CN1070510A - 磁保持式电磁铁及控制电路 - Google Patents

磁保持式电磁铁及控制电路 Download PDF

Info

Publication number
CN1070510A
CN1070510A CN 91108305 CN91108305A CN1070510A CN 1070510 A CN1070510 A CN 1070510A CN 91108305 CN91108305 CN 91108305 CN 91108305 A CN91108305 A CN 91108305A CN 1070510 A CN1070510 A CN 1070510A
Authority
CN
China
Prior art keywords
electromagnet
magnetic
circuit
switch
freeze mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 91108305
Other languages
English (en)
Other versions
CN1043276C (zh
Inventor
张凡
杨强
王跃
刘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Xinxing Electrical Research Institute
Original Assignee
Sichuan Xinxing Electrical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Xinxing Electrical Research Institute filed Critical Sichuan Xinxing Electrical Research Institute
Priority to CN91108305A priority Critical patent/CN1043276C/zh
Publication of CN1070510A publication Critical patent/CN1070510A/zh
Application granted granted Critical
Publication of CN1043276C publication Critical patent/CN1043276C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

一种带有恒磁体的极化电磁铁及专用控制电路, 它在定铁心辅助磁极上设置了穿透孔,在孔中和动铁 心上配置必要的顶杆、牵引杆、手动操作杆,从而构成 了若干种具有手动操作吸合与释放功能的牵引式或 推动式磁保持电磁铁。配套专用的脉冲开关,储能电 容器等电子和电气元件,构成了在接通或分断励磁电 源时使用同一个电磁线圈操作磁保持式电磁铁吸合 和释放的四种典型单元电路,具有工艺结构简单、高 效节电、初始吸力大、外部控制电路与传统产品相同 等特点。

Description

本发明涉及一种带有恒磁体(永久磁铁)的极化电磁铁及此类磁保持式电磁铁专用的控制电路。它属于低压电器的电磁铁领域,是配套安装在电磁阀、电磁继电器、接触器、电磁制动器、电磁振动器等电气机械装置上(内)的电动操作机构及控制电路。
在已有技术中,中国专利CN88219029.6虽然已经提供了一个磁保持式电磁铁(阀)的手动操作机构,但该专利仅仅适用于手动释放(关阀)操作而已,并没有配套专用的控制电路,因而,在某些场合下使用时有一定的限制和不便。中国专利CN89213167.5虽然已经提供了一个使用同一个电磁线圈就能操纵磁保持式电磁铁的吸合和释放,并且在励磁电源消失时使磁保持电磁铁由吸持状态自动返回到释放状态的磁保持式电磁铁控制电路。但是,它仍然存在着下列三个不足之处:第一,该电磁铁原则上都是一种牵引式-拉动式电磁铁,其操作方向有时侯不能满足被操动机械的使用要求。第二,缺少必要的手动操作机构。第三,由于该专利在电磁线圈的主电路中串入了电容器C,因此,当使用者要求电磁铁具有大的初始起动吸力时,这个电容器的容量可能很大,有时侯会显得不十分经济。
本发明的目的在于避免上述已有技术中的不足之处而提供若干种既可以是牵引式、又可以是推动式并且具有手动操作电磁铁吸合和释放功能的、同时又能提供大初始起动吸力的新型磁保持电磁铁以及与各类磁保持式电磁铁配套的使用同一个电磁线圈操纵电磁铁吸合和释放的四种典型单元电路。
本发明的另一个目的在于提供一个与各类磁保持式电磁铁配套的、使用同一个电磁线圈在励磁电源时使吸持着的电磁铁自动返回到释放状态的自同步保护电路(零压或欠压);同时提供若干种在特定使用条件下被简化了的、使用同一个电磁线圈操纵磁保持式电磁铁吸合和释放的、上述四种典型单元电路的变异电路。
本发明的第一个目的可以通过以下措施来实现:
a)在中国专利CN89213167.5规定的磁保持式牵引电磁铁的电磁线圈一个端部的外侧安装恒磁体,线圈有一个贯通的中央轴孔,孔内设置线圈架或套装非导磁材料制作的薄壁管,一个动铁心插入安装在线圈架或薄壁管内作往复的直线运动,定铁心-辅助磁极安装在紧靠恒磁体的线圈的同一端部,在定铁心-即上磁轭[1]和辅助磁极[2]上,设置穿透孔[50],孔中插入安装顶杆[51]或插入、旋入安装手动操作杆[52],在远离穿透孔[50]的动铁心[8]的一端上设置牵引杆[53]或手动操作杆[54],构成了若干种既可以是牵引式又可以是推动式,同时具有手动操作吸合与释放功能的磁保持式电磁铁:
b)采用一个合闸脉冲开关[109]、合闸脉冲触发电路[106]、储能电路[107]、储能止逆二极管[105]、分闸脉冲开关[103]、限流元件[104]、分流止逆二极管[108]、分闸联锁开关[110],构成了在接通或分断励磁电源时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制电路或手动控制电路的第一种典型单元电路,其中,合闸脉冲开关[109]通过[106]的触发在电磁铁吸合瞬间自动闭合(动合特性)并在吸合完成后自动分断,它必须串接在[107]出线侧[6]的主动电路中(正极或负极均可)。[103]与[110]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或欠电压瞬间自动闭合并通过[104]的限流和[105]及[108]的止逆作用将[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低电平时自动关断;
c)采用一个合闸脉冲开关[109]、储能电路[107]、储能止逆二极管[105]、分闸脉冲开关[103]、限流元件[104]、分流止逆二极管[108]、分闸联锁开关[110],构成了在接通或分断励磁电源时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制或手动控制电路的第二种典型单元电路,其中,[109]在电磁铁吸合完成后受控分断(动分特性),它必须串接在[107]出线侧[6]的主电路中(正极或负极均可),[103]与[110]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或欠电压瞬间自动闭合并利用[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低电平时自动关断;
d)采用一个合闸脉冲开关[109]、储能电路[107]、储能止逆二极管[105]、分闸脉冲开关[103]、限流元件[104],构成了在接通或分断励磁电源时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制或手动控制电路的第三种典型单元电路,其中,[109]在电磁铁吸合完成后受控分断(动分特性),它必须串接在[6]的主电路中(正极或负极均可),[107]必须与[109]并联,[103]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或欠电压瞬间自动闭合并通过[104]的限流和[105]的止逆作用将[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低电平时自动关断;
e)采用一个合闸脉冲开关[109]、合闸脉冲触发电路[106]、储能电路[107]、储能止逆二极管[105]、限流元件[104]、分闸联锁开关[103],构成了在接通或分断励磁电源时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制或手动控制电路的第四种典型单元电路,其中,[109]通过[106]的触发在电磁铁吸合瞬间自动闭合并在吸合完成后自动分断,它必须串接在[107]出线侧[6]的主电路中,[107]必须与[109]并联,[103]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或欠电压瞬间自动闭合并通过[104]的限流和[105]的止逆作用将[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低电平时自动关断。
本发明的第一个目的还可以通过以下措施来实现:
当所述穿透孔[50]是一个螺孔时,手动操作杆[52]是一根与之相配的专用螺杆,其一端带有径向凸缘,该凸缘嵌入动铁心[8]的一个封闭的中央孔穴[55]内,另一端伸出在穿透孔[50]的外侧空间,其上设有手动操作该螺杆作轴向运动必须的螺帽[57]或其它具有类似功能的凹槽、凸缘、端部、手把、杆上操作表面等,并在靠近定铁心穿透孔[50]的动铁心[8]的一个端部,设有一个轴向的中央孔穴[55]和卡板[56],这时,卡板[56]必须与元件[8]刚性连结,中央孔穴[55]的宽度(或直径)和长度δ2必须与上述专用螺杆匹配。
本发明的第二个目的可以通过以下措施来实现:
当分闸脉冲开关[103]为电子开关(晶体三极管、晶闸管、功率场效应管等)或电磁开关(继电器、霍尔开关等)时,电源电压取样器[102]、分闸脉冲开关[103]、限流元件[104]、储能电路[107]、储能止逆二极管[105]、分流止逆二极管[108]、分闸联锁开关[110],构成了使用同一个电磁线圈[6]在励磁电源失电时使吸持着的电磁铁自动返回到释放状态的自同步保持电路(零压或欠压)。
当储能电路[107]由一个电容器C1和电阻器R5串联组成时,该储能电路[107]可以同时取代专用的合闸触发脉冲电路[106]。
当储能电路[107]的电阻器R5的阻值较电磁线圈[6]的阻抗足够大因而在电磁铁反向励磁(反放电)过程中引起的分流作用允许忽略不计时,控制电路中的分流止逆二极管[108]可予取消或短接。
当电磁线圈[6]的阻抗足够大或储能电路[107]的电容器C1的初始放电电压足够低、电磁铁在反向励磁开始时已处于过阻尼工作状态时,限流元件[104]可予取消或短接。
当合闸脉冲开关[109]由专用的合闸脉冲触发电路[106]触发控制时,储能电路[107]可以由一个电容器C1单独组成,也可以由一个电容器C1及与之配套的分压电路[111]组成。该分压电路可以是一个电阻器分压电路,也可以是由一个稳压二极管与偏置电阻器构成的分压电路,或稳压三极管(含IC片)构成的类似分压电路。
当所述电磁铁由整流二极管供给励磁及控制电源,并在交流侧设有电源电压取样触发器[102]或在直流供电的主电路中设有一个串接的开关触头时,触能止逆二极管[105]可予取消或短接。
以下将结合结构实施例、控制电路原理框图和实施例对本发明作进一步详述。
图1为磁保持式电磁铁结构实施例A。
图2为磁保持式电磁铁结构实施例B。
图3为磁保持式电磁铁结构实施例C。
图4为磁保持式电磁铁结构实施例D。
图5为磁保持式电磁铁控制电路原理框图Ⅰ。
图6为磁保持式电磁铁控制电路原理框图Ⅱ。
图7为磁保持式电磁铁控制电路原理框图Ⅲ。
图8为磁保持式电磁铁控制电路原理框图Ⅳ
图9为磁保持式电磁铁结构实施例1。
图10为磁保持式电磁铁控制电路实施例1。
图11为磁保持式电磁铁控制电路实施例2。
图12为磁保持式电磁铁控制电路实施例3。
图13为磁保持式电磁铁控制电路实施例4。
图14为磁保持式电磁铁控制电路实施例5。
图15为磁保持式电磁铁控制电路实施例6。
图16为磁保持式电磁铁控制电路实施例7。
图17为磁保持式电磁铁控制电路实施例8。
图18为磁保持式电磁铁控制电路实施例9。
图19为磁保持式电磁铁控制电路实施例10。
图20为磁保持式电磁铁控制电路实施例11。
由图1可见,这是中国专利CN89213167.5规定的同时得到了进一步改进的一种新型磁保持式电磁铁的结构实施例A。其中,上磁轭[1]、辅助磁极[2]、恒磁体[3]、旁磁轭[4]、下磁轭[5]、电磁线圈[6]、线圈架[7]、动铁心[8]、复位弹簧[9]等元件构成了CN89213167.5规定的电磁铁。在本图中上述元件的编号、名称、结构特征、工作原理与该专利完全相同,本发明不再予以重复。简言之:由[2]、[4]、[5]、[8]、δ构成电磁铁的电磁磁路以及由[3]、[1]、[2]、δ、[8]、[5]、[4]、[3]构成电磁铁的恒磁磁路,后者在电磁铁吸持状态时成为封闭式对称磁路(含[5]、[8]之间形成的局部滑动配合间隙),以元件[2]、[8]的中心轴线为对称轴,形成在几何形状、安装位置、结构性能、磁性能方面左右对称的一组以上的工作磁路,上述磁路中恒磁磁力线和电磁磁力线的主磁通通过动铁心[8]的主工作气隙且互为平行。δ标示了动铁心的主工作气隙即电磁铁的工作行程,H1标示了定铁心-辅助磁极[2]与上磁轭[1]的轴向高度,H2标示了元件[2]伸进电磁线圈[6]的轴向高度。与CN89213167.5专利不同的是:本发明在所述电磁铁的定铁心-即上磁轭[1]和辅助磁极[2]的中央部位处,增设穿透孔[50],在孔内再插入安装最好采用非导磁材料制作的顶杆[51],其一端伸出元件[1]的外侧空间,与电磁铁配套的被操动机构相连(诸如阀杆等),另一端伸进动铁心[8]的中央孔穴内或者和元件[8]保持表面式的压触配合。穿透孔[50]的内表面和顶杆[51]的滑动外表面有足够的光洁度,以便元件[51]作轴向运动时尽可能减小二者之间的摩擦力。手动操作杆[54]安装在远离穿透孔[50]的元件[8]的另一端,它们之间应予固结,并且在[54]的外侧端部装有操作手把[59]。初始状态时,在元件[9]或被操动机构的反作用力下,元件[8]的主工作气隙为δ值,由于气隙的磁阻很大,恒磁体[3]在恒磁磁路中造成的极化力无法克服上述反作用力矩,因此,磁保持电磁铁处于稳定的释放状态。这时,若在元件[6]中通入一个适当极性的脉冲电流或某一交变脉冲电时,电磁磁路被正向励磁,正向励磁电流IH产生的电磁起动吸力FH足以克服上述反作用阻尼力矩,元件[8]吸合,δ→0值,元件[51]被向外推出并带动被操动机构(图1中省略未绘)运动,电磁铁转入另一个新的稳定状态即吸持状态。这时,由于电磁铁的恒磁磁路已呈封闭磁路,所以,即使元件[6](甚至在δ>0的某一个区间)失电,电磁铁仍将保持在吸持状态不变。若在磁保持的电磁铁的元件[6]内通入一个与上述极性相反的直流脉冲电流(允许含少部份交变成份),只要其幅值和宽度足够,这时由于反向励磁电流IF在电磁磁路中感生的反向励磁磁通将与恒磁磁路中流过的正向极化磁通反向叠加,其产生的反向励磁合力FF>0值,在元件[9]或被操动机械的反作用力下,元件[8]随即释放,主工作气隙由0→δ值,电磁铁回复到初始释放状态,元件[51]随元件[8]向内侧运动而回归原位。H4标示了元件[8]在电磁铁释放状态时伸出元件[5]外侧平面的轴向高度,其最佳值,H4≥δ,否则的话,磁路的磁阻势必增加,电磁铁的起动吸力和磁保持力都会发生明显的下降。Q2标示了元件[2]的径向外缘或水平方向外缘与元件[3]、[4]的径向内缘或水平方向内缘之间必需保持的最小空气间隙或非磁性材料间隙。此值太小时[2]与[3]间的漏磁通过大,恒磁体近乎磁短路,因而电磁铁的磁保持力会大幅度下降。太大时由[2]、[4]、[5]、[8]、δ构成的电磁磁路的磁阻增加,其起动电磁吸力有所下降,因此,一般情况下,Q2最小值为零点几毫米,最大值为数十毫米,它将视[3]的磁能积及电磁铁的工艺设计要求而定。D1标示了元件[3]的内园直径或水平内缘开距,D2标示了元件[4]与[3]接触平面部份的内园直径或水平内缘开距,在一般情况下D1≥D2。当D2>D1时,恒磁体[3]的一部份磁能积无法通过[4]的接触导引而进入闭合的极化磁路,电磁铁的磁保持力将会下降,故只有在某些特殊场合下才会采用此种设计方案。在特殊情况下,例如控制电路失灵、无励磁电源时,使用者可以利用元件[54]和[59]将动铁心[8]按下到吸持位或拉起到释放位,从而十分方便地实现对电磁铁的手动操作切换。由此可见,图1实施例示出的是一种推动式的同时具有手动操作吸合与释放功能的磁保持式电磁铁。
图2示出了本发明的第二种结构实施例B。与图1不同的是:该型电磁铁的穿透孔[50]之内插入安装手动操作杆[52],其内侧端部与元件[8]固结,外侧端部则装有操作手把[59]。在远离穿透孔[50]的元件[8]的另一端上装有固结的牵引杆[53],这时,为了限制元件[8]的工作行程,它既可以采用图1所示的技术方案-由元件[5]中央部位的内侧垂直面构成的元件[8]的导轨轴承和元件[8]适当高度上的径向凸缘组成的止档装置予以定位;也可以采用图2示出的技术方案-由安装在元件[5]外侧水平面上的定位卡[58]与元件[8]配合组成另一种新的止档装置予以定位。除上述之外,图2所示实施例的其它结构特征和工作原理与图1实施例完全相同。由此可见,图2示出的是一种牵引式的同时具有手动操作吸合与释放功能的磁保持式电磁铁。
图3示出了本发明的第三种结构实施例C。与图2不同的是:元件[9]改用拉簧,它安装在动铁心[8]的外侧,当然也可以由被操动机械的反作用力替代且对元件[8]予以定位。除上述之外,图3所示实施例的其它结构特征和工作原理与图1实施例完全相同。由此可间,图3示出的也是一种牵引式的同时具有手动操作吸合与释放功能的磁保持式电磁铁。
图4示出了本发明的第四种结构实施例D。与前三种不同的是:在元件[1]、[2]的中央部位处,穿透孔[50]是一个螺孔,手动操作杆[52]是一根与之相配的专用螺杆,它的一端带有径向凸缘或类似结构,该凸缘嵌进元件[8]的中央孔穴[55]内。卡板[56]由铁磁性材料制成,中间设有一个孔洞,元件[52]从此穿过然后再将元件[56]紧固在[8]上,使之成为一个整体铁心。电磁铁工作时,因为中央空穴[55]和元件[56]内孔的径向尺寸,比元件[52]凸缘或类似结构的大,且其自由行程δ2大于电磁铁的主工作气隙δ,所以元件[52]决不会影响动铁心[8]的正常工作。手动操作时使用者只要利用元件[52]上的螺帽[57]或其它具有类似功能的凹槽、凸缘、手把、杆上操作面等,就可以使元件[52]作向上或向下的轴向运动,从而使元件[8]吸持或释放而无需任何外接电源。除上述之外,图4实施例的其它结构特征和工作原理与图1实施例完全相同。由此可见,图4示出的是一种牵引式的同时具有在较大磁保持力时也能方便地手动操作吸合和释放功能的磁保持式电磁铁。
图5示出了本发明的第一种典型的控制电路原理框图。为了阐述方便,将同时比照图10所示实施例作详细说明。其中,交流电源[100]、整流电路[101]为电磁铁提供必要的直流励磁电源和控制电源,合闸脉冲开关[109]是一个电子开关(如晶体三极管、晶闸管、功率场效应管等)或电磁开关(如电磁继电器、接近开关等),也可以是一个机械式联锁开关(如滑动式限位开关等)或磁性限位开关(如干簧管、霍尔开关等),它必须串接在电磁线圈[6]的励磁主电路中(正极或负极均可),受合闸脉冲触发电路[106]的启动而在吸合过程中只接通一个短暂瞬间并在电磁铁吸合后又自动分断,(数毫秒至数秒)。[106]在通常情况下由一个电容器C4及串联电阻器R6组成,也可以由一个单稳延时电路(含类似触发器)组成,其主要功能是在电磁铁接通励磁电源的瞬间为[109]提供一个启动触发和分断信号源。储能电路[107]由一个电容器C1和电阻器R5串联组成,并接在[6]和[109]的进线侧主电路上,其主要功能是在电磁铁的正向励磁(吸合过程)时予先充电并在反向励磁(释放过程)时为电磁铁提供工作能量。储能止逆二极管[105]应串接在励磁主电路的正极或负极电路中,也可以仅仅串接在储能电路的充电回路内,其主要功能是为[107]予先储积的能量在励磁电源消失时规定一个电磁铁反向励磁(释放过程)必需的通路。分流止逆二极管[108]同样串接在[107]的并联支路中,其主要功能是在电磁铁的反向励磁过程中,阻断电阻器R5可能形成的不必要的放电回路,使[107]蓄积的能量只能对[6]放电。分闸联锁开关[110]通常由一个晶体二极管(或三极管、晶闸管、电压开关二极管等)组成,它的一端连结在[6]和[109]的串联接点上,另一端必须连接到[107]的电容器C1的一个可能构成反放电回路的极板上,其主要功能是在电磁铁吸合过程(正向励磁)中使之处于分断状态而在释放过程(反向励磁)即励磁电原零电压或欠电压瞬间自动闭合并通过[104]的限流和[105]、[108]的止逆作用将[107]对[6]反向放电直至低电平时自动关断;电源电压取样触发器[102]可以是一个取样电阻或电子开关触发器,也可以是一个电磁元件(如电磁继电器、霍尔电路等),还可以是一个光电元件或红外元件(如光敏电阻、光电耦合器、红外对管等),其主要功能是对励磁电源采样并在失电时同步触发(允许带有时滞)分闸脉冲开关[103]自动接通,从而构成一个[107]→[103]→[104]→[6]→[110]→[107]的反向励磁电路。在通常情况下,[103]是一个电子开关(如晶体三极管、晶闸管、功率场效应管等),当然也可以是个光控开关(如光电耦合器等),还可以是一个继电器或手动(限位)操作开关的切换触点甚至按钮触点等,其主要功能是主令操纵电磁铁的电动释放,但在吸合过程中又必须长期处于分断状态并保持相应的联锁关系。限流元件[104]是一种降压限流元件,它可以是一个电阻器,也可以是一个电感器甚至还可以是一个电子调压元件(如串联电压调整管等)或PTC热敏电阻器,其主要功能是为电磁铁的反向励磁放电回路提供一个合适的阻尼元件,使电磁磁路中感生的反向励磁磁通与恒磁磁路中流过的正向极化磁通反向叠加,其产生的反向励磁合力FF>0值从而使电磁铁能够可靠地释放并控制其磁路中的剩磁感应强度达到工程中允许忽略的地步。
图6示出了本发明的第二种典型的控制电路原理框图Ⅱ。与图5不同的是:它将合闸触发脉冲电路[106]的功能合并到了电路[107],并规定合闸脉冲开关[109]是一种初始状态即处于接通而在电磁铁吸合后受控分断的具有动分特性的开关,一般说来,它往往是一种机械式联锁限位开关(或光电式、磁性接近开关等),除此以外,该电路与图5示出的控制电路原理框图Ⅰ的电路结构及工作原理完全相同。
图7示出了本发明的第三种典型的控制电路原理框图Ⅲ。与图5不同的是它不仅取消了分流止逆二极管[108]和分闸联锁开关[110],还规定储能电路[107]必须与合闸脉冲开关[109]并联,该开关的结构特点和功能则与图6所示的[109]相同,除此以外,该电路与图5示出的控制电路原理框图Ⅰ的电路结构及工作原理完全相同。
图8示出了本发明的第四种典型的控制电路原理框图Ⅳ。与图7不同的是图8针对[109]的动分特性又作了进一步的明确规定:从实质上讲此时的[109]虽然仍旧是一个初始状态即处于接通位而在电磁铁吸合期间受控分断的开关,但这个开关只能是一个晶体三极管或晶闸管或功率场效应管等构成的电子开关,它通过一个合闸脉冲触发电路[106]为其提供必需的启动触发和分断信号源。储能电路[107]仅仅是一个电容器,它必需与[109]并联,主要功能有二:第一是在电磁铁吸合过程中予先充满电荷以便为电磁铁的反向励磁提供足够的反放电能量,就像图5、6、7所示[107]储能电路中的电容器C1的功能一样;第二是在[109]电子开关闭合导通的一瞬间使其“短路”,为电磁铁的正向励磁电流IH提供了一个与[109]并联的分支回路,俾减缓[109]的导通冲击电流,同时,在电磁铁反向励磁时(这时C1已充满至全电压)钳制[109]两端的电压使之不能突变,防止电磁线圈[6]的电感分量在[109]关断时造成的过电压使[109]受到损害。除上述以外,图8与图7二种控制电路的结构及工作原理完全相同。
需要特别指出的是:在图5、6、7、8所示的控制电路原理框图中,电磁铁(即电磁线圈[6])的正向励磁电流IH,其流向为K+→G-,反向励磁电流IF,其流向为G+→K-,且在以后的控制电路实施例中都采用此一相同的规定。
图9是本发明的一个结构实施例。它具有图1所示的A型结构方案。其中,元件[1]、[2]、[3]、[4]、[5]、[6]、[7]、[8]、[9]、[51]、[54]、[59]与图1的同编号元件相同,但为了将该电磁铁和被操动机构-一个气阀相连,在没有改变原设计技术特征的前提下,将上磁轭[1]向上延伸增加了一个带有内螺纹的、园柱形套筒,而顶杆[51]则仍然伸出在元件[1]的基准面外侧,与气阀的阀心顶针保持压触配合(气阀部份未曾标绘在图上)。恒磁体[3]在本实施例中是一个环形永久磁钢,它的外侧套装一个非磁性材料制成的护圈[20],起防撞保护作用。罩壳[21]用螺钉紧固在元件[5]上(图中螺钉省略未绘),所有的电子零件安装在电路板[22]上。由图可见,这个电磁铁正位于吸持状态,其主工作气隙(行程)δ由元件[8]与[5]的凸缘配合限定。图14是与这个电磁铁配套组装在一起的实际控制电路,它属于图5示出的第一种控制原理电路。其励磁电源直接取自蓄电池,故图1所示的元件[100]、[101]可予取消,又因为电路[107]由一个电容器C1和电阻器R5串联组成,开关[109]采用一个晶体三极管T1和基极电阻R6组成,要求的触发开通信号很小,为简化电路起见,图1所示的合闸脉冲触发电路[106]可予取消,其功能由[107]替代。电阻R1组成电源电压取样触发器[102],它同时又是分闸脉冲开关[103]的基极电阻,所以在图14中画入二个虚线框以内。(该原则适用于本发明的其它实施例)接通电源时,三极管T3及T2反偏截止,电容器C1和电阻器R5的串联接点Z上,针对负极而言得到一个正跳变的脉冲信号(微分信号或耦合信号),开关[109]立即饱和导通,电磁线圈[6]中流过一个正向励磁电流IH,其方向为K+→G-,电磁铁因之吸合自持。随着C1的很快充满,Z点电位自动降至零值,开关[109]失却基极电流而自动分断;在以上的整个吸合操纵过程中Z点的电位始终高于K点,故由一个二极管D2组成的分闸联锁开关[110]在正向励磁时因反偏而无法导通。切断电源时,三极管T3、T2饱和,开关[103]自动闭合,由C1正极板→T2→R4→[6]→D2→C1负极板构成的反放电回路被接通,反向励磁电流IF产生的电磁磁力线与工作磁路中的恒磁磁力线反向叠加且FF>0值,磁保持电磁铁因之释放,一直到电容器Cl储积的能量耗尽为止,开关[103]在低电平时自动关断。值得指出的是:分流止逆二极管[108]的引入使IF减少了一个由R5→C1负极板的不必要的分流支路。但是,如果R5的阻值较电磁线圈[6]的阻抗足够大,上述的分流作用对电磁铁的正常释放所造成的影响允许忽略不计时,元件[108]可予取消或短接。
图10示出了本发明的控制电路实施例1。它属于图5所示的第一种控制原理电路。与图14不同的是:本实施例具有独立的合闸脉冲触发电路[106],它由电阻器R6和电容器C4组成,因而是一个完整的典型单元控制电路。
图11示出了本发明的控制电路实施例2。它属于图5所示的第一种控制原理电路。与前述电路不同的是:储能电路[107]仅仅由一个电容器C1组成,分闸联锁开关[110]则改由二极管D11、电阻器R9、三极管T4组成。当控制电路接通直流电源时三极管T4基极负偏,开关[110]处于分断状态,当控制电路失电时,反向励磁电流IF为三极管T4提供一个足够的正偏置基极电流,开关[110]导通,电磁铁因之释放,一直到电容器C1极板上的储存能量下降到低电平时开关[103]和[110]将分别自动关断。
图12示出了本发明的控制电路实施例3。它属于图5所示的第一种控制原理电路。与前述电路不同的是:它采用交流电源供电。二极管D5~D8组成整流电路[101],C5为滤波电容器,二极管D4、电阻器R7、发光二极管D9、电容器C2组成安装在交流侧的电源电压取样触发器[102],光敏三极管T5、电阻器R8、电容器C3、晶闸管T6组成开关[103],其它元件如[104]、[107]、[109]、[110]、[6]的组成和连接与图14完全相同。接通电源时D9发光,(C2在交流电过零时防止发光二极管闪烁误动作)T5饱和导通,T6处于截止状态,整流后的直流脉动电对C1充电并同时接通开关[109],元件[6]正向励磁,电磁铁吸合运行。电源失电时,发光二极管D9熄灭,T5随之截止,T6被触发导通,已经予先储存了能量的电容器C1经R4→T6→[6]→D2→C1形成反向励磁回路,电磁铁因之释放。由此可见,与前述电路不同的还有:在这种特定条件下,元件[101]的两只二极管D6、D7取代了图5中规定的储能止逆二极管[105]。
图13与图10基本类似,不同点是:开关[103]仅仅由一个晶体管T2组成,R5的阻值远比元件[6]的阻抗大,所以由R5引起的反向励磁分流作用允许忽略不计,分流止逆二极管[108]在这种情况下可予取消或短接。
图15、图16、图17示出了本发明的第二种控制原理电路。关键所在是开关[109]具有初始状态时处于接通位置而在电磁铁吸合(正向励磁)完成后受控分断的动分特性,因而往往是一种电磁铁的专用行程开关,除此以外,其余元件的组成和工作原理与前述第一种控制电路相同。
图18、图19示出了本发明的第三种控制原理电路。其关键所在是开关[109]应具有图15、图16、图17实施例相同的技术特性,并且,这时的储能电路[107]必须与[109]并联连接,除此之外,其余元件的组成和工作原理与前述第一种控制电路相同。
图20示出了本发明的控制电路实施例11。它属于图8所示的第四种典型单元控制电路。整流电路[101]由二极管D5~D8及滤波电容C5组成,合闸脉冲开关[109]是一个电子开关,它由电阻器R15及晶体三极管(如达林顿管)或V-MOS场效应管T1组成,合闸脉冲触发电路[106]由电阻器R13、R14、R15、R6和积分电容器C3及晶体管T1组成,储能电路[107]仅由一个电容器C1组成,其正极与T1的集电极相连,(即G点)而负极与T1的发射极即控制电路直流侧的悬浮地相连,分闸联锁开关[103]由电阻器R11、R12、及晶体三极管T2、T3组成,限流元件[104]由PIC热敏电阻R4组成,它串接在T2的集电极回路中,电源电压取样器[102]由T3的基极电阻R12兼任,储能止逆二极管[105]串接在R12的出线侧与[104]-[103]串接回路进线侧的主电路中,电磁线圈[6]是[109]T1管的集电极负载,由图20可见,上列各元件之间的连接关系与图8示出的控制电路原理框图Ⅳ完全一致。接通交流电源[100]的瞬时,由于C1极板两端的电压不可能突变,G点被C1钳制至“地”电位,T2基极经R11接地,[103]在电磁铁吸合开始即处于分断状态。R12为T3提供一个基极正偏电流,T3饱和导通,其集电极又将T2的基极钳制到地,使[103]始终处于截止状态。与此同时,由于R13、R14的分压器电路以及R13、C3的积分电路,只要R14选择得当,Ut点的电位将随C3的充电时间常数逐渐增大,因而T1截止,T1经R15提供一个基极正偏电流,T1瞬即饱和导通,电磁线圈[6]正向励磁,电流方向如IH箭头所示,电磁铁开始进入吸合工作状态,经过一段时延△TH后,电磁铁的动铁心吸持到位,Ut的电位也上升到足够高时,T1′随之饱和导通,T1基极被钳制到地,[109]自动分断,电磁铁的正向励磁过程自动终止,动铁心[8]依靠恒磁极化力将继续保持在吸合状态。这时C1已充满电荷,经C1流过[6]的电容漏泄电流极其微小可予忽略不计,但由于T3在接通交流电源后始终处于饱和导通状态,因R11的关系,在[6]内将长期流过一个微小的电流IL,其方向与IF相同,因R11一般均在数百KΩ乃至数MΩ左右,故IL的电流值仅达数MA甚至数μA,不会影响磁保持电磁铁的节电效果。运行中的电磁铁在交流电源周期过零或供电电网避雷器瞬间接地时,C5储存的能量使T3不致退出饱和区而误动作。切断交流电源[100]时,经过C5造成的时延△T(约数+ms)后,T3转入截止状态,并导致T2饱和导通,但T1′和T1保持原有工作状态不变,由于[105]的止逆作用,[107]储积的能量将通过[6]-[104]-[103]返回[107]而构成通路,磁保持电磁铁被反向励磁,其电流方向如IF箭头所示,这时,只要上述反放电回路的电阻分量(R4及[6]的直流电阻RO)足够大,经过一个时延△TF后,动铁心[8]在弹簧[9]及被操动机构的反作用力下释放,电磁铁回复到停电时的初始状态。在上述反放电过程中,C1储积的能量随着放电时间的增长而衰减,达到某一低电平时[103]将自动关断,积分电容C3上储积的能量也通过R14很快的泄放干净,这时,控制电路的整个反放电过程全部结束。
综上所述,从图10至图20为止的11个控制电路实施例中,储能电路[107]基本上由一个电容器C1或由该电容器与R5的串联回路所组成。但在实际应用中,有时为了人为地降低C1的储积能量和工作电压,减小磁保持电磁铁释放工作时的发热量和△TF值往往将该电容器与一个配套的分压电路[111]串联组成一个新的[107]电路,这时,分压电路既可以是一般的电阻分压器,也可以是一个稳压二极管与偏置电阻器组成的分压电路,还可以采用稳压三极管(含多端IC稳压电路片)构成的类似分压电路,因其电路十分简单而不再用图示方式标绘。出于同样的理由,在图10至图20的11个控制电路实施例中,有关保护反电势、浪涌电压过电流的各类保护元件,诸如续流二极管、RC吸收电路、压敏电阻器等原则上均不再标绘并予以阐述。
事实证明,本发明具有以下主要优点:
1、高可靠的工作特性,主要取决于磁保持式电磁铁在吸持状态时没有连续的机械振动源和发热源,其工作特性在失电或欠压保护前与电压波动幅度无关,可以在额定电压的65%至125%范围内可靠工作。
2、高效节电特性,与现有同类产品(非磁保持式)相比,节电率平均达98%~99%以上。
3、具有手动操作电磁铁吸合和释放的、简单实用的手动操作机构。
4、能够提供很大的初始起动电磁吸力。
5、既可以制作牵引(拉动)式电磁铁,也可以制作成推动式电磁铁。
6、采用普通碳钢取代传统的硅钢片和电工纯铁,但不发生剩磁累积及磁滞现象,缩小了电磁铁的体积,减轻了重量,简化了生产工艺。
7、机电一体化设计,配套的专用控制电路十分简单,可以厚膜集成化。
8、市场十分广阔,使用方法与传统的同类电气产品相同,故很容易推广应用。
9、具有极大的社会经济效益。
最后需要指出的是,在实施本发明的过程中还可以针对以上所述的结构和控制电路作出各种各样的修改和变化,例如仅仅实施本发明的结构形式而另外设置二个各司“吸合”与“分断”功能的彼此独立的电磁线圈来取代同一个线圈[6]等等,但是,不管如何修改、变化、组合,它们将无法超越本发明规定的权利要求和说明书阐述的基本范畴。

Claims (10)

1、一种磁保持式电磁铁及控制电路,主要由恒磁体、电磁线圈、导磁性材料制作的磁路及储能电容器、电子元件及开关、电气元件等构成,其中,恒磁体安装在电磁线圈的一个端部的外侧,线圈有一个贯通的中央轴孔,孔内可设有线圈架或套装非磁性材料制作的簿壁管,一个动铁心插入安装在线圈架或簿壁管内作往复的直线运动,以定铁心-辅助磁极和动铁心的中心轴线为对称轴,至少形成在几何形状、安装位置、结构性能、磁性能方面左右对称的一组以上的工作磁路,其中,恒磁磁路在电磁铁吸合状态时为封闭式对称磁路并含有局部的滑动配合间隙,上述磁路中恒磁磁力线与电磁磁力线的主磁通穿过动铁心的主工作气隙且互为平行,其特征是:
a)在所述电磁铁的定铁心-即上磁轭[1]和辅助磁极[2]上,设置穿透孔[50],孔中插入安装顶杆[51]或插入、旋入安装手动操作杆[52],在远离穿透孔[50]的动铁心[8]的一端上设置牵引杆[53]或手动操作杆[54],构成了若干种既可以是牵引式、又可以是推动式,同时具有手动操作吸合与释放功能的磁保持式电磁铁;
b)一个合闸脉冲开关[109]、合闸脉冲触发电路[106]、储能电路[107]、储能止逆二极管[105]、分闸脉冲开关[103]、限流元件[104]、分流止逆二极管[108]、分闸联锁开关[110],构成了在接通或分断励磁电源时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制电路或手动控制电路的第一种典型单元电路,其中,[109]通过[106]的触发在电磁铁吸合瞬间自动闭合并在吸合完成后自动分断,它必须串接在[107]出线侧[6]的主电路中,[103]与[110]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或欠电压瞬间自动闭合并通过[104]的限流和[105]及[108]的止逆作用将[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低电平时自动关断;
c)一个合闸脉冲开关[109]、储能电路[107]、储能止逆二极管[105]、分闸脉冲开关[103]、限流元件[104]、分流止逆二极管[108]、分闸联锁开关[110],构成了在接通或分断励磁电源时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制或手动控制电路的第二种典型单元电路,其中,[109]在电磁铁吸合完成后受控分断,它必须串接在[107]出线侧[8]的主电路中,[103]与[110]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或欠电压瞬间自动闭合并通过[104]的限流和[105]及[108]的止逆作用将[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低电平时自动关断;
d)一个合闸脉冲开关[108]、储能电路[107]、储能止逆二极管[105]、分闸脉冲开关[103]、限流元件[104],构成了在接通或分断励磁电源时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制或手动控制电路的第三种典型单元电路,其中,[109]在电磁铁吸合完成后受控分断,它必须串接在[6]的主电路中,[107]必须与[109]并联,[103]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或瞬间自动闭合并通过[104]的限流和[105]的止逆作用将[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低电平时自动关断。
e)一个合闸脉冲开关[109]、合闸脉冲触发电路[108]、储能电路[107]、储能止逆二极管[105]、限流元件[104]、分闸联锁开关[103],构成了在接通或分断励磁电磁时使用同一个电磁线圈[6]操作磁保持式电磁铁吸合和释放的电气控制或手动控制电路的第四种典型单元电路,其中,[109]通过[108]的触发在电磁铁吸合瞬间自动闭合并在吸合完成后自动分断,它必须串接在[6]的主电路中,[107]是一个电容器它必须与[109]并联,[103]在电磁铁吸合过程中长期处于分断状态,但在电磁铁释放操作瞬间即励磁电源零电压或欠电压瞬间自动闭合并通过[104]的限流和[105]的止逆作用将[107]在电磁铁吸合期间予存的能量使电磁铁反向励磁而释放直至低平时自动关断。
2、按权利要求1规定的磁保持式电磁铁及控制电路,其特征是:当所述穿透孔[50]是一个螺孔时,手动操作杆[52]是一根与之相配的专用螺杆,其一端带有径向凸缘,该凸缘嵌进动铁心[3]的一个封闭的中央孔穴[55]内,另一端伸出在穿透孔[50]的外侧空间,其上设有手动操作该螺杆作轴向运动必须的螺帽[57]或其它具有类似功能的凹槽、凸缘、手把、杆上操作表面等。
3、按权利要求1、2规定的磁保持式电磁铁及控制电路,其特征是:在靠近定铁心穿透孔[50]的动铁心[8]的一个端部,设有一个轴向的中央孔穴[55]和卡板[56]。
4、按权利要求1规定的磁保持式电磁铁及控制电路,其特征是:当分闸脉冲开关[103]为电子开关(晶体三极管、晶闸管、功率场效应管等)或电磁开关(继电器、霍尔开关等)时,电源电压取样器[102]、分闸脉冲开关[103]、限流元件[104]、储能电路[107]、储能止逆二极管[105]、分流止逆二极管[108]、分闸联锁开关[110],构成了使用同一个电磁线圈[6]在励磁电源失电或欠压时使吸合着的电磁铁自动返回到释放状态的自同步保护电路。
5、按权利要求1、4规定的磁保持式电磁铁及控制电路,其特征是:当储能电路[107]由一个电容器C1和电阻器R5串联组成时,该储能电路[107]可以同时取代专用的合闸触发脉冲电路[106]。
6、按权利要求1、4规定的磁保持式电磁铁及控制电路,其特征是:当储能电路[107]的电阻器R5的阻值较电磁线圈[6]的阻抗足够大因而在电磁铁反向励磁(反放电)过程中引起的分流作用允许忽略不计时,控制电路中的分流止逆二极管[108]可予取消或短接。
7、按权利要求1、4规定的磁保持式电磁铁及控制电路,其特征是:当电磁线圈[6]的阻抗足够大或储能电路[107]的电容器C1的初始放电电压足够低,电磁铁在反向励磁开始时已处于过阻尼工作状态时,限流元件[104]可予取消或短接。
8、按权利要求1规定的磁保持式电磁铁及控制电路,其特征是:当合闸脉冲开关[109]由专用的合闸脉冲触发电路[106]触发控制时,储能电路[107]可以由一个电容器C1单独组成,也可以由一个电容器C1及与之配套的分压电路[111]组成。
9、按权利要求1、4规定的磁保持式电磁铁及控制电路,其特征是:所述电磁铁由整流二极管供给励磁及控制电源并在交流侧设有电源电压取样触发器[102]或在直流供电的主电路中设有一个串接的开关触头时,储能止逆二极管[105]可予取消或短接。
10、按权利要求8规定的分压电路[111],其特征是:所述分压电路可以是一个电阻器分压电路,也可以是一个稳压二极管与偏置电阻器构成的分压电路,或稳压三极管(含IC片)构成的类似分压电路。
CN91108305A 1991-09-11 1991-09-11 磁保持电磁铁 Expired - Fee Related CN1043276C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN91108305A CN1043276C (zh) 1991-09-11 1991-09-11 磁保持电磁铁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN91108305A CN1043276C (zh) 1991-09-11 1991-09-11 磁保持电磁铁

Publications (2)

Publication Number Publication Date
CN1070510A true CN1070510A (zh) 1993-03-31
CN1043276C CN1043276C (zh) 1999-05-05

Family

ID=4909206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91108305A Expired - Fee Related CN1043276C (zh) 1991-09-11 1991-09-11 磁保持电磁铁

Country Status (1)

Country Link
CN (1) CN1043276C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235452A (zh) * 2011-06-21 2011-11-09 成都瑞迪机械实业有限公司 永磁失电电磁制动器
CN101800470B (zh) * 2010-02-02 2012-06-27 天津大学 实现电磁铁快速吸合和释放的主电路
CN104633235A (zh) * 2015-03-01 2015-05-20 宁波市镇海华泰电器厂 节电型交流电磁阀
CN104977529A (zh) * 2014-04-03 2015-10-14 西门子公司 开关的自保持磁体的检验方法和自保持磁体的检验机构
CN104858524B (zh) * 2013-10-23 2016-08-17 南安市天鸿电子科技有限公司 一种电磁导热块
CN106783009A (zh) * 2016-12-27 2017-05-31 宁波市镇海华泰电器厂 采用储能电路的交流电磁铁
CN107978416A (zh) * 2016-10-21 2018-05-01 罗伯特·博世有限公司 确定电磁执行器的可运动电枢的位置的方法和电路装置
CN109390180A (zh) * 2018-10-25 2019-02-26 大力电工襄阳股份有限公司 真空接触器
CN111312468A (zh) * 2019-12-14 2020-06-19 哈尔滨工业大学 一种高频开关型电磁铁及电容储能驱动方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115325250B (zh) * 2022-08-23 2023-04-11 广州康盛生物科技股份有限公司 电磁阀驱动电路及电磁阀驱动系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1028575C (zh) * 1989-09-05 1995-05-24 张凡 磁保持式牵引电磁铁

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800470B (zh) * 2010-02-02 2012-06-27 天津大学 实现电磁铁快速吸合和释放的主电路
CN102235452A (zh) * 2011-06-21 2011-11-09 成都瑞迪机械实业有限公司 永磁失电电磁制动器
CN104858524B (zh) * 2013-10-23 2016-08-17 南安市天鸿电子科技有限公司 一种电磁导热块
CN104977529B (zh) * 2014-04-03 2020-04-14 西门子公司 开关的自保持磁体的检验方法和自保持磁体的检验机构
CN104977529A (zh) * 2014-04-03 2015-10-14 西门子公司 开关的自保持磁体的检验方法和自保持磁体的检验机构
CN104633235B (zh) * 2015-03-01 2017-09-12 宁波市镇海华泰电器厂 节电型交流电磁阀
CN104633235A (zh) * 2015-03-01 2015-05-20 宁波市镇海华泰电器厂 节电型交流电磁阀
CN107978416A (zh) * 2016-10-21 2018-05-01 罗伯特·博世有限公司 确定电磁执行器的可运动电枢的位置的方法和电路装置
CN107978416B (zh) * 2016-10-21 2022-05-17 罗伯特·博世有限公司 确定电磁执行器的可运动电枢的位置的方法和电路装置
CN106783009A (zh) * 2016-12-27 2017-05-31 宁波市镇海华泰电器厂 采用储能电路的交流电磁铁
CN106783009B (zh) * 2016-12-27 2018-05-04 宁波市镇海华泰电器厂 采用储能电路的交流电磁铁
CN109390180A (zh) * 2018-10-25 2019-02-26 大力电工襄阳股份有限公司 真空接触器
CN111312468A (zh) * 2019-12-14 2020-06-19 哈尔滨工业大学 一种高频开关型电磁铁及电容储能驱动方法

Also Published As

Publication number Publication date
CN1043276C (zh) 1999-05-05

Similar Documents

Publication Publication Date Title
CN1070510A (zh) 磁保持式电磁铁及控制电路
CN1182551C (zh) 电磁驱动器
EP2264722A1 (en) Electromagnetic actuating device being actuated by AC power and held by DC power
CN2087376U (zh) 磁保持式电磁铁及控制电路
AU2008224232A1 (en) Residual current device
CN110349793A (zh) 一种快速切换开关装置、系统和应用
CN102758951A (zh) 双功率电磁头
CN1028575C (zh) 磁保持式牵引电磁铁
CN1070511A (zh) 磁保持电磁铁
CN102426974A (zh) 双分闸速度永磁操动机构及真空断路器
CN101252059B (zh) 具有快速充放电控制特性的双稳态永磁交流接触器
US20090262480A1 (en) Electromagnetic actuating device with coils capable of holding electrification in series connection after being actuated in parallel connection
CN1567684A (zh) 微功耗往复装置
CN106504851B (zh) 增压启动的交流电磁铁
CN101425403A (zh) 脉冲励磁电路
CN111503350A (zh) 电磁控制阀
US2835831A (en) Electromagnetic power device
EP2264723A1 (en) Electromagnetic actuating device with coils capable of holding electrification in series connection after being actuated in parallel connection
CN1069141A (zh) 强力无声节能电磁铁
CN205489451U (zh) 一种带有内部开关的失压脱扣器
US3361069A (en) Electronically controlled electromagnetic pump system
CN2430766Y (zh) 带消弧保护的快速电磁铁驱动器
EP2264721A1 (en) Electromagnetic actuating device being actuated by high voltage and held electrification by low voltage
US20090261930A1 (en) Electromagnetic actuating device capable of partially holding electrification after being actuated in parallel connection
CN201936803U (zh) 永磁真空断路器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee