CN107052572A - 用于三维物体制造的激光光斑校准方法及校准系统 - Google Patents

用于三维物体制造的激光光斑校准方法及校准系统 Download PDF

Info

Publication number
CN107052572A
CN107052572A CN201710165755.0A CN201710165755A CN107052572A CN 107052572 A CN107052572 A CN 107052572A CN 201710165755 A CN201710165755 A CN 201710165755A CN 107052572 A CN107052572 A CN 107052572A
Authority
CN
China
Prior art keywords
plane
laser
sintering
focusing
divergent mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710165755.0A
Other languages
English (en)
Other versions
CN107052572B (zh
Inventor
尹志勇
鲍光
周智阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Farsoon High Tech Co Ltd
Original Assignee
Hunan Farsoon High Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Farsoon High Tech Co Ltd filed Critical Hunan Farsoon High Tech Co Ltd
Priority to CN201710165755.0A priority Critical patent/CN107052572B/zh
Publication of CN107052572A publication Critical patent/CN107052572A/zh
Application granted granted Critical
Publication of CN107052572B publication Critical patent/CN107052572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于三维物体制造的激光光斑校准方法及校准系统,其中方法包括:计算理论聚焦校准表;调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;调整X镜片、Y镜片使激光垂直打在烧结平面中心;计算要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1;计算要将激光聚焦在烧结平面中心之外的所选位置发散镜需变化的位置值δ2;获取新校准表。本发明采用动态聚焦的方式,避免了畸形带的光斑不均匀性,而且,通过采用激光在测试件表面作用的线宽来替代激光的光斑大小,而均匀测试件表面激光扫描的线宽的波动很小,从而避免了光斑分析仪的敏感性,减小了测量带来的误差,进而使得校准结果更精确。

Description

用于三维物体制造的激光光斑校准方法及校准系统
技术领域
本发明属于增材制造技术领域,具体涉及一种用于三维物体制造的激光光斑校准方法及校准系统。
背景技术
增材制造技术(Additive Manufacturing,简称AM)是一项具有数字化制造、高度柔性和适应性、直接CAD模型驱动、快速、材料类型丰富多样等鲜明特点的先进制造技术,由于其不受零件形状复杂程度的限制,不需要任何的工装模具,因此应用范围非常广。选区激光熔融技术(Selective Laser Melting,简称SLM)是近年来发展迅速的增材制造技术之一,其以粉末材料为原料,采用激光对三维实体的截面进行逐层扫描完成原型制造,不受零件形状复杂程度的限制,不需要任何的工装模具,应用范围广。选择性激光熔融(也称SLM)工艺的基本过程是:送粉装置将一定量粉末送至工作台面,铺粉装置将一层粉末材料平铺在成型缸底板或已成型零件的上表面,激光振镜系统控制激光以一个近似不变的光斑大小和光束能量按照该层的截面轮廓对实心部分粉末层进行扫描,使粉末熔化并与下面已成型的部分实现粘接;当一层截面烧结完后,工作台下降一个层的厚度,铺粉装置又在上面铺上一层均匀密实的粉末,进行新一层截面的扫描烧结,经若干层扫描叠加,直至完成整个原型制造。
为了保证激光在扫描工作平面时光斑聚焦,即光斑大小不变,现有技术一般采用以下两种手段实现:一种实现方法是通过F-θ镜 ,但此方法限制了烧结的成型面积,此外,由于此方式会产生畸变,从而会导致烧结平面中心光斑最小,而越到边界光斑越大,且该畸变不可调节。对于中等幅面的工业级的SLM设备,采用此方法仅可烧结一些对激光功率密度敏感度低的材料(如不锈钢),但对于铝合金等一些敏感度高的材料就不适用;另一种实现方法是通过动态聚焦的方式,这种方法可以使激光在整个烧结平面的任意位置都是聚焦的,但是需要采用光斑校准。传统的光斑校准方法是通过光斑分析仪,测量几个不同的发散镜位置下的光斑随光程的变化,再通过拟合做差值,找到不同光程下激光聚焦时发散镜的位置。而烧结平面上不同的位置均对应一个光程,于是找到烧结平面的不同位置对应发散镜位置的关系。但是激光熔融设备的激光功率一般较高,而光斑分析仪属于精密仪器,容易受到干扰,测量波动幅度大,导致测量结果不准确。
发明内容
针对现有技术存在的上述技术问题,本发明提供了一种校准更精确的用于三维物体制造的激光光斑校准方法及校准系统。
为解决上述技术问题,本发明提供了一种用于三维物体制造的激光光斑校准方法,包括以下步骤:
根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算得到理论聚焦校准表,以使设备理论上通过该理论聚焦校准表控制发散镜的位置实现激光聚焦在烧结平面任一位置;
调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;
调整X镜片、Y镜片使激光垂直打在烧结平面中心;
在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近,以及中心之外的位置进行线扫描;通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,得到要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1;通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面中心之外的所选位置发散镜需变化的位置值δ2
将理论聚焦校准表进行线性变换,以使理论聚焦校准表中的中心的位置值移动δ1,以及中心之外所选位置的位置值移动δ2,线性变换后得到的校准表即为新校准表。
作为本发明的进一步优选方案,所述理论聚焦校准表通过以下方式得到:
根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算出当聚焦镜的位置一定时,激光聚焦在烧结平面任一位置时发散镜所对应的位置,并在烧结平面均匀取一个N*N的点位置,将每个点位置对应的发散镜位置形成一个N*N的方阵,该N*N的方阵即为理论聚焦校准表。
作为本发明的进一步优选方案,所述调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦具体包括:
将发散镜的位置固定,通过移动聚焦镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将聚焦镜固定;或者
将聚焦镜的位置固定,通过移动发散镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将发散镜固定。
作为本发明的进一步优选方案,所述激光聚焦的平面为扫描线最窄的平面或者扫描线最亮的平面。
作为本发明的进一步优选方案,所述δ2通过以下方式得到:
通过对所有平面的同一角落附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离;
根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面中心之外的同一角落发散镜需要变化的位置值δ2
作为本发明的进一步优选方案,所述平行于烧结平面的截面通过以下方式获取:
将测试件置于成型缸底板上,通过移动活塞带动测试件进行上或下移动,使测试件的上表面与烧结平面之间存在一定的距离,该测试件的上表面即为平行于烧结平面的截面。
本发明还提供了一种用于三维物体制造的激光光斑校准系统,包括:
计算理论聚焦校准表模块,用于根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算得到理论聚焦校准表,以使设备理论上通过该理论聚焦校准表控制发散镜的位置实现激光聚焦在烧结平面任一位置;
第一调整模块,用于调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;
第二调整模块,用于调整X镜片、Y镜片使激光垂直打在烧结平面中心;
获取偏移参数模块,用于在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近,以及中心之外的位置进行线扫描;通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,得到要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1;通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面中心之外的所选位置发散镜需变化的位置值δ2;以及
获取新校准表模块,用于将理论聚焦校准表进行线性变换,以使理论聚焦校准表中的中心的位置值移动δ1,以及中心之外所选位置的位置值移动δ2,线性变换后得到的校准表即为新校准表。
作为本发明的进一步优选方案,所述计算理论聚焦校准表模块包括:
计算单元,用于根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算出当聚焦镜的位置一定时,激光聚焦在烧结平面任一位置时发散镜所对应的位置;以及
方阵选取单元,用于在烧结平面均匀取一个N*N的点位置,将每个点位置对应的发散镜位置形成一个N*N的方阵,该N*N的方阵即为理论聚焦校准表。
作为本发明的进一步优选方案,所述获取偏移参数模块中,激光聚焦的平面为扫描线最窄的平面或者扫描线最亮的平面。
作为本发明的进一步优选方案,所述方获取偏移参数模块中,用于在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近以及同一角落附近进行线扫描。
本发明的用于三维物体制造的激光光斑校准方法及校准系统具有以下有益效果:
1、采用动态聚焦的方式,避免了畸形带的光斑不均匀性。用理论联系实际的方法,假定一个特殊的聚焦镜和发散镜位置使激光聚焦在烧结平面中心,推导出在此特定条件下的校准表。再根据实际的测量,对校准表进行比例缩放和平移,这样使得不改变理论关系的前提下得到新校准表,从而设备便可通过该新校准表控制发散镜的位置以实现激光聚焦在烧结平面,即保持光斑不变;
2、采用激光在测试件表面作用的线宽来替代激光的光斑大小,而均匀测试件表面激光扫描的线宽的波动很小,从而避免了光斑分析仪的敏感性,减小了测量带来的误差,使得校准结果更精确。
附图说明
图1为本发明用于三维物体制造的激光光斑校准方法提供的一优选实施例的方法流程图;
图2为本发明用于三维物体制造的激光光斑校准系统提供的一实施例的结构框图。
具体实施方式
为了让本领域的技术人员更好地理解并实现本发明的技术方案,以下将结合说明书附图和具体实施例做进一步详细说明。
本发明提供的用于三维物体制造的激光光斑校准方法,包括以下步骤:
步骤一、根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算得到理论聚焦校准表,以使设备理论上通过该理论聚焦校准表控制发散镜的位置实现激光聚焦在烧结平面任一位置;
该步骤中,所述理论聚焦校准表可由技术人员根据其实现目的(控制发散镜的位置实现激光聚焦在烧结平面任一位置)以及实验经验计算得到,在本发明中对此不作任何限制。作为本发明的一种具体实现方式,其可通过以下方式得到:
根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算出当聚焦镜的位置一定时,激光聚焦在烧结平面任一位置时发散镜所对应的位置,并在烧结平面均匀取一个N*N的点位置,将每个点位置对应的发散镜位置形成一个N*N的方阵,该N*N的方阵即为理论聚焦校准表。例如,可获取65*65的方阵作为理论聚焦校准表。
步骤二、聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;
该步骤具体通过以下方式实现:
将发散镜的位置固定,通过移动聚焦镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将聚焦镜固定;或者
将聚焦镜的位置固定,通过移动发散镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将发散镜固定。
在此需说明的是,除了上述两种实现方式,具体实施中,还可通过将聚焦镜和发散镜相互移动来保持激光能量不变,并观察烧结平面中心的激光最亮时将聚焦镜固定,从而实现激光在烧结平面中心基本聚焦的目的。
步骤三、调整X镜片、Y镜片使激光垂直打在烧结平面中心;
步骤四、在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近,以及中心之外的位置进行线扫描;通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,得到要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1;通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面中心之外的所选位置发散镜需变化的位置值δ2;该步骤中,所有平面包括烧结平面和所有截面,且所有平面是指在该平面内振镜摆动所能扫描的最大范围所形成的区域。
可以理解的是,该步骤对于δ1和δ2的获取没有先后顺序限制,也可同时限制。另外,该步骤中,在烧结平面的上下分别获取至少一个平行于烧结平面的截面,如可向上获取至少一个平行于烧结平面的截面,向下获取至少一个平行于烧结平面的截面,在此需说明的是,向上和向下获取的截面数量可以不相等,以及其与烧结平面的距离可以不相等。具体实施中,所述平行于烧结平面的截面通过以下方式获取:
将测试件置于成型缸底板上,通过移动活塞带动测试件进行上或下移动,使测试件的上表面与烧结平面之间存在一定的距离,该测试件的上表面即为平行于烧结平面的截面。本文中的测试件为激光能在上面打出印迹的物体,例如,该物体可为发黑的铝片,当然其还可以为其它物件,在此不做具体阐述。
具体实施中,相同激光是指具有相同激光功率、相同扫描速度的激光,当然,根据设计需要,其还可以为具有其它相同参数,在此不做一一例举。
优选地,上述通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面中,其中心之外的同一位置或附近优选采用烧结平面的同一角落位置。
在此需说明的是,上述通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,具体地,可认为扫描线最窄的平面或者扫描线最亮的平面为激光聚焦平面,当然,设计人员还可以通过表面特征的其它参数来判断其是否为激光聚焦平面,在此不做一一例举。另外,可通过带有测量功能的仪器或设备(如可带放大功能)测量物体上表面处于不同平面时的扫描线的线宽从而找出扫描线最窄的平面。
步骤五、将理论聚焦校准表进行线性变换,以使理论聚焦校准表中的中心的位置值移动δ1,以及中心之外所选位置的位置值移动δ2,线性变换后得到的校准表即为新校准表。
在此需说明的是,该步骤可以通过线性变换先使中心聚焦,再通过线性变换使中心之外位置聚焦;也可以通过线性变换先将中心之外位置聚焦,再将中心聚焦;当然,也可以通过线性变换将中心和中心之外位置同时聚焦。
本发明通过采用上述技术方案获得新校准表后,设备便可通过该新校准表控制发散镜的位置以实现激光聚焦在烧结平面任一位置,从而实现了激光光斑校准目的。
图1为本发明用于三维物体制造的激光光斑校准方法提供的一优选实施例的方法流程图,如图1所示,该方法包括以下步骤:
步骤11、计算理论聚焦校准表:根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算出当聚焦镜的位置一定时,激光聚焦在烧结平面任一位置时发散镜所对应的位置,并在烧结平面均匀取一个N*N的点位置,将每个点位置对应的发散镜位置形成一个N*N的方阵,该N*N的方阵即为理论聚焦校准表。例如,可获取65*65的方阵作为理论聚焦校准表;
步骤12、调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;
步骤13、调整X镜片、Y镜片使激光垂直打在烧结平面中心;
步骤14、计算要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1:在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近进行线扫描,通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,得到要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1
步骤15、计算要将激光聚焦在烧结平面的同一角落发散镜需变化的位置值δ2:在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的同一角落附近进行线扫描,通过对所有平面的同一角落附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面所选的同一角落发散镜需变化的位置值δ2
步骤16、获取新校准表:将理论聚焦校准表进行线性变换,以使理论聚焦校准表中的中心的位置值移动δ1,以及所选角落的位置值移动δ2,线性变换后得到的校准表即为新校准表。
如图2所示,本发明还提供了一种用于三维物体制造的激光光斑校准系统,该系统包括:
计算理论聚焦校准表模块21,用于根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算得到理论聚焦校准表,以使设备理论上通过该理论聚焦校准表控制发散镜的位置实现激光聚焦在烧结平面任一位置;
第一调整模块22,用于调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;
第二调整模块23,用于调整X镜片、Y镜片使激光垂直打在烧结平面中心;
获取偏移参数模块24,用于在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近,以及中心之外的位置进行线扫描;通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,得到要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1;通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面中心之外的所选位置发散镜需变化的位置值δ2;以及
获取新校准表模块25,用于将理论聚焦校准表进行线性变换,以使理论聚焦校准表中的中心的位置值移动δ1,以及中心之外所选位置的位置值移动δ2,线性变换后得到的校准表即为新校准表。
具体实施中,所述计算理论聚焦校准表模块21可由技术人员根据其实现目的(控制发散镜的位置实现激光聚焦在烧结平面任一位置)以及实验经验计算得到,在本发明中对此不作任何限制。作为本发明的一种具体实现方式,其可通过以下方式得到:
计算单元,用于根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算出当聚焦镜的位置一定时,激光聚焦在烧结平面任一位置时发散镜所对应的位置;以及
方阵选取单元,用于在烧结平面均匀取一个N*N的点位置,将每个点位置对应的发散镜位置形成一个N*N的方阵,该N*N的方阵即为理论聚焦校准表。
上述第一调整模块22 具体可通过以下方式实现:
将发散镜的位置固定,通过移动聚焦镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将聚焦镜固定;或者
将聚焦镜的位置固定,通过移动发散镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将发散镜固定。
在此需说明的是,除了上述两种实现方式,具体实施中,还可通过将聚焦镜和发散镜相互移动来保持激光能量不变,并观察烧结平面中心的激光最亮时将聚焦镜固定,从而实现激光在烧结平面中心基本聚焦的目的。
所述获取偏移参数模块24中,在烧结平面的上下分别获取至少一个平行于烧结平面的截面,其中,向上和向下获取的截面数量可以不相等,以及其与烧结平面的距离可以不相等。具体实施中,所述平行于烧结平面的截面通过以下方式获取:
将测试件置于成型缸底板上,通过移动活塞带动测试件进行上或下移动,使测试件的上表面与烧结平面之间存在一定的距离,该测试件的上表面即为平行于烧结平面的截面。可以理解的是,烧结平面即测试件的上表面位于烧结区域位置。
具体实施中,相同激光是指具有相同激光功率、相同扫描速度的激光,当然,根据设计需要,其还可以为具有其它相同参数,在此不做一一例举。
优选地,上述通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面中,其中心之外的同一位置或附近优选采用烧结平面的同一角落。
在此需说明的是,上述通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,具体地,可认为扫描线最窄的平面或者扫描线最亮的平面为激光聚焦平面,当然,设计人员还可以通过表面特征的其它参数来判断其是否为激光聚焦平面,在此不做一一例举。另外,可通过带有测量功能的仪器或设备(如可带放大功能)测量物体上表面处于不同平面时的扫描线的线宽从而找出扫描线最窄的平面。
以上实施例仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均应属于本发明的保护范围。应当指出,在不脱离本发明原理前提下的若干修改和修饰,应视为本发明的保护范围。

Claims (10)

1.一种用于三维物体制造的激光光斑校准方法,其特征在于,包括以下步骤:
根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算得到理论聚焦校准表,以使设备理论上通过该理论聚焦校准表控制发散镜的位置实现激光聚焦在烧结平面任一位置;
调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;
调整X镜片、Y镜片使激光垂直打在烧结平面中心;
在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近,以及中心之外的位置进行线扫描;通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,得到要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1;通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面中心之外的所选位置发散镜需变化的位置值δ2
将理论聚焦校准表进行线性变换,以使理论聚焦校准表中的中心的位置值移动δ1,以及中心之外所选位置的位置值移动δ2,线性变换后得到的校准表即为新校准表。
2.根据权利要求1所述的用于三维物体制造的激光光斑校准方法,其特征在于,所述理论聚焦校准表通过以下方式得到:
根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算出当聚焦镜的位置一定时,激光聚焦在烧结平面任一位置时发散镜所对应的位置,并在烧结平面均匀取一个N*N的点位置,将每个点位置对应的发散镜位置形成一个N*N的方阵,该N*N的方阵即为理论聚焦校准表。
3.根据权利要求2所述的用于三维物体制造的激光光斑校准方法,其特征在于,所述调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦具体包括:
将发散镜的位置固定,通过移动聚焦镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将聚焦镜固定;或者
将聚焦镜的位置固定,通过移动发散镜的位置,保持激光能量不变,观察烧结平面中心的激光最亮时将发散镜固定。
4.根据权利要求3所述的用于三维物体制造的激光光斑校准方法,其特征在于,所述激光聚焦的平面为扫描线最窄的平面或者扫描线最亮的平面。
5.根据权利要求1至4任一项所述的用于三维物体制造的激光光斑校准方法,其特征在于,所述δ2通过以下方式得到:
通过对所有平面的同一角落附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离;
根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面的同一角落发散镜需要变化的位置值δ2
6.根据权利要求5所述的用于三维物体制造的激光光斑校准方法,其特征在于,所述平行于烧结平面的截面通过以下方式获取:
将测试件置于成型缸底板上,通过移动活塞带动测试件进行上或下移动,使测试件的上表面与烧结平面之间存在一定的距离,该测试件的上表面即为平行于烧结平面的截面。
7.一种用于三维物体制造的激光光斑校准系统,其特征在于,包括:
计算理论聚焦校准表模块,用于根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算得到理论聚焦校准表,以使设备理论上通过该理论聚焦校准表控制发散镜的位置实现激光聚焦在烧结平面任一位置;
第一调整模块,用于调整聚焦镜和发散镜的位置,使激光在烧结平面中心基本聚焦;
第二调整模块,用于调整X镜片、Y镜片使激光垂直打在烧结平面中心;
获取偏移参数模块,用于在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近,以及中心之外的位置进行线扫描;通过对所有平面的中心位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,得到要将激光聚焦在烧结平面中心发散镜需变化的位置值δ1;通过对所有平面的中心之外的同一位置或附近扫描线的表面特征分析找到激光聚焦的平面,并得到该平面与烧结平面之间的距离,且根据光学系统中发散镜移动距离与聚焦光程变化距离间的关系,得到要将激光聚焦在烧结平面中心之外的所选位置发散镜需变化的位置值δ2;以及
获取新校准表模块,用于将理论聚焦校准表进行线性变换,以使理论聚焦校准表中的中心的位置值移动δ1,以及中心之外所选位置的位置值移动δ2,线性变换后得到的校准表即为新校准表。
8.根据权利要求7所述的用于三维物体制造的激光光斑校准系统,其特征在于,所述计算理论聚焦校准表模块包括:
计算单元,用于根据光学系统中聚焦镜、发散镜间的距离与聚焦光程之间的关系,计算出当聚焦镜的位置一定时,激光聚焦在烧结平面任一位置时发散镜所对应的位置;以及
方阵选取单元,用于在烧结平面均匀取一个N*N的点位置,将每个点位置对应的发散镜位置形成一个N*N的方阵,该N*N的方阵即为理论聚焦校准表。
9.根据权利要求7或8所述的用于三维物体制造的激光光斑校准系统,其特征在于,所述获取偏移参数模块中,激光聚焦的平面为扫描线最窄的平面或者扫描线最亮的平面。
10.根据权利要求9所述的用于三维物体制造的激光光斑校准系统,其特征在于,所述方获取偏移参数模块中,用于在烧结平面的上下分别获取至少一个平行于烧结平面的截面,采用相同激光在烧结平面和所有截面的中心位置或附近以及同一角落附近进行线扫描。
CN201710165755.0A 2017-03-20 2017-03-20 用于三维物体制造的激光光斑校准方法及校准系统 Active CN107052572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710165755.0A CN107052572B (zh) 2017-03-20 2017-03-20 用于三维物体制造的激光光斑校准方法及校准系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710165755.0A CN107052572B (zh) 2017-03-20 2017-03-20 用于三维物体制造的激光光斑校准方法及校准系统

Publications (2)

Publication Number Publication Date
CN107052572A true CN107052572A (zh) 2017-08-18
CN107052572B CN107052572B (zh) 2018-09-18

Family

ID=59620141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710165755.0A Active CN107052572B (zh) 2017-03-20 2017-03-20 用于三维物体制造的激光光斑校准方法及校准系统

Country Status (1)

Country Link
CN (1) CN107052572B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600800A1 (fr) * 1992-12-04 1994-06-08 Commissariat A L'energie Atomique Procédé et dispositif d'acquisition d'une image à trois dimensions d'un petit objet par palpage lumineux et moyen d'étalonnage pour la mise en oeuvre d'une telle acquisition
CN1722995A (zh) * 2002-10-11 2006-01-18 英特拉雷斯公司 用于确定物体表面相对于激光束的位置和对准的方法和系统
JP2011215120A (ja) * 2010-03-31 2011-10-27 Nexco-Engineering Hokkaido Co Ltd 浮遊する粒子の位置測定法
CN203390388U (zh) * 2013-08-09 2014-01-15 陕西恒通智能机器有限公司 激光焦点精密定位装置
CN106092931A (zh) * 2016-06-14 2016-11-09 中国科学院理化技术研究所 一种可成像扫描的激光闪光光解仪装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600800A1 (fr) * 1992-12-04 1994-06-08 Commissariat A L'energie Atomique Procédé et dispositif d'acquisition d'une image à trois dimensions d'un petit objet par palpage lumineux et moyen d'étalonnage pour la mise en oeuvre d'une telle acquisition
CN1722995A (zh) * 2002-10-11 2006-01-18 英特拉雷斯公司 用于确定物体表面相对于激光束的位置和对准的方法和系统
JP2011215120A (ja) * 2010-03-31 2011-10-27 Nexco-Engineering Hokkaido Co Ltd 浮遊する粒子の位置測定法
CN203390388U (zh) * 2013-08-09 2014-01-15 陕西恒通智能机器有限公司 激光焦点精密定位装置
CN106092931A (zh) * 2016-06-14 2016-11-09 中国科学院理化技术研究所 一种可成像扫描的激光闪光光解仪装置

Also Published As

Publication number Publication date
CN107052572B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
US11642725B2 (en) Method for calibrating laser additive manufacturing process
US20190047228A1 (en) Calibration of additive manufacturing apparatus
CN106182779B (zh) 一种3d打印机的焦平面校正装置及其校正方法
US10596803B2 (en) Calibration systems for calibrating recoater devices of additive manufacturing systems and related program products
CN101733561B (zh) 激光修调薄膜电阻中快速精确调整焦面的方法
CN105716655B (zh) 高能束增材制造中温度与变形实时同步测量装置及方法
CN102962452B (zh) 基于红外测温图像的金属激光沉积制造扫描路径规划方法
JP2019519760A (ja) アディティブ製造装置内の複数のスキャナの較正方法
CN105479751B (zh) 一种三维生物打印水凝胶支架的优化控制系统与方法
TWI668523B (zh) 一種用於光蝕刻機的垂直方向控制方法
US11338522B2 (en) Method for calibrating an apparatus for producing an object by means of additive manufacturing
CN105571505A (zh) 一种增材制造过程中成形件变形的实时测量方法及装置
CN103252576B (zh) 激光加工装置及激光加工方法
US20200009849A1 (en) Methods for Fine Feature Detail for Additive Manufacturing
CN109158600A (zh) 同步送粉激光增材制造光斑与粉斑相对位置自动匹配的装置及方法
CN111216364A (zh) 用于校准用于通过增材制造来生产物体的设备的方法以及用于该方法的设备
CN113798511B (zh) 一种基于slm增材制造技术的双激光搭接标定方法
CN109719726A (zh) 一种机械臂手眼标定装置及方法
CN114211003A (zh) 一种用于增材制造设备的多激光系统搭接校正方法
US20210039323A1 (en) Verification of additive manufacturing processes
CN107052572B (zh) 用于三维物体制造的激光光斑校准方法及校准系统
CN113319424B (zh) 一种三维形貌精确控制加工系统及加工方法
CN108562226A (zh) 坐标系建立装置及方法
CN206592862U (zh) 自动光学白光扫描仪多角度可调式上光源
Zhong et al. High-accuracy calibration for multi-laser powder bed fusion via in situ detection and parameter identification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: No. 181, Linyu Road, national high tech Industrial Development Zone, Changsha City, Hunan Province, 410205

Patentee after: Hunan Huashu High Tech Co.,Ltd.

Address before: No. 181, Linyu Road, national high tech Industrial Development Zone, Changsha City, Hunan Province, 410205

Patentee before: HUNAN FARSOON HIGH-TECH Co.,Ltd.

CP01 Change in the name or title of a patent holder