CN107056312A - 一种硅质可塑料及其制备方法 - Google Patents

一种硅质可塑料及其制备方法 Download PDF

Info

Publication number
CN107056312A
CN107056312A CN201710414271.5A CN201710414271A CN107056312A CN 107056312 A CN107056312 A CN 107056312A CN 201710414271 A CN201710414271 A CN 201710414271A CN 107056312 A CN107056312 A CN 107056312A
Authority
CN
China
Prior art keywords
siliceous
moldable
materials
granularity
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710414271.5A
Other languages
English (en)
Other versions
CN107056312B (zh
Inventor
张寒
赵惠忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201710414271.5A priority Critical patent/CN107056312B/zh
Publication of CN107056312A publication Critical patent/CN107056312A/zh
Application granted granted Critical
Publication of CN107056312B publication Critical patent/CN107056312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/321Dolomites, i.e. mixed calcium magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Abstract

本发明涉及一种硅质可塑料及其制备方法。其技术方案是:在水浴条件下,将脲醛树脂、聚丙烯酰胺、羧甲基纤维素、聚乙二醇200和水搅拌,得结合剂。将石英岩、硅微粉、碳化硅和白云石混磨至粒度≤80μm,在20~30MPa条件下压制成型,在空气气氛和1300~1450℃条件下热处理,将所述热处理后的物料破碎,筛分,分别得到粒度为3~4mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度≤80μm的D物料;再将所述粒度不同的四种物料和氮化硅微粉混合,制得混合均质料。向所述混合均质料中加入所述结合剂,混合均匀,制得硅质可塑料。本发明具有成本低廉和工艺简单的特点;所制备的硅质可塑料的硬化时间长、体积密度大和强度高。

Description

一种硅质可塑料及其制备方法
技术领域
本发明属于可塑料技术领域。具体涉及一种硅质可塑料及其制备方法。
背景技术
可塑料是将粒状和粉状物料按一定比例配制,并引入结合剂而制备的一类不定形耐火材料,其主要特性为长时间内保持较高的可塑性。可塑料根据硬化方式可分为气硬性和热硬性两类,根据骨料材质不同可分为硅质、镁质、黏土质和高铝质等。
“一种坚甲可塑料及其制备方法”(CN201010158430.8)专利技术,公开了一种干熄焦炉用坚甲可塑料,主要以SiC、莫来石和含硅质微粉(小于2200目)为原料,以磷酸铝和磷酸为结合剂,经混炼、挤料、切坯后包装,该技术的主要缺点在于磷酸盐或磷酸的硬化速度快,不能长期保存,降低了可塑料的可塑性。
“一种长保存期磷酸结合高铝质可塑料及制备方法”(CN201310004596.8)专利技术,该技术主要通过引入缓蚀剂改善磷酸结合剂的硬化速度,延长可塑料的硬化时间,但其主要缺点在于可塑料的强度等性能较差。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种成本低廉和工艺简单的硅质可塑料的制备方法;用该方法制备的硅质可塑料的硬化时间长、体积密度大和强度高。
为实现上述目的,本发明采用的技术方案的步骤是:
步骤一、按脲醛树脂∶聚丙烯酰胺∶羧甲基纤维素∶聚乙二醇200∶水的质量比为(0.3~0.35)∶(0.01~0.02)∶(0.01~0.03)∶(0.02~0.04)∶1,在35~40℃水浴条件下,将脲醛树脂、聚丙烯酰胺、羧甲基纤维素、聚乙二醇200和水置入容器中,搅拌5~8分钟,即得结合剂。
步骤二、按石英岩︰硅微粉︰碳化硅︰白云石的质量比为1︰(0.1~0.15)︰(0.02~0.05)︰(0.01~0.04)配料,在球磨机中混磨至粒度≤80μm,即得混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型的坯体置于马弗炉中,在空气气氛和1300~1450℃条件下热处理30~60分钟,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~4mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度≤80μm的D物料。
步骤五、将16~21wt%的所述A物料、20~25wt%的所述B物料、20~25wt%的所述C物料、32~37wt%的所述D物料和1~4wt%的氮化硅微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰所述结合剂的质量比为1︰(0.05~0.08),向所述混合均质料中加入所述结合剂,混合均匀,制得硅质可塑料。
所述脲醛树脂、聚丙烯酰胺、羧甲基纤维素和聚乙二醇200均为化学纯。
所述石英岩的主要化学成分是:SiO2含量为93~94wt%,CaO含量为0.5~1wt%,Fe2O3含量≤0.2wt%。
所述硅微粉的SiO2含量≥96wt%。
所述碳化硅的SiC含量≥99wt%。
所述白云石的主要化学成分是:CaCO3含量为50~52wt%,MgCO3含量为45~47wt%。
所述氮化硅微粉的Si3N4含量≥98wt%;氮化硅微粉的粒度为60~80μm。
由于采取上述技术方案,本发明与现有技术相比具有如下积极效果:
1、本发明所用原料来源丰富,成本低廉,在制备过程中无需特殊的处理技术与设备,工艺简单;
2、本发明通过“有机-无机”复合结合剂的包覆作用提升硅质可塑料的致密度,延长可硅质塑料的硬化时间,提高硅质可塑料的强度。
本发明制备的硅质可塑料经测定:硬化时间为9~12个月;120℃×6h热处理后体积密度为2.60~2.65g/cm3;120℃×6h热处理后冷态耐压强度为22~25MPa。
因此,本发明具有成本低廉和工艺简单的特点;所制备的硅质可塑料的硬化时间长、体积密度大和强度高。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式所涉及的物料统一描述如下,实施例中不再赘述:
所述脲醛树脂、聚丙烯酰胺、羧甲基纤维素和聚乙二醇200均为化学纯。
所述石英岩的主要化学成分是:SiO2含量为93~94wt%,CaO含量为0.5~1wt%,Fe2O3含量≤0.2wt%。
所述硅微粉的SiO2含量≥96wt%。
所述碳化硅的SiC含量≥99wt%。
所述白云石的主要化学成分是:CaCO3含量为50~52wt%,MgCO3含量为45~47wt%。
所述氮化硅微粉的Si3N4含量≥98wt%;氮化硅微粉的粒度为60~80μm。
实施例1
一种硅质可塑料及其制备方法。本实施例所述制备方法的具体步骤是:
步骤一、按脲醛树脂∶聚丙烯酰胺∶羧甲基纤维素∶聚乙二醇200∶水的质量比为(0.3~0.32)∶(0.01~0.02)∶(0.01~0.02)∶(0.02~0.03)∶1,在35~40℃水浴条件下,将脲醛树脂、聚丙烯酰胺、羧甲基纤维素、聚乙二醇200和水置入容器中,搅拌5~8分钟,即得结合剂。
步骤二、按石英岩︰硅微粉︰碳化硅︰白云石的质量比为1︰(0.1~0.12)︰(0.02~0.04)︰(0.01~0.03)配料,在球磨机中混磨至粒度≤80μm,即得混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型的坯体置于马弗炉中,在空气气氛和1300~1400℃条件下热处理30~60分钟,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~4mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度≤80μm的D物料。
步骤五、将19~21wt%的所述A物料、23~25wt%的所述B物料、20~22wt%的所述C物料、32~34wt%的所述D物料和1~3wt%的氮化硅微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰所述结合剂的质量比为1︰(0.05~0.07),向所述混合均质料中加入所述结合剂,混合均匀,制得硅质可塑料。
本实施例制备的硅质可塑料经测定:硬化时间为9~11个月;120℃×6h热处理后体积密度为2.60~2.62g/cm3;120℃×6h热处理后冷态耐压强度为22~24MPa。
实施例2
一种硅质可塑料及其制备方法。本实施例所述制备方法的具体步骤是:
步骤一、按脲醛树脂∶聚丙烯酰胺∶羧甲基纤维素∶聚乙二醇200∶水的质量比为(0.31~0.33)∶(0.01~0.02)∶(0.01~0.02)∶(0.02~0.03)∶1,在35~40℃水浴条件下,将脲醛树脂、聚丙烯酰胺、羧甲基纤维素、聚乙二醇200和水置入容器中,搅拌5~8分钟,即得结合剂。
步骤二、按石英岩︰硅微粉︰碳化硅︰白云石的质量比为1︰(0.11~0.13)︰(0.02~0.04)︰(0.01~0.03)配料,在球磨机中混磨至粒度≤80μm,即得混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型的坯体置于马弗炉中,在空气气氛和1300~1400℃条件下热处理30~60分钟,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~4mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度≤80μm的D物料。
步骤五、将18~20wt%的所述A物料、22~24wt%的所述B物料、21~23wt%的所述C物料、33~35wt%的所述D物料和1~3wt%的氮化硅微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰所述结合剂的质量比为1︰(0.05~0.07),向所述混合均质料中加入所述结合剂,混合均匀,制得硅质可塑料。
本实施例制备的硅质可塑料经测定:硬化时间为9~11个月;120℃×6h热处理后体积密度为2.61~2.63g/cm3;120℃×6h热处理后冷态耐压强度为22~24MPa。
实施例3
一种硅质可塑料及其制备方法。本实施例所述制备方法的具体步骤是:
步骤一、按脲醛树脂∶聚丙烯酰胺∶羧甲基纤维素∶聚乙二醇200∶水的质量比为(0.32~0.34)∶(0.01~0.02)∶(0.02~0.03)∶(0.03~0.04)∶1,在35~40℃水浴条件下,将脲醛树脂、聚丙烯酰胺、羧甲基纤维素、聚乙二醇200和水置入容器中,搅拌5~8分钟,即得结合剂。
步骤二、按石英岩︰硅微粉︰碳化硅︰白云石的质量比为1︰(0.12~0.14)︰(0.03~0.05)︰(0.02~0.04)配料,在球磨机中混磨至粒度≤80μm,即得混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型的坯体置于马弗炉中,在空气气氛和1350~1450℃条件下热处理30~60分钟,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~4mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度≤80μm的D物料。
步骤五、将17~19wt%的所述A物料、21~23wt%的所述B物料、22~24wt%的所述C物料、34~36wt%的所述D物料和2~4wt%的氮化硅微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰所述结合剂的质量比为1︰(0.06~0.08),向所述混合均质料中加入所述结合剂,混合均匀,制得硅质可塑料。
本实施例制备的硅质可塑料经测定:硬化时间为10~12个月;120℃×6h热处理后体积密度为2.62~2.64g/cm3;120℃×6h热处理后冷态耐压强度为23~25MPa。
实施例4
一种硅质可塑料及其制备方法。本实施例所述制备方法的具体步骤是:
步骤一、按脲醛树脂∶聚丙烯酰胺∶羧甲基纤维素∶聚乙二醇200∶水的质量比为(0.33~0.35)∶(0.01~0.02)∶(0.02~0.03)∶(0.03~0.04)∶1,在35~40℃水浴条件下,将脲醛树脂、聚丙烯酰胺、羧甲基纤维素、聚乙二醇200和水置入容器中,搅拌5~8分钟,即得结合剂。
步骤二、按石英岩︰硅微粉︰碳化硅︰白云石的质量比为1︰(0.13~0.15)︰(0.03~0.05)︰(0.02~0.04)配料,在球磨机中混磨至粒度≤80μm,即得混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型的坯体置于马弗炉中,在空气气氛和1350~1450℃条件下热处理30~60分钟,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~4mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度≤80μm的D物料。
步骤五、将16~18wt%的所述A物料、20~22wt%的所述B物料、23~25wt%的所述C物料、35~37wt%的所述D物料和2~4wt%的氮化硅微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰所述结合剂的质量比为1︰(0.06~0.08),向所述混合均质料中加入所述结合剂,混合均匀,制得硅质可塑料。
本实施例制备的硅质可塑料经测定:硬化时间为10~12个月;120℃×6h热处理后体积密度为2.63~2.65g/cm3;120℃×6h热处理后冷态耐压强度为23~25MPa。
本具体实施方式与现有技术相比具有如下积极效果:
1、本具体实施方式所用原料来源丰富,成本低廉,在制备过程中无需特殊的处理技术与设备,工艺简单;
2、本具体实施方式通过“有机-无机”复合结合剂的包覆作用提升硅质可塑料的致密度,延长可硅质塑料的硬化时间,提高硅质可塑料的强度。
本具体实施方式制备的硅质可塑料经测定:硬化时间为9~12个月;120℃×6h热处理后体积密度为2.60~2.65g/cm3;120℃×6h热处理后冷态耐压强度为22~25MPa。
因此,本具体实施方式具有成本低廉和工艺简单的特点;所制备的硅质可塑料的硬化时间长、体积密度大和强度高。

Claims (8)

1.一种硅质可塑料的制备方法,其特征在于所述制备方法的步骤是:
步骤一、按脲醛树脂∶聚丙烯酰胺∶羧甲基纤维素∶聚乙二醇200∶水的质量比为(0.3~0.35)∶(0.01~0.02)∶(0.01~0.03)∶(0.02~0.04)∶1,在35~40℃水浴条件下,将脲醛树脂、聚丙烯酰胺、羧甲基纤维素、聚乙二醇200和水置入容器中,搅拌5~8分钟,即得结合剂;
步骤二、按石英岩︰硅微粉︰碳化硅︰白云石的质量比为1︰(0.1~0.15)︰(0.02~0.05)︰(0.01~0.04)配料,在球磨机中混磨至粒度≤80μm,即得混合料;
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型的坯体置于马弗炉中,在空气气氛和1300~1450℃条件下热处理30~60分钟,随炉冷却,得到热处理后的物料;
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~4mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度≤80μm的D物料;
步骤五、将16~21wt%的所述A物料、20~25wt%的所述B物料、20~25wt%的所述C物料、32~37wt%的所述D物料和1~4wt%的氮化硅微粉加入搅拌机中,混合5~10分钟,制得混合均质料;
步骤六、按所述混合均质料︰所述结合剂的质量比为1︰(0.05~0.08),向所述混合均质料中加入所述结合剂,混合均匀,制得硅质可塑料。
2.根据权利要求1所述的硅质可塑料的制备方法,其特征在于所述脲醛树脂、聚丙烯酰胺、羧甲基纤维素和聚乙二醇200均为化学纯。
3.根据权利要求1所述的硅质可塑料的制备方法,其特征在于所述石英岩的主要化学成分是:SiO2含量为93~94wt%,CaO含量为0.5~1wt%,Fe2O3含量≤0.2wt%。
4.根据权利要求1所述的硅质可塑料的制备方法,其特征在于所述硅微粉的SiO2含量≥96wt%。
5.根据权利要求1所述的硅质可塑料的制备方法,其特征在于所述碳化硅的SiC含量≥99wt%。
6.根据权利要求1所述的硅质可塑料的制备方法,其特征在于所述白云石的主要化学成分是:CaCO3含量为50~52wt%,MgCO3含量为45~47wt%。
7.根据权利要求1所述的硅质可塑料的制备方法,其特征在于所述氮化硅微粉的Si3N4含量≥98wt%;氮化硅微粉的粒度为60~80μm。
8.一种硅质可塑料,其特征在于所述硅质可塑料是根据权利要求1~7项中任一项所述的硅质可塑料的制备方法所制备的硅质可塑料。
CN201710414271.5A 2017-06-05 2017-06-05 一种硅质可塑料及其制备方法 Active CN107056312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710414271.5A CN107056312B (zh) 2017-06-05 2017-06-05 一种硅质可塑料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710414271.5A CN107056312B (zh) 2017-06-05 2017-06-05 一种硅质可塑料及其制备方法

Publications (2)

Publication Number Publication Date
CN107056312A true CN107056312A (zh) 2017-08-18
CN107056312B CN107056312B (zh) 2019-10-11

Family

ID=59616715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710414271.5A Active CN107056312B (zh) 2017-06-05 2017-06-05 一种硅质可塑料及其制备方法

Country Status (1)

Country Link
CN (1) CN107056312B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090110939A1 (en) * 2005-11-16 2009-04-30 E. I. Du Pont De Nemours And Company Lead free ltcc tape composition
CN102126866A (zh) * 2011-04-06 2011-07-20 瑞泰科技股份有限公司 一种高纯硅质耐火材料及其生产工艺
CN104163637A (zh) * 2013-05-17 2014-11-26 登封市宏源耐火材料有限公司 一种用于高炉铁水沟的碳复合耐火材料及其制备方法
CN104788121A (zh) * 2015-04-20 2015-07-22 武汉科技大学 一种莫来石质轻质耐火材料及其制备方法
CN104944985A (zh) * 2015-06-23 2015-09-30 武汉科技大学 高强度低导热系数陶瓷纤维隔热材料及其制备方法
CN105314999A (zh) * 2014-07-29 2016-02-10 金承黎 触变性胶体为模板剂的纳米多孔高温隔热材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090110939A1 (en) * 2005-11-16 2009-04-30 E. I. Du Pont De Nemours And Company Lead free ltcc tape composition
CN102126866A (zh) * 2011-04-06 2011-07-20 瑞泰科技股份有限公司 一种高纯硅质耐火材料及其生产工艺
CN104163637A (zh) * 2013-05-17 2014-11-26 登封市宏源耐火材料有限公司 一种用于高炉铁水沟的碳复合耐火材料及其制备方法
CN105314999A (zh) * 2014-07-29 2016-02-10 金承黎 触变性胶体为模板剂的纳米多孔高温隔热材料及制备方法
CN104788121A (zh) * 2015-04-20 2015-07-22 武汉科技大学 一种莫来石质轻质耐火材料及其制备方法
CN104944985A (zh) * 2015-06-23 2015-09-30 武汉科技大学 高强度低导热系数陶瓷纤维隔热材料及其制备方法

Also Published As

Publication number Publication date
CN107056312B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN108484130A (zh) 一种纳米碳增强的低碳镁碳砖及其制备方法
CN101462886A (zh) 一种Al2O3-MgO系耐火材料浇注料及其制备方法
CN102603274A (zh) 一种铁沟浇注料及其制备方法
CN107188547A (zh) 一种高铝质可塑料及其制备方法
CN106588059A (zh) 一种石灰回转窑用预制件及其制备方法
JP2017222522A (ja) 六方晶窒化ホウ素粉末及びその製造方法
CN106518043A (zh) 低成本铝钙硅质锡槽底砖的制备方法
CN107117951A (zh) 一种高强弥散型透气砖及其制备方法
CN107056312A (zh) 一种硅质可塑料及其制备方法
CN107954710A (zh) 一种碳化硅结合钛铝酸钙复相耐火材料及其制备方法
Ismail et al. Studies on γ-irradiated polymer–nano calcined clay blended cement mortar composites
CN105218113A (zh) 一种硅溶胶结合刚玉质浇注料及其制备方法
CN106396704A (zh) 一种富镁不定形耐火材料及其制备方法
CN104310970A (zh) 一种提高致密高铝陶瓷材料抗热震性的方法及其制得的制品
CN106866156A (zh) 一种低介电常数α‑Si3N4多孔陶瓷的制备方法
CN113896442B (zh) 一种镁基胶凝材料及其制备方法和应用
CN108658611A (zh) 一种堇青石结合六铝酸钙匣钵及其制备方法
CN105060901B (zh) 一种轻量刚玉耐火骨料及其制备方法
CN107056254B (zh) 一种镁质可塑料及其制备方法
Aziz et al. Effect of air blast furnace slag and γ-alumina content on dielectric properties and physical properties of porcelain insulators
CN107117975A (zh) 一种硅酸铝轻质喷补料及其制备方法
CN116425564B (zh) 一种氧化铝耐火材料及其制备方法
KR101315631B1 (ko) 리튬용액 침투에 의한 las계 내열 세라믹스의 제조방법
TWI639574B (zh) 廢觸媒咖啡磚及其製造方法
CN101700975B (zh) 一种用于氧化锌电阻制造的组合产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant