CN107058811B - 一种石墨烯改性铝基复合材料及其制备方法 - Google Patents

一种石墨烯改性铝基复合材料及其制备方法 Download PDF

Info

Publication number
CN107058811B
CN107058811B CN201710251374.4A CN201710251374A CN107058811B CN 107058811 B CN107058811 B CN 107058811B CN 201710251374 A CN201710251374 A CN 201710251374A CN 107058811 B CN107058811 B CN 107058811B
Authority
CN
China
Prior art keywords
graphene
molten state
preparation
aluminum matrix
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710251374.4A
Other languages
English (en)
Other versions
CN107058811A (zh
Inventor
刘和平
孙凤儿
荆兴斌
刘斌
裴海祥
高波
高一波
姬秀芳
段钧韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201710251374.4A priority Critical patent/CN107058811B/zh
Publication of CN107058811A publication Critical patent/CN107058811A/zh
Application granted granted Critical
Publication of CN107058811B publication Critical patent/CN107058811B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1073Infiltration or casting under mechanical pressure, e.g. squeeze casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种石墨烯改性铝基复合材料及其制备方法。制备方法为:首先将铝基材料加热到熔化状态后,保持一段时间,然后慢速冷却至液相线温度;将熔炼合格的铝基合金以高于液相线温度15‑40℃的温度注入已经预热好的容器内,预热温度为500‑600℃;迅速搅拌半熔化状态的金属浆液,且在搅拌过程中连续不断地向浆液中添加石墨烯和Al4C3的混合粉末;最后将制备好的半熔化状态的含有石墨烯和Al4C3的金属浆液注入模具型腔内部,直接进行压制成型。通过本发明制备的半熔化状态的熔体质量好,石墨烯分散性较好,适用范围广,便于进行产业化推广。

Description

一种石墨烯改性铝基复合材料及其制备方法
技术领域
本发明涉及一种石墨烯改性铝基复合材料及其制备方法,属于金属材料领域。
背景技术
Al是地壳中储量最多的一种金属元素,Al及其合金具有以下的特点(1)工艺性能好:可加工,抛光后光洁度高,延展性好,可做成各种形状,可轧制成箔;(2)有优越的物理性能:主要体现在有良好的电导率、导热率且是非铁磁性,不易受电、磁干扰;(3)抗腐蚀性好;(4)力学性能方面其延展率高塑性好、韧性好,但是强度比较,纯铝的强度只有50MPa左右。纯铝所具备以上良好性能都是选择其作为基体的重要原因。铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。随着汽车和航空航天领域的发展,尤其是在太空空间,电离辐射等恶劣环境中对金属基复合材料的比强度,比模量,耐蚀性,导电导热等性能要求更高,传统的陶瓷纤维和颗粒增强体已经不能满足对材料性能的要求。
复合材料是一般由连续相(基体)和分散相(增强体)组成,具有低维化、复合化、高性能化以及特殊功能化的特点。值得特别注意的是,当其中一个组分的尺寸进入纳米级别,复合材料的性能可能会再某一方面显示出新奇的特性。例如纳米级金属/金属基复合材料的强度高于一般金属。这是由于复合材料中纳米级尺度的组分处于介观体系,表面原子的比例很大,表面层接近于气态。这些特性赋予该组分小尺寸效应、表面效应、量子效应、库伦堵塞与量子隧穿效应等许多奇特的性质,与其他组分之间的交互作用也会产生巨大的变化,从而赋予复合材料独特的性能。
石墨烯因为其优异的物理和机械性能被认为是非常理想的金属基复合材料增强体。但是,到目前为止关于石墨烯增强金属基复合材料的研究还处于起步阶段。石墨烯是属于众多碳材料中的一员,相比于其他的碳材料,比如碳纳米管/富勒烯/石墨等,有着优异的物理性能和力学性能,这与其独特的二维平面结构有关。石墨烯是由 sp2杂化碳原子以蜂六边巢晶格结构构成的二维单原子层结构。每个碳原子与其周围的三个碳原子成键,C-C键长是 1.42A。在石墨烯以及石墨中,由于C-C 键角都是120°,此时是不存在张力的,与 C-C 键角因小于 120°而存在张力的富勒烯或者碳纳米管相比,石墨烯中的 C 原子的反应活性要低于富勒烯或是碳纳米管中的 C 原子。石墨烯材料是地球上已知强度最高的材料,比钻石还硬,比钢铁的硬度还要高 100倍以上。石墨烯材料的抗压能力也极强,所以石墨烯材料是一种刚性和柔性共存的材料。
然而,与碳纳米管相比,石墨烯的二维结构使石墨烯相对更容易控制和分散在铝基体中,因此充分发挥石墨烯的增强效果,制备出高性能的石墨烯增强铝基复合材料已经引起越来越多研究者的关注。
发明内容
本发明旨在提供一种石墨烯改性铝基复合材料,是一种化学稳定性更好、界面结合性能好的高性能铝基复合材料,能在电子及其他行业推广应用。本发明还提供了该材料的制备方法。
本发明提供的一种石墨烯改性铝基复合材料,包括以下重量百分比的组分:
石墨烯:0.12-0.54%,
Al4C3:0.04-0.18%,
Al:99.28-99.84%。
进一步地,所述石墨烯和Al4C3的质量配比为:3:1。
本发明提供了一种上述石墨烯改性铝基复合材料的制备方法,包括以下步骤:
(1) 首先将铝基材料加热到熔化状态温度660-750℃,保持3-10min,然后慢速冷却至液相线温度;
(2) 设置容器预热温度为500-600℃;然后将熔炼合格(从温度看)的铝基合金加热到高于液相线温度15-40℃,将其注入已经预热好的容器内;
(3) 迅速搅拌半熔化状态的金属液浆(这是熔炼后的铝基合金),搅拌速度为500-1000转/min;在搅拌过程中连续不断地向液浆中添加石墨烯和Al4C3的混合粉末;
(4) 将制备好的半熔化状态的含有石墨烯和Al4C3的金属液浆注入模具型腔内部,直接进行压制成型,压力在700MPa~1000MPa之间,且在此压制压力下保压 0.5~60min。
与现有技术相比,本发明所提供的铝基复合材料的制备方法中将石墨烯和Al4C3的混合粉末加入半熔化状态的金属液浆中,利用搅拌的作用使石墨烯均匀分散到铝基体中。另外,Al4C3的加入,使得石墨烯与铝粉的界面结合更加紧密,因为石墨的氧化过程和用于使石墨烯从氧化石墨上剥离开来的热振动技术会让石墨烯基面有缺陷,缺陷会暴露出石墨烯的棱柱表面,这为石墨烯与铝的反应创造了条件。
本发明的有益效果:通过本发明制备的半熔化状态的铝基复合材料,质量好,石墨烯分散性较好,Al4C3的加入,使得石墨烯与铝粉的界面结合更加紧密;该产品适用范围广,便于进行产业化推广。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
首先将铝基材料加热到熔化状态温度660℃,保持5min,然后慢速冷却至液相线温度。再将熔炼合格的铝基合金以高于液相线温度16℃的温度注入已经预热好的容器内,预热温度范围为550℃。迅速搅拌半熔化状态的金属液浆,搅拌频率为600次/min。在搅拌过程中连续不断地向液浆中添加石墨烯和Al4C3的混合粉末,其比例为:3:1。将制备好的半熔化状态的含有石墨烯和Al4C3的金属液浆注入模具型腔内部,直接进行压制成型,压力在900-1000MPa之间,且在此压制压力下保压 10min。经测试,其致密度达99.7%,硬度值为35.2HV。
实施例2:
首先将铝基材料加热到熔化状态温度700℃,保持10min,然后慢速冷却至液相线温度。再将熔炼合格的铝基合金以高于液相线温度20℃的温度注入已经预热好的容器内,预热温度范围为550℃。迅速搅拌半熔化状态的金属液浆,搅拌频率为700次/min。在搅拌过程中连续不断地向液浆中添加石墨烯和Al4C3的混合粉末,其比例为:3:1。将制备好的半熔化状态的含有石墨烯和Al4C3的金属液浆注入模具型腔内部,直接进行压制成型,压力在800-900MPa之间,且在此压制压力下保压 30min。经测试,其致密度达99.6%,硬度值为33.4HV。
实施例3:
首先将铝基材料加热到熔化状态温度750℃,保持8min,然后慢速冷却至液相线温度。再将熔炼合格的铝基合金以高于液相线温度30℃的温度注入已经预热好的容器内,预热温度范围为550℃。迅速搅拌半熔化状态的金属液浆,搅拌频率为800次/min。在搅拌过程中连续不断地向液浆中添加石墨烯和Al4C3的混合粉末,其比例为:3:1。将制备好的半熔化状态的含有石墨烯和Al4C3的金属液浆注入模具型腔内部,直接进行压制成型,压力在800-850MPa之间,且在此压制压力下保压 40min。经测试,其致密度达99.3%,硬度值为32.1HV。
实施例4:
首先将铝基材料加热到熔化状态温度720℃,保持3min,然后慢速冷却至液相线温度。再将熔炼合格的铝基合金以高于液相线温度40℃的温度注入已经预热好的容器内,预热温度范围为600℃。迅速搅拌半熔化状态的金属液浆,搅拌频率为900次/min。在搅拌过程中连续不断地向液浆中添加石墨烯和Al4C3的混合粉末,其比例为:3:1。将制备好的半熔化状态的含有石墨烯和Al4C3的金属液浆注入模具型腔内部,直接进行压制成型,压力在700-800MPa之间,且在此压制压力下保压 60min。经测试,其致密度达99.1%,硬度值为30.7HV。

Claims (4)

1.一种石墨烯改性铝基复合材料,其特征在于:由以下重量百分比的组分组成:
石墨烯:0.12-0.54%,
Al4C3:0.04-0.18%,
Al:99.28-99.84%;
所述石墨烯和Al4C3的质量配比为:3:1。
2.一种权利要求1所述的石墨烯改性铝基复合材料的制备方法,其特征在于包括以下步骤:
(1) 首先将铝基材料加热到熔化状态温度660-750℃,保持3-10min,然后慢速冷却至液相线温度;
(2) 设置容器的预热温度为500-600℃;然后将熔炼合格的铝基材料加热到高于液相线温度15-40℃,将其注入已经预热好的容器内;
(3) 迅速搅拌半熔化状态的金属液浆,在搅拌过程中连续不断地向金属液浆中添加石墨烯和Al4C3的混合粉末;
(4) 将制备好的半熔化状态的含有石墨烯和Al4C3的金属液浆注入模具型腔内部,直接进行压制成型。
3.根据权利要求2所述的石墨烯改性铝基复合材料的制备方法,其特征在于:步骤(3)中,搅拌的速度为500-1000转/min。
4.根据权利要求2所述的石墨烯改性铝基复合材料的制备方法,其特征在于:步骤(4)压制成型过程中,压力在700MPa~1000MPa之间,且在此压制压力下保压 0.5~60min。
CN201710251374.4A 2017-04-18 2017-04-18 一种石墨烯改性铝基复合材料及其制备方法 Expired - Fee Related CN107058811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710251374.4A CN107058811B (zh) 2017-04-18 2017-04-18 一种石墨烯改性铝基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710251374.4A CN107058811B (zh) 2017-04-18 2017-04-18 一种石墨烯改性铝基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107058811A CN107058811A (zh) 2017-08-18
CN107058811B true CN107058811B (zh) 2019-01-22

Family

ID=59601267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710251374.4A Expired - Fee Related CN107058811B (zh) 2017-04-18 2017-04-18 一种石墨烯改性铝基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107058811B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782678B2 (ja) * 2017-10-20 2020-11-11 矢崎総業株式会社 アルミニウム基複合材料及びそれを用いた電線並びにアルミニウム基複合材料の製造方法
CN108060321B (zh) * 2017-12-07 2019-06-11 中北大学 一种石墨烯增强铝基复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285739A (ja) * 2007-05-21 2008-11-27 Isuzu Motors Ltd 粒子分散アルミニウム合金複合材の製造方法及び組成調整方法
CN103866154A (zh) * 2012-12-14 2014-06-18 中国兵器科学研究院宁波分院 一种复合材料中微纳米颗粒增强相的弥散分布方法
CN104073674A (zh) * 2014-06-20 2014-10-01 哈尔滨翔科新材料有限公司 一种石墨烯铝基复合材料的制备方法
CN105063401A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铝基烯合金的制备方法
CN105296786A (zh) * 2015-12-04 2016-02-03 苏州阿罗米科技有限公司 一种铝基石墨烯导热复合材料样品的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285739A (ja) * 2007-05-21 2008-11-27 Isuzu Motors Ltd 粒子分散アルミニウム合金複合材の製造方法及び組成調整方法
CN103866154A (zh) * 2012-12-14 2014-06-18 中国兵器科学研究院宁波分院 一种复合材料中微纳米颗粒增强相的弥散分布方法
CN104073674A (zh) * 2014-06-20 2014-10-01 哈尔滨翔科新材料有限公司 一种石墨烯铝基复合材料的制备方法
CN105063401A (zh) * 2015-06-25 2015-11-18 中国航空工业集团公司北京航空材料研究院 一种铝基烯合金的制备方法
CN105296786A (zh) * 2015-12-04 2016-02-03 苏州阿罗米科技有限公司 一种铝基石墨烯导热复合材料样品的制备方法

Also Published As

Publication number Publication date
CN107058811A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
Nieto et al. Carbon nanotubes: reinforced metal matrix composites
Khanna et al. Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective
Zhao et al. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications
Zhang et al. In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility
US10926331B2 (en) Method for reinforcing metal material by means of graphene
Rashad et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets
Munir et al. Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review
Maqbool et al. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites
Kang et al. Effect of molybdenum carbide intermediate layers on thermal properties of copper–diamond composites
Deng et al. Processing and properties of carbon nanotubes reinforced aluminum composites
Bakshi et al. Carbon nanotube reinforced metal matrix composites-a review
He et al. Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition
Sun et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene-like network reinforced Cu matrix composites
Ma et al. Research status and development of magnesium matrix composites
Guo et al. Comprehensive performance regulation of Cu matrix composites with graphene nanoplatelets in situ encapsulated Al2O3 nanoparticles as reinforcement
CN102206793B (zh) 碳纳米管-氧化铝复合增强镁基复合材料的制备方法
Liu et al. Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering
Choudhary et al. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications
CN107058811B (zh) 一种石墨烯改性铝基复合材料及其制备方法
Tan et al. Fabrication and mechanical properties of nano‑carbon reinforced laminated Cu matrix composites
Pietrzak et al. Effects of carbon allotropic forms on microstructure and thermal properties of Cu-C composites produced by SPS
Kuz'Min et al. Production and properties of aluminum-based composites modified with carbon nanotubes
Han et al. 3D continuous copper networks coated with graphene in Al-matrix composites for efficient thermal management
Zhao et al. Reinforcement with in-situ synthesized carbon nano-onions in aluminum composites fabricated by flake powder metallurgy
Han et al. Effects of nanotube content on thermal and mechanical properties of NT@ Cu/Ag@ GF/Al composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190122