由于传统电能质量综合调节器中的串联侧和并联侧变压器会影响谐波补偿效果、增加功率损耗、存在饱和及电压跌落瞬间涌流等问题,若没有隔离变压器,直流母线耦合电容存在电容直通,相间短路等问题。
发明内容
为解决上述问题,本发明提供了一种新型无变压器式电能质量综合调节器控制策略,通过对串联电压源型逆变器和并联电压源型逆变器的独立控制,实现低压配电网中过电压或电压降落、谐波和三相负荷不平衡等问题,从而改善电能质量。
为实现上述目的,本发明采取的技术方案为:
一种新型无变压器式电能质量综合调节器控制策略,包括相互独立的串联侧控制策略和并联侧控制策略,所述串联侧控制策略包括以下步骤:
S1、测量负荷交流电压Vl,测量输电线路损耗后电压Vp,串联电压源型逆变器补偿电压Vc与Vp相差90°,由得出Vc
S2、以追踪串联电压源型逆变器补偿电压为目标,给定一个电压参考值将电压参考值与串联电压源型逆变器补偿电压实际值vca的电压偏差输入PI控制器,经过PI控制器的时域表达式计算出一个电流参考指令icaref
S3、将所得的icaref与线路电流ialo相加,再与串联VSC电流实际值ias相减,经过PI控制器得出调制比的修正量Δd;
S4、将Δd与开环调制比(基准值)相加得出调制比d,执行调制比d,以实现低电压提升或过电压降落功能,其中Vdc为串联电压源型逆变器直流侧电容电压值;
所述并联侧控制策略包括如下步骤:
S5、测量交流配电网非线性三相不对称负荷电流i1a、i1b、i1c,测量并联侧电压源型逆变器并网端口处三相电压Vza、Vzb、Vzc,为使变压器出口端电压和电流同相位,即满足功率因数为1,测量变压器出口端电压Vs0a、Vs0b、Vs0c及各自相角θa、θb、θc,运用计算公式
求出并联电压源型逆变器并网电流参考值
S6、将所得的通过脉宽调制控制得到每相相应的补偿电流iua、iub、iuc、iun,以电网侧三相电流平衡的功能。
其中,所述PI控制器的时域表达式为:
式中,Icaref表示补偿电流参考值,表示串联VSC补偿电压参考值,vca表示串联VSC补偿电压实际值,Kp、Ki为积分调节增益和比例调节增益。
本发明具有以下有益效果:
通过对串联电压源型逆变器和并联电压源型逆变器的独立控制,实现低压配电网中过电压或电压降落、谐波和三相负荷不平衡等问题,从而改善电能质量。附图说明
图1是单相串联电压源型逆变器控制系统框图;
图2是并联电压源型逆变器并网参考电流算法结构框图;
图3是并联电压源型逆变器控制系统框图;
图4是新型无变压器式电能质量综合调节器串联电压源型逆变器补偿前后电网电压值波形示意;
图5是新型无变压器式电能质量综合调节器并联电压源型逆变器补偿前后负荷电流波形示意。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1-3,本发明实施例提供了一种新型无变压器式电能质量综合调节器控制策略,包括以下步骤:
S1、测量负荷交流电压Vl,测量输电线路损耗后电压Vp,串联电压源型逆变器补偿电压Vc与Vp相差90°,由得出Vc
S2、以追踪串联电压源型逆变器补偿电压为目标,给定一个电压参考值将电压参考值与串联电压源型逆变器补偿电压实际值vca的电压偏差输入PI控制器,经过PI控制器 的时域表达式计算出一个电流参考指令icaref;PI控制器的时域表达式
S3、将所得的icaref与线路电流ialo相加,再与串联VSC电流实际值ias相减,经过PI控制器得出调制比的修正量Δd;
S4、将Δd与开环调制比(基准值)相加得出调制比d,执行调制比d,以实现低电压提升或过电压降落功能,其中Vdc为串联电压源型逆变器直流侧电容电压值;
所述并联侧控制策略包括如下步骤:
S5、测量交流配电网非线性三相不对称负荷电流i1a、i1b、i1c,测量并联侧电压源型逆变器并网端口处三相电压Vza、Vzb、Vzc,为使变压器出口端电压和电流同相位,即满足功率因数为1,测量变压器出口端电压Vs0a、Vs0b、Vs0c及各自相角θa、θb、θc,运用计算公式
求出并联电压源型逆变器并网电流参考值
S6、将所得的通过脉宽调制控制得到每相相应的补偿电流iua、iub、iuc、iun,以电网侧三相电流平衡的功能
参照图4,从图4中的(a)可知系统未并网补偿时经过线路损耗后电压为幅值155V(有效值110V),经过串联电压源型逆变器补偿之后有图4中的(b)可知电压为幅值311V(有效值220V)。新型无变压器式电能质量综合调节器控制具备调节电压降落功能。
参照图5,采用本发明的新型无变压器式电能质量综合调节器控制策略后,负荷侧电流由三相不平衡变为三相平衡且波形平稳。新型无变压器式电能质量综合调节器控制具备调节三相负荷电流不平衡及谐波功能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种新型无变压器式电能质量综合调节器控制策略,其特征在于,包括相互独立的串联侧控制策略和并联侧控制策略,所述串联侧控制策略包括以下步骤:
S1、测量负荷交流电压Vl,测量输电线路损耗后电压Vp,串联电压源型逆变器补偿电压Vc与Vp相差90°,由得出Vc
S2、以追踪串联电压源型逆变器补偿电压为目标,给定一个电压参考值将电压参考值与串联电压源型逆变器补偿电压实际值vca的电压偏差输入PI控制器,经过PI控制器的时域表达式计算出一个电流参考指令icaref
S3、将所得的icaref与线路电流ialo相加,再与串联VSC电流实际值ias相减,经过PI控制器得出调制比的修正量Δd;
S4、将Δd与开环调制比(基准值)相加得出调制比d,执行调制比d,以实现低电压提升或过电压降落功能,其中Vdc为串联电压源型逆变器直流侧电容电压值;
所述并联侧控制策略包括如下步骤:
S5、测量交流配电网非线性三相不对称负荷电流i1a、i1b、i1c,测量并联侧电压源型逆变器并网端口处三相电压vza、vzb、vzc,为使变压器出口端电压和电流同相位,即满足功率因数为1,测量变压器出口端电压vs0a、vs0b、vs0c及各自相角θa、θb、θc,运用计算公式 求出并联电压源型逆变器并网电流参考值
S6、将所得的通过脉宽调制控制得到每相相应的补偿电流iua、iub、iuc、iun,以电网侧三相电流平衡的功能。
2.如权利要求1所述的一种新型无变压器式电能质量综合调节器控制策略,其特征在于,所述PI控制器的时域表达式为:
<mrow> <msub> <mi>I</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>;</mo> </mrow>
式中,Icaref表示补偿电流参考值,表示串联VSC补偿电压参考值,vca表示串联VSC补偿电压实际值,Kp、Ki为积分调节增益和比例调节增益。
CN201610816091.5A 2016-09-12 2016-09-12 一种新型无变压器式电能质量综合调节器控制方法 Active CN107069745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610816091.5A CN107069745B (zh) 2016-09-12 2016-09-12 一种新型无变压器式电能质量综合调节器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610816091.5A CN107069745B (zh) 2016-09-12 2016-09-12 一种新型无变压器式电能质量综合调节器控制方法

Publications (2)

Publication Number Publication Date
CN107069745A true CN107069745A (zh) 2017-08-18
CN107069745B CN107069745B (zh) 2019-07-16

Family

ID=59616925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610816091.5A Active CN107069745B (zh) 2016-09-12 2016-09-12 一种新型无变压器式电能质量综合调节器控制方法

Country Status (1)

Country Link
CN (1) CN107069745B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588743A (zh) * 2004-07-02 2005-03-02 清华大学 一种三桥臂统一电能质量调节器
CN102437575A (zh) * 2011-12-29 2012-05-02 中国科学院电工研究所 一种中高压无变压器结构统一电能质量控制器
JP2015082881A (ja) * 2013-10-22 2015-04-27 東芝三菱電機産業システム株式会社 不平衡補償装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588743A (zh) * 2004-07-02 2005-03-02 清华大学 一种三桥臂统一电能质量调节器
CN102437575A (zh) * 2011-12-29 2012-05-02 中国科学院电工研究所 一种中高压无变压器结构统一电能质量控制器
JP2015082881A (ja) * 2013-10-22 2015-04-27 東芝三菱電機産業システム株式会社 不平衡補償装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张树东,等: "交直流混合配电型通用功率变换器(UPC)研究", 《电力系统保护与控制》 *

Also Published As

Publication number Publication date
CN107069745B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN106451466B (zh) 基于统一电能质量调节器的电网电能质量控制系统及方法
Kesler et al. A novel control method for unified power quality conditioner (UPQC) under non-ideal mains voltage and unbalanced load conditions
CN103368191B (zh) 一种微电网多逆变器并联电压不平衡补偿方法
CN106532749B (zh) 一种微电网不平衡功率和谐波电压补偿系统及其应用
Liu et al. Power quality improvement using controllable inductive power filtering method for industrial DC supply system
CN103904654B (zh) 组合式三相逆变电路并联运行控制方法
CN103606926A (zh) 基于链式结构的大容量统一电能质量控制器及其控制方法
CN103715704B (zh) 一种微电网公共母线电压不平衡抑制方法
CN106208063B (zh) 一种有源电力滤波器的自抗扰控制方法和有源电力滤波器
Kamble et al. Unified power quality conditioner for power quality improvement with advanced control strategy
CN107069745A (zh) 一种新型无变压器式电能质量综合调节器控制策略
CN109193711A (zh) 一种抵御电压畸变的不平衡补偿系统及方法
Zhang et al. A reactive power and voltage control method for microgrid based on voltage drop estimation
Anjana et al. Reducing harmonics in micro grid distribution system using APF with PI controller
Kadam et al. Voltage Distortion at Distribution side reduced by Modified UPQC
da Silva Fischer et al. A small signal model for controlling the dc bus voltage of a series active power filter
Tanaka et al. Control strategies of active power line conditioners in single-phase circuits
Suresh et al. Reduced rating hybrid active power filter in a three-phase four-wire distribution system
Afridi et al. Harmonic Reduction for Non-linear Loads using Simulink Based Filter Design
Benslimane et al. An experimental study of the unbalance compensation by voltage source inverter based STATCOM
CN108899906A (zh) 一种三相四线制apf内置重复无差拍控制方法
JenoPaul et al. Power quality improvement for matrix converter using unified power quality conditioner
Zaveri et al. Evaluation of control strategies for parallel active filter under different supply voltage conditions
Malhar et al. Improvement of power quality of distribution network with DTC drive using UPQC
Mishra et al. Power quality enhancement of micro-grid using DG and power quality conditioner

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant