CN107064967A - 一种多星座接收机冷启动可见星搜索方法 - Google Patents

一种多星座接收机冷启动可见星搜索方法 Download PDF

Info

Publication number
CN107064967A
CN107064967A CN201710366988.7A CN201710366988A CN107064967A CN 107064967 A CN107064967 A CN 107064967A CN 201710366988 A CN201710366988 A CN 201710366988A CN 107064967 A CN107064967 A CN 107064967A
Authority
CN
China
Prior art keywords
star
satellite
visible
search
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710366988.7A
Other languages
English (en)
Other versions
CN107064967B (zh
Inventor
金春杨
范胜林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710366988.7A priority Critical patent/CN107064967B/zh
Publication of CN107064967A publication Critical patent/CN107064967A/zh
Application granted granted Critical
Publication of CN107064967B publication Critical patent/CN107064967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种多星座接收机冷启动可见星搜索方法,该方法依据已捕获的可见星做出合理推断,并剔除理论已不可见卫星,从而缩小剩余卫星的搜索范围。主要设计为四个步骤采取不同的搜索次序,第一步搜索初始卫星组,第二步搜索边缘卫星组,第三步外延、内缩搜索,第四步搜索剩余卫星,从而快速、合理地确定剩余卫星的最小范围,在有无遮蔽的情况下,都能有效降低冷启动耗时。

Description

一种多星座接收机冷启动可见星搜索方法
技术领域
本发明涉及一种多星座接收机冷启动可见星搜索方法,属于卫星导航技术领域。
背景技术
多星座组合定位是综合运用不同星座的卫星帮助用户实现定位,美国的GPS、俄罗斯的GLONASS、欧盟的GALIEO、中国的北斗等,都可以提供有效的观测信息。较之传统的单星座定位,多星座组合定位多出成倍的观测信息,这使得定位服务的可用性、可靠性和精度等性能能够大幅提升。
在冷启动的过程中,接收机需要完成一个三维搜索过程,三维的不确定度分别是可见星、多普勒频移和码相位。对于某个卫星的多普勒频移和码相位的二维搜索过程,分为两种情况。一种是卫星不可见,那么接受机就会搜索整个二维空间的所有待检测点;另一种是卫星可见,接收机在搜索二维空间的过程中将找到一个待检测点达到有效峰值,并开始跟踪这颗可见星。已有大量文献研究如何加快这个二维搜索过程,例如采用硬件并行、改进算法等方式。而对于可见星这一维的不确定度的搜索,相关文献较少。不论是快速的捕获信号(二维搜索),还是快速的确定可见星,都有利于减少冷启动耗时,并且这两者紧密联系、相互影响。
传统的冷启动的定义是时间、用户粗略位置、星历、历书皆未知,而如今一般情况下,时间与历书往往是已知并可用的,但用户粗略位置、星历未知,这样的启动条件仍然存在三维的不确定度,是一种新的冷启动条件。针对这种新的冷启动条件,需要提出一种新的多星座接收机冷启动可见星搜索算法。
发明内容
本发明所要解决的技术问题是:提供一种多星座接收机冷启动可见星搜索方法,克服了多星座接收机冷启动耗时过长的问题。
本发明为解决上述技术问题采用以下技术方案:
一种多星座接收机冷启动可见星搜索方法,包括如下步骤:
步骤1,根据已知的卫星分布,按照准则构建初始卫星组并搜索初始卫星组中的可见星;如果未搜索到,则按准则构建新的初始卫星组,直至成功搜索到第一颗可见星;根据第一颗可见星剔除理论不可见星;
步骤2,根据步骤1搜索到的第一颗可见星,按照构建边缘卫星组的方法构建第一颗可见星的边缘卫星组,并且在边缘卫星组中搜索可见的边缘卫星,根据可见的边缘卫星剔除理论不可见星;
步骤3,根据可见的边缘卫星逐个进行外延搜索,边缘卫星组中除可见的边缘卫星之外,剩余为不可见的边缘卫星,根据不可见的边缘卫星逐个进行内缩搜索,得到除第一颗可见星、第一颗可见星的边缘卫星组、步骤1剔除的理论不可见星、步骤2剔除的理论不可见星之外,所有剩余卫星中的部分可见星;根据得到的部分可见星剔除理论不可见星;
步骤4,根据步骤1、步骤2、步骤3得到的可见星以及步骤1、步骤2、步骤3剔除的理论不可见星,在剩余的卫星中搜索理论可见星,从而完成冷启动。
作为本发明的一种优选方案,步骤1所述准则为:1)从以地心为体心的正六面体的八个顶点中,找到构成正四面体的四个顶点,选择四颗卫星构建初始卫星组,这四颗卫星在ECEF中的空间向量分别与上述四个顶点对应的空间向量的夹角最小;2)如果上述四颗卫星中未搜索到可见星,则以八个顶点中余下的四个顶点构建新的初始卫星组,新的初始卫星组的四颗卫星在ECEF中的空间向量分别与余下的四个顶点对应的空间向量的夹角最小;3)如果新的初始卫星组四颗卫星中未搜索到可见星,则以正六面体的六个面心构建新的初始卫星组,新的初始卫星组的六颗卫星在ECEF中的空间向量分别与六个面心对应的空间向量的夹角最小;4)如果新的初始卫星组六颗卫星中未搜索到可见星,则以正六面体十二条棱的中点构建新的初始卫星组,新的初始卫星组的十二颗卫星在ECEF中的空间向量分别与十二条棱的中点对应的空间向量的夹角最小;上述四条准则存在先后次序,如果搜索到第一颗可见星,则结束构建;上述四条准则中用来找到初始卫星组的空间向量共同旋转相同的角度得到一系列新的空间向量,新的空间向量与原来的空间向量等效。
作为本发明的一种优选方案,步骤2所述构建边缘卫星组的方法具体为:设定步骤1搜索到的第一颗可见星的星下点为位置P,计算除第一颗可见星之外的其余所有卫星在P当地坐标系中接收卫星信号的仰角,将其中最小的仰角作为开区间的下限,并设定开区间的上限,将在P当地坐标系中的实际仰角位于该开区间内的卫星放入边缘卫星组,得到第一颗可见星的边缘卫星组。
作为本发明的一种优选方案,步骤3所述根据可见的边缘卫星逐个进行外延搜索具体过程为:计算第一颗可见星到除第一颗可见星、第一颗可见星的边缘卫星组、步骤1剔除的理论不可见星、步骤2剔除的理论不可见星之外所有剩余卫星的空间向量,记为Di;设某个可见的边缘卫星对应的空间向量为D3,根据所有剩余卫星的空间向量Di与D3的夹角构建升序表,升序表中忽略|Di|<|D3|的卫星,对升序表从头开始外延搜索,如果搜索结果为当前卫星可见,则继续搜索直至搜索结果为当前卫星不可见;对每个可见的边缘卫星进行上述相同的操作。
作为本发明的一种优选方案,步骤3所述根据不可见的边缘卫星逐个进行内缩搜索具体过程为:计算第一颗可见星到除第一颗可见星、第一颗可见星的边缘卫星组、步骤1剔除的理论不可见星、步骤2剔除的理论不可见星之外所有剩余卫星的空间向量,记为Di;设某个不可见的边缘卫星对应的空间向量为D4,根据所有剩余卫星的空间向量Di与D4的夹角构建升序表,升序表中忽略|Di|>|D4|的卫星,对升序表从头开始内缩搜索,如果搜索结果为当前卫星不可见,则继续搜索直至搜索结果为当前卫星可见;对每个不可见的边缘卫星进行上述相同的操作。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
本发明多星座接收机冷启动可见星搜索方法,可用于降低冷启动耗时。与现有的冷启动可见星搜索算法相比,该方法不会因遮蔽情况而退化为全星搜索且保持高效,并基于新的冷启动条件,充分运用先验信息,从而使接受机更快速、稳定地完成冷启动。
附图说明
图1是本发明一种多星座接收机冷启动可见星搜索方法的整体流程图。
图2是本发明剔除理论不可见星原理图。
图3是本发明构建边缘卫星组原理图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本方法的整体流程图如图1所示,已知时间、历书,求得卫星分布,第一阶段构建初始卫星组并搜索,第二阶段构建边缘卫星组并搜索,第三阶段外延、内缩搜索,第四阶段搜索剩余卫星,最终完成冷启动。需要完成以下工作:
1、剔除理论不可见卫星
设某颗可见星为SV1,另一颗待检验卫星为SV2,已知两者在ECEF(地心地固坐标系)中瞬时坐标,选取过SV1、SV2和地心三点的截面,如图2所示。
图中r表示地球平均半径,h1、h2分别表示SV1、SV2距地心瞬时高度,α表示接收卫星信号最小仰角,β表示假设临界情况时SV1与SV2的夹角,βreal表示实际夹角,θ1、θ2均为中间参数。β由下式(1)得出:
如果βreal>β,则判断SV2理论已不可见。
2、初始卫星组的构建
初始卫星组是根据一定准则选取的一组卫星,在冷启动的最初阶段,用来找到第一颗可见星。初始卫星组的构造方法直接影响到捕获第一颗可见星的速度,对于整个冷启动过程的耗时有着重要影响。
初始卫星组的构建方法基于以下前提:
(1)理想情况下,以地心为体心,大致构成正四面体的四颗卫星,更准确地说,是地心到卫星连线之间的角度关系,与正四面体体心到顶点连线之间的角度关系相一致的四颗卫星,其中必有一颗可见,并可以自然地推广到正六面体、正八面体等;
(2)当一颗卫星不可见时,地心到此卫星连线的方向表征了受遮蔽的情况,其他卫星的空间向量(地心到卫星连线)与该方向夹角越小,则受遮蔽的可能性就越大;
初始卫星组的构造方法如下:首先根据前提1找到四颗卫星,它们在ECEF中的空间向量分别与以下四个空间向量(1,1,1)、(1,-1,-1)、(-1,1,-1)、(-1,-1,1)的夹角最小,理想无遮蔽情况下,其中必有一颗可见。需要说明的是,这组空间向量只是符合正四面体角度关系的一例,也完全可以选择另一组空间向量,只要满足角度关系即可,但是为表达得更加清晰、具体,选择这一组空间向量作为案例分析。如果这四颗卫星都不可见,说明这四个方向受到遮蔽,根据前提2,之后选取的空间向量应尽可能避之。并结合前提1,按照以下四个空间向量(-1,-1,-1)、(-1,1,1)、(1,-1,1)、(1,1,-1),搜索新的四颗卫星。如果仍都不可见,则按以下六个空间向量搜索(1,0,0)、(0,1,0)、(0,0,1)、(-1,0,0)、(0,-1,0)、(0,0,-1)。如果仍都不可见,则按以下十二个空间向量搜索(0,1,1)、(0,1,-1)、(0,-1,1)、(0,-1,-1)、(1,0,1)、(1,0,-1)、(-1,0,1)、(-1,0,-1)、(1,1,0)、(1,-1,0)、(-1,1,0)、(-1,-1,0)。以此类推,新的空间向量尽可能避开旧的空间向量,并使用必要的数量以保证理想情况下必有一颗可见。在对这些卫星搜索的过程中,一旦有某颗星可见,则退出第一阶段,进入第二阶段。第一阶段的设计使得接收机可以尽快地搜索到第一颗可见星。上述一系列空间向量只是便于表述的一例,由此例共同旋转一定角度而产生的新的一系列空间向量是等效的。
3、边缘卫星组的构建
边缘卫星组是一组根据第一颗可见星选取的一组卫星,假设用户正好处于其星下点,那么,用户能够搜索到的与第一颗卫星方向夹角最大的或近似最大的一组(处于低仰角的一定范围的)卫星,称之为边缘卫星组。其意义在于为第三阶段确定可见星的最外围轮廓做好准备。
边缘卫星组的构造方法如下:设第一颗可见星的星下点为位置P,选取在P当地坐标系中的仰角处于一个特殊范围内的卫星,作为边缘卫星组。这个范围的下限是接受卫星信号的最小仰角,上限是在最小仰角基础上加20度(仅作举例,可适当调整)。设仰角下限为α1,上限为α2,待检验卫星距地心高度为h,地球平均半径为r,第一颗可见星为SV1,待检验卫星为SV2,βreal表示实际夹角,如何确定SV2是否属于边缘卫星组,如图3所示。
图中β1、β2分别表示SV1与SV2的夹角上限与下限,由下式(2)得出:
如果β2real1,则选取SV2进入边缘卫星组。
4、外延、内缩搜索
在获得边缘卫星组搜索结果的基础上,如果某颗边缘卫星可见,该卫星将大幅地缩小剩余卫星的范围。为进一步缩小剩余卫星的范围,则应沿着第一颗可见星到该卫星的连线方向,搜索更外围的卫星,直到搜索结果为不可见,这就是外延搜索;如果某颗边缘卫星不可见,该卫星并不能缩小剩余卫星的范围,为找到其附近的可见星,则应沿着该卫星到第一颗可见星的连线方向,搜索更内部的卫星,直到搜索结果为可见,这就是内缩搜索。为尽快缩小剩余卫星范围,显然,应先进行外延搜索,再进行内缩搜索。
外延、内缩搜索的具体实现如下:首先求得第一颗可见星到所有剩余的理论仍可见卫星的空间向量,记为Di。设某个可见的边缘卫星为SV3,对应D3,其他卫星按各自的Di与D3的夹角排序构建升序表(忽略|Di|<|D3|的卫星),外延搜索这些卫星直到搜索结果为不可见,然后取下一颗边缘卫星为参考,重复以上过程。之后,设某个不可见的边缘卫星为SV4,对应D4,其他卫星按各自的Di与D4的夹角升序排序,并忽略|Di|>|D4|的卫星,内缩搜索这些卫星直到搜索结果为可见,然后取下一颗边缘卫星为参考,重复以上过程。
5、搜索剩余卫星
搜索剩余卫星,完成冷启动。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

1.一种多星座接收机冷启动可见星搜索方法,其特征在于,包括如下步骤:
步骤1,根据已知的卫星分布,按照准则构建初始卫星组并搜索初始卫星组中的可见星;如果未搜索到,则按准则构建新的初始卫星组,直至成功搜索到第一颗可见星;根据第一颗可见星剔除理论不可见星;
步骤2,根据步骤1搜索到的第一颗可见星,按照构建边缘卫星组的方法构建第一颗可见星的边缘卫星组,并且在边缘卫星组中搜索可见的边缘卫星,根据可见的边缘卫星剔除理论不可见星;
步骤3,根据可见的边缘卫星逐个进行外延搜索,边缘卫星组中除可见的边缘卫星之外,剩余为不可见的边缘卫星,根据不可见的边缘卫星逐个进行内缩搜索,得到除第一颗可见星、第一颗可见星的边缘卫星组、步骤1剔除的理论不可见星、步骤2剔除的理论不可见星之外,所有剩余卫星中的部分可见星;根据得到的部分可见星剔除理论不可见星;
步骤4,根据步骤1、步骤2、步骤3得到的可见星以及步骤1、步骤2、步骤3剔除的理论不可见星,在剩余的卫星中搜索理论可见星,从而完成冷启动。
2.根据权利要求1所述多星座接收机冷启动可见星搜索方法,其特征在于,步骤1所述准则为:1)从以地心为体心的正六面体的八个顶点中,找到构成正四面体的四个顶点,选择四颗卫星构建初始卫星组,这四颗卫星在ECEF中的空间向量分别与上述四个顶点对应的空间向量的夹角最小;2)如果上述四颗卫星中未搜索到可见星,则以八个顶点中余下的四个顶点构建新的初始卫星组,新的初始卫星组的四颗卫星在ECEF中的空间向量分别与余下的四个顶点对应的空间向量的夹角最小;3)如果新的初始卫星组四颗卫星中未搜索到可见星,则以正六面体的六个面心构建新的初始卫星组,新的初始卫星组的六颗卫星在ECEF中的空间向量分别与六个面心对应的空间向量的夹角最小;4)如果新的初始卫星组六颗卫星中未搜索到可见星,则以正六面体十二条棱的中点构建新的初始卫星组,新的初始卫星组的十二颗卫星在ECEF中的空间向量分别与十二条棱的中点对应的空间向量的夹角最小;上述四条准则存在先后次序,如果搜索到第一颗可见星,则结束构建;上述四条准则中用来找到初始卫星组的空间向量共同旋转相同的角度得到一系列新的空间向量,新的空间向量与原来的空间向量等效。
3.根据权利要求1所述多星座接收机冷启动可见星搜索方法,其特征在于,步骤2所述构建边缘卫星组的方法具体为:设定步骤1搜索到的第一颗可见星的星下点为位置P,计算除第一颗可见星之外的其余所有卫星在P当地坐标系中接收卫星信号的仰角,将其中最小的仰角作为开区间的下限,并设定开区间的上限,将在P当地坐标系中的实际仰角位于该开区间内的卫星放入边缘卫星组,得到第一颗可见星的边缘卫星组。
4.根据权利要求1所述多星座接收机冷启动可见星搜索方法,其特征在于,步骤3所述根据可见的边缘卫星逐个进行外延搜索具体过程为:计算第一颗可见星到除第一颗可见星、第一颗可见星的边缘卫星组、步骤1剔除的理论不可见星、步骤2剔除的理论不可见星之外所有剩余卫星的空间向量,记为Di;设某个可见的边缘卫星对应的空间向量为D3,根据所有剩余卫星的空间向量Di与D3的夹角构建升序表,升序表中忽略|Di|<|D3|的卫星,对升序表从头开始外延搜索,如果搜索结果为当前卫星可见,则继续搜索直至搜索结果为当前卫星不可见;对每个可见的边缘卫星进行上述相同的操作。
5.根据权利要求1所述多星座接收机冷启动可见星搜索方法,其特征在于,步骤3所述根据不可见的边缘卫星逐个进行内缩搜索具体过程为:计算第一颗可见星到除第一颗可见星、第一颗可见星的边缘卫星组、步骤1剔除的理论不可见星、步骤2剔除的理论不可见星之外所有剩余卫星的空间向量,记为Di;设某个不可见的边缘卫星对应的空间向量为D4,根据所有剩余卫星的空间向量Di与D4的夹角构建升序表,升序表中忽略|Di|>|D4|的卫星,对升序表从头开始内缩搜索,如果搜索结果为当前卫星不可见,则继续搜索直至搜索结果为当前卫星可见;对每个不可见的边缘卫星进行上述相同的操作。
CN201710366988.7A 2017-05-23 2017-05-23 一种多星座接收机冷启动可见星搜索方法 Active CN107064967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710366988.7A CN107064967B (zh) 2017-05-23 2017-05-23 一种多星座接收机冷启动可见星搜索方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710366988.7A CN107064967B (zh) 2017-05-23 2017-05-23 一种多星座接收机冷启动可见星搜索方法

Publications (2)

Publication Number Publication Date
CN107064967A true CN107064967A (zh) 2017-08-18
CN107064967B CN107064967B (zh) 2020-03-24

Family

ID=59610402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710366988.7A Active CN107064967B (zh) 2017-05-23 2017-05-23 一种多星座接收机冷启动可见星搜索方法

Country Status (1)

Country Link
CN (1) CN107064967B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058271A (zh) * 2019-04-29 2019-07-26 广东工业大学 一种卫星信号的捕获跟踪方法、装置及卫星信号接收机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707296A (zh) * 2012-05-22 2012-10-03 北京理工大学 一种用于单星座卫星导航系统的选星方法
CN102901972A (zh) * 2012-08-23 2013-01-30 上海交通大学 北斗卫星搜索装置及其搜索方法
US20140022122A1 (en) * 2010-09-28 2014-01-23 Broadcom Corporation Method and System for Reducing Autonomous Time to Fix a Multi-Standard GNSS Receiver
CN103823224A (zh) * 2014-03-04 2014-05-28 南京航空航天大学 一种基于北斗卫星导航系统的分轨选星方法
CN106646526A (zh) * 2017-02-09 2017-05-10 南京航空航天大学 一种可同时检测识别多种故障的接收机自主完好性检测方法
CN106680843A (zh) * 2016-12-12 2017-05-17 大唐半导体设计有限公司 一种接收机及实现接收机启动的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022122A1 (en) * 2010-09-28 2014-01-23 Broadcom Corporation Method and System for Reducing Autonomous Time to Fix a Multi-Standard GNSS Receiver
CN102707296A (zh) * 2012-05-22 2012-10-03 北京理工大学 一种用于单星座卫星导航系统的选星方法
CN102901972A (zh) * 2012-08-23 2013-01-30 上海交通大学 北斗卫星搜索装置及其搜索方法
CN103823224A (zh) * 2014-03-04 2014-05-28 南京航空航天大学 一种基于北斗卫星导航系统的分轨选星方法
CN106680843A (zh) * 2016-12-12 2017-05-17 大唐半导体设计有限公司 一种接收机及实现接收机启动的方法
CN106646526A (zh) * 2017-02-09 2017-05-10 南京航空航天大学 一种可同时检测识别多种故障的接收机自主完好性检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIE F 等: ""A simultaneous multiple BeiDou signal acquisition algorithm for a software-based GNSS receiver"", 《OPTIK INTERNATIONAL JOURNAL FOR LIGHT AND ELECTRON OPTICS》 *
ZHOU H 等: ""A Robust Dynamic Satellites -Searching Algorithm for Multi-constellation GNSS Receivers"", 《CHINA SATELLITE NAVIGATION CONFERENCE 2015 PROCEEDINGS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058271A (zh) * 2019-04-29 2019-07-26 广东工业大学 一种卫星信号的捕获跟踪方法、装置及卫星信号接收机

Also Published As

Publication number Publication date
CN107064967B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
US9817107B2 (en) Above-ground building recognition method and navigation method combining laser and infrared
US20170161587A1 (en) Image description and image recognizable method
CN101839722A (zh) 一种中低空下目标自动识别及载体高精度定位方法
CN109376208A (zh) 一种基于智能终端的定位方法、系统、存储介质及设备
US20210110565A1 (en) Device, system, method, and program for cloud observation
CN109101902A (zh) 一种基于无监督学习的卫星nlos信号检测方法
US20020136468A1 (en) Method for interactive image retrieval based on user-specified regions
CN105044699B (zh) 基于Radon‑Fourier变换的雷达点迹凝聚方法
CN107064967A (zh) 一种多星座接收机冷启动可见星搜索方法
CN110414343B (zh) 一种在轨卫星遥感图像舰船检测方法
CN103954280A (zh) 一种快速和高鲁棒性自主恒星识别方法
CN107169682A (zh) 一种基于机载激光点云不同时段树障的快速巡检方法
CN108519083A (zh) 一种空间非合作多目标捕获与跟踪算法
CN101968544B (zh) 一种用于gps和北斗2代双模式卫星导航接收机的快速冷启动方法
CN107132551A (zh) 多系统gnss组合定位选星算法
CN105809622B (zh) 非安全区域自动识别及安全射界图的自动绘制方法
CN107389072A (zh) 一种小天体表面导航特征区域检测方法
CN102375149B (zh) 多相关支路混合间距延迟锁定环及其应用方法
Wang et al. Recognition and locating of damaged Poles in distribution network through images shot by unmanned aerial vehicle (UA V)
CN106199654B (zh) 卫星接收机快速冷启动方法
EP2513592A1 (fr) Procede de designation d&#39;une cible pour un armement a guidage terminal par imagerie
US20140133708A1 (en) Method and device for automatically determining the contours of heights of the relief of a geographical area
Li et al. Deep adaptive proposal network in optical remote sensing images objective detection
US20230348115A1 (en) Safe landing point search device for searching for safe landing point by using contour line information with respect to terrain map, and safe landing point search method
Park et al. A Catalog of New M33 Star Clusters Based on Hubble Space Telescope WFPC2 Images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant