CN107029225B - Conjugate vaccine and preparation method thereof - Google Patents
Conjugate vaccine and preparation method thereof Download PDFInfo
- Publication number
- CN107029225B CN107029225B CN201710278093.8A CN201710278093A CN107029225B CN 107029225 B CN107029225 B CN 107029225B CN 201710278093 A CN201710278093 A CN 201710278093A CN 107029225 B CN107029225 B CN 107029225B
- Authority
- CN
- China
- Prior art keywords
- polysaccharide
- protein
- magnetic
- conjugate
- vaccine according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108010060123 Conjugate Vaccines Proteins 0.000 title claims abstract description 86
- 229940031670 conjugate vaccine Drugs 0.000 title claims abstract description 81
- 238000002360 preparation method Methods 0.000 title abstract description 23
- 150000004676 glycans Chemical class 0.000 claims abstract description 197
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 191
- 239000005017 polysaccharide Substances 0.000 claims abstract description 191
- 229960005486 vaccine Drugs 0.000 claims abstract description 131
- 239000004005 microsphere Substances 0.000 claims abstract description 102
- 238000000034 method Methods 0.000 claims abstract description 80
- 102000014914 Carrier Proteins Human genes 0.000 claims abstract description 74
- 108010078791 Carrier Proteins Proteins 0.000 claims abstract description 74
- 241000702670 Rotavirus Species 0.000 claims abstract description 56
- 239000000126 substance Substances 0.000 claims abstract description 19
- 108090000623 proteins and genes Proteins 0.000 claims description 84
- 102000004169 proteins and genes Human genes 0.000 claims description 59
- 239000006249 magnetic particle Substances 0.000 claims description 26
- 241000700605 Viruses Species 0.000 claims description 25
- 108700010850 rotavirus proteins Proteins 0.000 claims description 21
- 241000617996 Human rotavirus Species 0.000 claims description 20
- 238000010168 coupling process Methods 0.000 claims description 17
- 238000005859 coupling reaction Methods 0.000 claims description 17
- 238000000746 purification Methods 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 16
- 241000606768 Haemophilus influenzae Species 0.000 claims description 15
- 238000000926 separation method Methods 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 13
- 102000018697 Membrane Proteins Human genes 0.000 claims description 9
- 108010052285 Membrane Proteins Proteins 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000002077 nanosphere Substances 0.000 claims description 9
- 229940047650 haemophilus influenzae Drugs 0.000 claims description 8
- 239000002122 magnetic nanoparticle Substances 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 8
- 239000002861 polymer material Substances 0.000 claims description 8
- 239000002775 capsule Substances 0.000 claims description 7
- 238000000975 co-precipitation Methods 0.000 claims description 6
- 239000011535 reaction buffer Substances 0.000 claims description 6
- 238000004945 emulsification Methods 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 239000011550 stock solution Substances 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 4
- 108010040473 pneumococcal surface protein A Proteins 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 238000000638 solvent extraction Methods 0.000 claims description 3
- 239000005711 Benzoic acid Substances 0.000 claims description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 101150084044 P gene Proteins 0.000 claims 1
- 238000000197 pyrolysis Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 27
- 230000028993 immune response Effects 0.000 abstract description 15
- 241000699670 Mus sp. Species 0.000 abstract description 9
- 230000002688 persistence Effects 0.000 abstract description 8
- 230000002265 prevention Effects 0.000 abstract description 7
- 239000000243 solution Substances 0.000 description 44
- 210000004027 cell Anatomy 0.000 description 29
- 239000000427 antigen Substances 0.000 description 26
- 108091007433 antigens Proteins 0.000 description 26
- 102000036639 antigens Human genes 0.000 description 26
- 229960000814 tetanus toxoid Drugs 0.000 description 24
- 230000005847 immunogenicity Effects 0.000 description 22
- 239000003814 drug Substances 0.000 description 20
- 210000001744 T-lymphocyte Anatomy 0.000 description 19
- 230000001580 bacterial effect Effects 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 238000011161 development Methods 0.000 description 19
- 229940079593 drug Drugs 0.000 description 18
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 230000000890 antigenic effect Effects 0.000 description 16
- 239000000969 carrier Substances 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 16
- 208000015181 infectious disease Diseases 0.000 description 15
- 229920001184 polypeptide Polymers 0.000 description 15
- 102000004196 processed proteins & peptides Human genes 0.000 description 15
- 241000894006 Bacteria Species 0.000 description 14
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 14
- 230000010102 embolization Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 230000001681 protective effect Effects 0.000 description 14
- 241000282414 Homo sapiens Species 0.000 description 13
- 230000027455 binding Effects 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 11
- 206010028980 Neoplasm Diseases 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 10
- 230000001419 dependent effect Effects 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 244000005700 microbiome Species 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 206010035664 Pneumonia Diseases 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 206010012735 Diarrhoea Diseases 0.000 description 8
- 208000005577 Gastroenteritis Diseases 0.000 description 8
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 210000003000 inclusion body Anatomy 0.000 description 8
- 244000052769 pathogen Species 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 208000035473 Communicable disease Diseases 0.000 description 7
- 201000009906 Meningitis Diseases 0.000 description 7
- 229960001212 bacterial vaccine Drugs 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 229960003983 diphtheria toxoid Drugs 0.000 description 7
- 229960004679 doxorubicin Drugs 0.000 description 7
- 229940045808 haemophilus influenzae type b Drugs 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 7
- 230000001717 pathogenic effect Effects 0.000 description 7
- 229940031999 pneumococcal conjugate vaccine Drugs 0.000 description 7
- 229940031937 polysaccharide vaccine Drugs 0.000 description 7
- 239000013641 positive control Substances 0.000 description 7
- 230000006798 recombination Effects 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 6
- 102100037840 Dehydrogenase/reductase SDR family member 2, mitochondrial Human genes 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 101710188053 Protein D Proteins 0.000 description 6
- 101710132893 Resolvase Proteins 0.000 description 6
- 229940124941 Rotarix Drugs 0.000 description 6
- 206010067470 Rotavirus infection Diseases 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 230000001900 immune effect Effects 0.000 description 6
- 210000000987 immune system Anatomy 0.000 description 6
- 229920001542 oligosaccharide Polymers 0.000 description 6
- 150000002482 oligosaccharides Chemical class 0.000 description 6
- 150000004804 polysaccharides Polymers 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000002255 vaccination Methods 0.000 description 6
- 241000606790 Haemophilus Species 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002158 endotoxin Substances 0.000 description 5
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 108010071134 CRM197 (non-toxic variant of diphtheria toxin) Proteins 0.000 description 4
- 206010020843 Hyperthermia Diseases 0.000 description 4
- 208000035109 Pneumococcal Infections Diseases 0.000 description 4
- 108010067390 Viral Proteins Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 244000052616 bacterial pathogen Species 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 208000022760 infectious otitis media Diseases 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 229920006008 lipopolysaccharide Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 244000000010 microbial pathogen Species 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- 230000007918 pathogenicity Effects 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 208000005189 Embolism Diseases 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 101710138767 Non-structural glycoprotein 4 Proteins 0.000 description 3
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 3
- 201000005702 Pertussis Diseases 0.000 description 3
- 101710138270 PspA protein Proteins 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 229940124878 RotaTeq Drugs 0.000 description 3
- 102100031056 Serine protease 57 Human genes 0.000 description 3
- 101710197596 Serine protease 57 Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000001727 anti-capsular Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 208000022362 bacterial infectious disease Diseases 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000004154 complement system Effects 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 231100000517 death Toxicity 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000036031 hyperthermia Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 229940124590 live attenuated vaccine Drugs 0.000 description 3
- 229940023012 live-attenuated vaccine Drugs 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 150000002772 monosaccharides Chemical group 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 230000001018 virulence Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 208000003163 Cavernous Hemangioma Diseases 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 229940032024 DPT vaccine Drugs 0.000 description 2
- 102000016607 Diphtheria Toxin Human genes 0.000 description 2
- 108010053187 Diphtheria Toxin Proteins 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 206010061968 Gastric neoplasm Diseases 0.000 description 2
- 208000005168 Intussusception Diseases 0.000 description 2
- 241000588650 Neisseria meningitidis Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000009362 Pneumococcal Pneumonia Diseases 0.000 description 2
- 206010035728 Pneumonia pneumococcal Diseases 0.000 description 2
- 101800003658 Protein VP4 Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 229940124859 Rotavirus vaccine Drugs 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 230000029662 T-helper 1 type immune response Effects 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 108700004675 bleomycetin Proteins 0.000 description 2
- QYOAUOAXCQAEMW-UTXKDXHTSA-N bleomycin A5 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCNCCCCN)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QYOAUOAXCQAEMW-UTXKDXHTSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 210000003022 colostrum Anatomy 0.000 description 2
- 235000021277 colostrum Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000004643 cyanate ester Substances 0.000 description 2
- 230000000120 cytopathologic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- 231100000676 disease causative agent Toxicity 0.000 description 2
- 230000006862 enzymatic digestion Effects 0.000 description 2
- 238000011841 epidemiological investigation Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000006054 immunological memory Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 229960005050 live attenuated rota virus Drugs 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229940031348 multivalent vaccine Drugs 0.000 description 2
- 239000002539 nanocarrier Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 150000007523 nucleic acids Chemical group 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229940023143 protein vaccine Drugs 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 208000026775 severe diarrhea Diseases 0.000 description 2
- 230000001568 sexual effect Effects 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 208000022218 streptococcal pneumonia Diseases 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000002626 targeted therapy Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- 229940031767 13-valent pneumococcal conjugate vaccine Drugs 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000031729 Bacteremia Diseases 0.000 description 1
- 101000805768 Banna virus (strain Indonesia/JKT-6423/1980) mRNA (guanine-N(7))-methyltransferase Proteins 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241001493036 Canine rotavirus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710197658 Capsid protein VP1 Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 101000686790 Chaetoceros protobacilladnavirus 2 Replication-associated protein Proteins 0.000 description 1
- 101000864475 Chlamydia phage 1 Internal scaffolding protein VP3 Proteins 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010012741 Diarrhoea haemorrhagic Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 208000004232 Enteritis Diseases 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 101000803553 Eumenes pomiformis Venom peptide 3 Proteins 0.000 description 1
- 241000242711 Fasciola hepatica Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 206010017913 Gastroenteritis rotavirus Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 101000583961 Halorubrum pleomorphic virus 1 Matrix protein Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229940124726 Japanese encephalitis vaccine Drugs 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 229940124862 Measles virus vaccine Drugs 0.000 description 1
- 206010027253 Meningitis pneumococcal Diseases 0.000 description 1
- IAOZJIPTCAWIRG-UHFFFAOYSA-N Methyl alpha-aspartylphenylalaninate Chemical compound OC(=O)CC(N)C(=O)NC(C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-UHFFFAOYSA-N 0.000 description 1
- 101710081079 Minor spike protein H Proteins 0.000 description 1
- 241000711386 Mumps virus Species 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033078 Otitis media Diseases 0.000 description 1
- 101710116435 Outer membrane protein Proteins 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 229940124867 Poliovirus vaccine Drugs 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000702665 Porcine rotavirus Species 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 229940124950 Prevnar 13 Drugs 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 101900161471 Pseudomonas aeruginosa Exotoxin A Proteins 0.000 description 1
- 101710118046 RNA-directed RNA polymerase Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 229940124968 Rubella virus vaccine Drugs 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 102000005686 Serum Globulins Human genes 0.000 description 1
- 108010045362 Serum Globulins Proteins 0.000 description 1
- 241000702677 Simian rotavirus Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000006180 TBST buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 101710108545 Viral protein 1 Proteins 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 201000009840 acute diarrhea Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 208000037844 advanced solid tumor Diseases 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000010108 arterial embolization Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- -1 diphtheria toxoid Diseases 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 208000006275 fascioliasis Diseases 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940029584 haemophilus influenzae type b conjugate vaccine Drugs 0.000 description 1
- 208000027909 hemorrhagic diarrhea Diseases 0.000 description 1
- 210000002767 hepatic artery Anatomy 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 229940124736 hepatitis-B vaccine Drugs 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 210000003701 histiocyte Anatomy 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 238000000569 multi-angle light scattering Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 244000039328 opportunistic pathogen Species 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 208000004593 pneumococcal meningitis Diseases 0.000 description 1
- 229940124733 pneumococcal vaccine Drugs 0.000 description 1
- 229960001539 poliomyelitis vaccine Drugs 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 229940021747 therapeutic vaccine Drugs 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 229940021648 varicella vaccine Drugs 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/09—Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/385—Haptens or antigens, bound to carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/575—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6037—Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6068—Other bacterial proteins, e.g. OMP
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6075—Viral proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/62—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
- A61K2039/627—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/70—Multivalent vaccine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2720/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
- C12N2720/00011—Details
- C12N2720/12011—Reoviridae
- C12N2720/12311—Rotavirus, e.g. rotavirus A
- C12N2720/12334—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2720/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
- C12N2720/00011—Details
- C12N2720/12011—Reoviridae
- C12N2720/12311—Rotavirus, e.g. rotavirus A
- C12N2720/12341—Use of virus, viral particle or viral elements as a vector
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种疫苗,具体说,是涉及一种缀合疫苗疫苗及其制备方法,属于生物技术领域。The present invention relates to a vaccine, in particular to a conjugated vaccine vaccine and a preparation method thereof, belonging to the field of biotechnology.
背景技术Background technique
一、微生物对人体的危害及应对措施1. Harm of microorganisms to human body and countermeasures
微生物通常是指那些个体体积直径一般小于1mm的生物群体,它们结构简单,大多是单细胞,还有些甚至连细胞结构也没有,我们身边无时无刻不存在着微生物,通常会借助显微镜或者电子显微镜才能看清它们的形态和结构;其中,致病微生物是指能够引起人类、动物和植物的病害,具有致病性的微生物。一种病原体的致病性有赖于它的侵袭宿主并在体内繁殖和抵御宿主抵抗力而不被其消灭的能力。微生物致病性有种属特征,致病能力强弱的程度称为毒力。感染性疾病的成立并非由微生物的毒力单方面决定,还要视宿主的健康情况与免疫功能状态。一般而言,毒力强的微生物感染未曾免疫过的机体,能引起病理损害出现显性感染等,而正常机体却能抵抗许多低毒微生物(如条件致病菌)的损害,但当宿主抵抗力降低时则可对这些微生物易感而致病。病原体的毒力与宿主抵抗力两者之间的较量,引出感染性疾病的发生、发展、转归和预后,由于病原体和宿主之间适应程度不同,双方抗衡的结局各异,产生各种不同的感染谱,即感染过程的不同表现。致病性是对特定宿主而言,有的只对人类有致病性,有的只对某些动物,而有的则属人畜共患性微生物。而此时宿主通常只能通过自身的免疫系统来对抗微生物的感染,死亡率非常高,致使各研究学者研究出了疫苗来对抗致病性微生物对人体的侵害。Microorganisms usually refer to those biological groups whose individual volume and diameter are generally less than 1mm. They have simple structures, most of which are single cells, and some even have no cellular structure. There are microorganisms around us all the time, usually only with the help of a microscope or electron microscope. Their morphology and structure; among them, pathogenic microorganisms refer to pathogenic microorganisms that can cause diseases of humans, animals and plants. The pathogenicity of a pathogen depends on its ability to invade the host and reproduce in the body and resist host resistance without being destroyed by it. The pathogenicity of microorganisms has species characteristics, and the degree of pathogenicity is called virulence. The establishment of infectious diseases is not unilaterally determined by the virulence of microorganisms, but also depends on the health and immune function of the host. In general, highly virulent microorganisms infect unimmunized organisms, which can cause pathological damage and overt infection, while normal organisms can resist the damage of many low-virulence microorganisms (such as opportunistic pathogens), but when the host resists When the force is reduced, it can be susceptible to these microorganisms and cause disease. The contest between the virulence of pathogens and host resistance leads to the occurrence, development, outcome and prognosis of infectious diseases. Due to the different degrees of adaptation between pathogens and hosts, the outcome of the confrontation between the two parties is different, resulting in various differences. The spectrum of infection, that is, the different manifestations of the infection process. Pathogenicity is for a specific host, some are only pathogenic to humans, some are only to certain animals, and some are zoonotic microorganisms. At this time, the host usually can only fight against the infection of microorganisms through its own immune system, and the mortality rate is very high, so that various researchers have developed vaccines to combat the damage of pathogenic microorganisms to the human body.
而疫苗又分为治疗性和预防性两种,通过治疗性疫苗治疗疾病,并通过预防性疫苗保护人体不受致病性微生物的侵害。通过接种预防性疫苗来预防疾病是人类在一个多世纪的临床实践中,证明是行之有效的手段。经过多年的努力,医学界已经开发出各种不同的疫苗用以预防,诸如细菌、病毒和真菌等,感染造成的各种疾病,极大地提高了人类的健康水平。生物技术的不断发展,促进了疫苗品种的多样化。今天,用以预防病毒导致的传染病有灭活病毒技术开发出来的疫苗,如乙脑疫苗、脊髓灰质炎疫苗、流感疫苗等;用减毒病毒技术开发出来的减毒活疫苗,如轮状病毒疫苗、口服脊髓灰质炎病毒疫苗、麻疹病毒疫苗、腮腺炎病毒疫苗、风疹病毒疫苗和水痘疫苗等。预防细菌性传染病的有用蛋白和多糖等生物大分子纯化技术开发出来的细菌类疫苗,如破伤风类毒素、白喉类毒素、百日咳类毒素及其亚细胞组分、流行性脑膜炎球菌多糖和23价肺炎球菌多糖等。用基因重组蛋白技术开发出来的疫苗,如乙肝表面抗原(预防乙型肝炎)、人类乳头状类病毒颗粒病毒(预防子宫颈癌)等。用半化学结合技术开发出来的预防脑膜炎和肺炎的细菌疫苗,如流行性嗜血杆菌b型多糖-蛋白结合疫苗、7价或10价肺炎球菌多糖-蛋白结合疫苗以及4价脑膜炎球菌多糖-蛋白结合疫苗。由此可见,医学生物技术的发展,是疫苗产品不断发展的原动力,通过对生物技术的不断改进,能够开发出更多的新型疫苗产品来应付不同的传染病对人类健康的挑战。Vaccines are divided into two types: therapeutic and preventive. Therapeutic vaccines are used to treat diseases, and preventive vaccines are used to protect the human body from pathogenic microorganisms. Preventing disease by inoculating preventive vaccines is a proven and effective means of human clinical practice for more than a century. After years of efforts, the medical community has developed various vaccines to prevent various diseases caused by infections such as bacteria, viruses and fungi, which have greatly improved human health. The continuous development of biotechnology has promoted the diversification of vaccine varieties. Today, there are vaccines developed with inactivated virus technology to prevent infectious diseases caused by viruses, such as Japanese encephalitis vaccine, polio vaccine, influenza vaccine, etc.; live attenuated vaccines developed with attenuated virus technology, such as rotavirus Virus vaccine, oral poliovirus vaccine, measles virus vaccine, mumps virus vaccine, rubella virus vaccine and chickenpox vaccine, etc. Bacterial vaccines developed by purification technology of biological macromolecules such as useful proteins and polysaccharides for the prevention of bacterial infectious diseases, such as tetanus toxoid, diphtheria toxoid, pertussis toxoid and its subcellular components, meningococcal polysaccharide and 23-valent pneumococcal polysaccharide, etc. Vaccines developed with gene recombinant protein technology, such as hepatitis B surface antigen (prevention of hepatitis B), human papilloid virus particle virus (prevention of cervical cancer) and so on. Bacterial vaccines developed by semi-chemical combination technology to prevent meningitis and pneumonia, such as Haemophilus influenzae type b polysaccharide-protein conjugate vaccine, 7-valent or 10-valent pneumococcal polysaccharide-protein conjugate vaccine, and 4-valent meningococcal polysaccharide - Protein conjugate vaccines. It can be seen that the development of medical biotechnology is the driving force for the continuous development of vaccine products. Through the continuous improvement of biotechnology, more new vaccine products can be developed to meet the challenges of different infectious diseases to human health.
二、结合疫苗概述2. Overview of conjugate vaccines
多糖是病原菌中的一种重要免疫有效成分,有菌体多糖(OPS)和荚膜多糖(CPS)之分。当病原体侵入机体后,它们作为免疫原,能刺激机体产生保护性免疫应答。但是,多糖分子属于T细胞不依赖性抗原(Ti-Ag),免疫原性较弱,接种婴幼儿后免疫效果尤其不理想,而目前许多危害严重的疾病如流感嗜血杆菌(Hib)引起的脑膜炎、E.Coli O 157:H7引起的小儿出血性腹泻脱水等在婴幼儿中高发且临床无有效的治疗办法,病死率高(王燕等,结合疫苗概述[J],微生物学免疫学进展,2000,28(1):60-63)。为了提高多糖疫苗的免疫原性,国外于本世纪20年代初兴起了多糖和蛋白的化学结合疫苗,即缀合疫苗,结合(以蛋白为载体的细菌多糖类)疫苗采用化学方法将多糖共价结合在蛋白载体上制备成多糖-蛋白结合疫苗,用于提高细菌疫苗多糖抗原的免疫原性,如b型流感嗜血杆菌结合疫苗、脑膜炎球菌结合疫苗和肺炎球菌结合疫苗等,短短几十年其发展相当迅速,已取得显著成果。Polysaccharide is an important immune active component in pathogenic bacteria, and it can be divided into bacterial polysaccharide (OPS) and capsular polysaccharide (CPS). When pathogens invade the body, they act as immunogens and can stimulate the body to produce a protective immune response. However, polysaccharide molecules belong to T cell-independent antigens (Ti-Ag), and their immunogenicity is weak, and the immune effect is particularly unsatisfactory after vaccination for infants and young children. At present, many serious diseases such as Haemophilus influenzae (Hib) cause Meningitis, hemorrhagic diarrhea and dehydration in children caused by E.Coli O 157:H7 are high in infants and young children, and there is no effective clinical treatment method, and the mortality rate is high (Wang Yan et al. Overview of combined vaccines [J], Microbiology Immunology Progress, 2000, 28(1):60-63). In order to improve the immunogenicity of polysaccharide vaccines, chemical conjugate vaccines of polysaccharides and proteins emerged in the early 1920s, that is, conjugate vaccines. The conjugate (bacterial polysaccharide with protein as carrier) vaccine uses chemical methods to combine polysaccharides. The polysaccharide-protein conjugate vaccine is prepared by valence binding on a protein carrier, which is used to improve the immunogenicity of bacterial vaccine polysaccharide antigens, such as Haemophilus influenzae type b conjugate vaccine, meningococcal conjugate vaccine and pneumococcal conjugate vaccine. It has developed rapidly for decades and has achieved remarkable results.
三、肺炎球菌的危害及其流行病学研究3. The harm of pneumococcus and its epidemiological research
由肺炎球菌(肺链)所引起的感染是全世界发病率和死亡率的主要起因。肺炎、发热性菌血症和脑膜炎是侵入性肺炎球菌性疾病的最常见表现形式,而呼吸道内的细菌扩散可导致中耳感染、窦炎或复发性支气管炎。与侵入性疾病相比,非侵入性的表现形式通常不那么严重,但更多见。由于抗生素耐药性传染病的扩散,以及肺炎球菌肺炎经常在流感感染之后出现,肺炎球菌疾病在流感期间发作的可能性进一步增加。Infections caused by pneumococcus (lung chain) are a major cause of morbidity and mortality worldwide. Pneumonia, febrile bacteremia, and meningitis are the most common forms of invasive pneumococcal disease, while bacterial spread in the respiratory tract can lead to middle ear infections, sinusitis, or recurrent bronchitis. Non-invasive manifestations are usually less severe but more common than invasive disease. The likelihood of pneumococcal disease flares during influenza is further increased due to the spread of antibiotic-resistant infectious diseases and the fact that pneumococcal pneumonia often follows influenza infection.
由肺炎链球菌引发的疾病已成为全球一个重要的公共卫生问题。肺炎球菌已成为全球儿童的头号杀手。我国肺炎的病死率为16.4%,其中50岁以上中老年人及1岁以下婴幼儿分别高达28.6%和22.0%。我国肺炎球菌在健康儿童中的携带率较高,资料统计显示,在北方地区健康儿童中的携带率为24.2%,南方地区为31.3%。而所述病是导致5岁以下儿童死亡的重要原因。主要原因在于婴幼儿免疫系统的发育尚不完善,免疫力较弱。并且年龄越小的婴儿,免疫力越弱。肺炎球菌大约有90种血清型(菌株),我国的统计资料显示肺炎球菌感染菌株前几个血清型依次为:5、6、19、23、14、2、4型。据一项收集了860株肺炎球菌分离株的研究显示,有109株(12.7%)表现为血清群6,在中国肺炎球菌血清型6的红霉素耐药性达100%,其中的6A、6B和6C型分别为62株(56.9%)、38株(34.9%)和9株(8.2%)。Disease caused by Streptococcus pneumoniae has become a major public health problem worldwide. Pneumococcus has become the number one killer of children worldwide. The fatality rate of pneumonia in my country is 16.4%, of which the middle-aged and elderly people over 50 years old and infants and young children under 1 year old are as high as 28.6% and 22.0% respectively. The carrier rate of pneumococcus in healthy children in my country is relatively high. Statistics show that the carrier rate among healthy children in northern regions is 24.2% and that in southern regions is 31.3%. The disease is an important cause of death in children under 5 years of age. The main reason is that the development of the immune system of infants and young children is not perfect and the immunity is weak. And the younger the baby, the weaker the immune system. There are about 90 serotypes (strains) of pneumococcus. Statistics in my country show that the first serotypes of pneumococcal infection strains are: 5, 6, 19, 23, 14, 2, and 4. According to a study that collected 860 pneumococcal isolates, 109 (12.7%) showed serogroup 6, and the erythromycin resistance of pneumococcal serotype 6 in China reached 100%, of which 6A, Types 6B and 6C were 62 strains (56.9%), 38 strains (34.9%) and 9 strains (8.2%).
从化学结构上来看,以上病原体拥有一个细胞表面荚膜多糖(Capsularpolysaccharide,CPS)或脂多糖(Lipopolysaccharide,LPS)壳,或者两者兼有,其功能是帮助病原体感染宿主。荚膜多糖能够屏蔽细菌细胞表面功能成分免于被宿主免疫系统识别,防止补体系统被细菌表面蛋白激活和免疫细胞吞噬,如果细菌被吞噬,荚膜多糖能够防止细菌被杀灭。大多数病原菌中,不同的菌株表达不同结构的荚膜多糖和脂多糖,产生多种不同的血清型菌株。肺炎球菌所致的肺炎和脑膜炎是由已知的90种血清型中的很大一部分菌株感染所导致的。In terms of chemical structure, the above pathogens possess a cell surface capsular polysaccharide (CPS) or lipopolysaccharide (LPS) shell, or both, whose function is to help the pathogens infect the host. Capsular polysaccharides can shield bacterial cell surface functional components from being recognized by the host immune system, preventing the complement system from being activated by bacterial surface proteins and phagocytosed by immune cells. If bacteria are phagocytosed, capsular polysaccharides can prevent bacteria from being killed. In most pathogenic bacteria, different strains express different structures of capsular polysaccharides and lipopolysaccharides, resulting in a variety of different serotype strains. Pneumococcal pneumonia and meningitis are caused by infection with a large proportion of the 90 known serotypes.
由此可见,大多数细菌多糖类疫苗必需含有多种不同种类的细菌多糖以提高致病菌株覆盖率,优化和选择包含何种细菌或者血清型多糖在疫苗中是一个非常复杂的流行病学问题。一旦明确何种多糖抗体具有保护作用,则可用这种多糖作为免疫原来生产疫苗。It can be seen that most bacterial polysaccharide vaccines must contain a variety of different types of bacterial polysaccharides to improve the coverage of pathogenic strains. Optimizing and selecting which bacteria or serotype polysaccharides to contain is a very complex epidemiology in vaccines. question. Once it is clear which polysaccharide antibodies are protective, this polysaccharide can be used as an immunogen to produce vaccines.
中国生物技术集团成都生物制品研究所生产的23价肺炎球菌疫苗是选取了23种最常见的致病菌(1,2,3,4,5,6B,7F,8,9N,9V,10A,11A,12F,14,15B,17F,18C,19A,19F,20,22F,23F,33F),分别发酵培养并分离提纯肺炎球菌荚膜上的各型多糖,按等比例混合制成疫苗。细菌的多糖是一种胸腺非依赖性抗原,这种抗原与胸腺依赖性抗原的主要区别在于前者不需要T淋巴细胞的辅助来产生抗体。临床使用证明,荚膜多糖制作的疫苗明确有效,并在多个国家广泛使用。但是这类多糖疫苗存在以下问题:(1)在幼小动物或婴幼儿体内只能产生微弱的免疫反应,甚至不产生免疫反应,免疫反应随年龄的增长而增强;(2)产生低亲和力的抗体;(3)只产生短暂的免疫反应,不具备反复接种时的免疫记忆和免疫增强效应;(4)容易产生免疫耐受;(5)普通的佐剂对这种抗原不易起到免疫增强的作用,23价多糖疫苗对于侵入型肺链感染的保护率为50-70%,而且只能用于2岁以上的人群接种,而肺炎的高峰发病年龄为6-12月龄;(6)具有重复结构的多糖是T细胞独立型2类的免疫原,没有T细胞的参与,它们是无法诱导免疫记忆效应,刺激机体产生的抗体主要是IgM和IgG2,不能够有效地激活补体系统。The 23-valent pneumococcal vaccine produced by Chengdu Institute of Biological Products of China Biotechnology Group is selected from the 23 most common pathogenic bacteria (1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F), respectively ferment and culture and separate and purify various types of polysaccharides on the pneumococcal capsule, and mix them in equal proportions to make a vaccine. Bacterial polysaccharide is a thymus-independent antigen. The main difference between this antigen and thymus-dependent antigen is that the former does not require the help of T lymphocytes to produce antibodies. Clinical use has proved that the vaccine made by capsular polysaccharide is clearly effective and widely used in many countries. However, this type of polysaccharide vaccine has the following problems: (1) in young animals or infants, it can only produce a weak immune response, or even no immune response, and the immune response increases with age; (2) produce low-affinity antibodies (3) It only produces a short-term immune response, and does not have the immune memory and immune enhancement effects during repeated vaccination; (4) It is easy to produce immune tolerance; (5) Ordinary adjuvants are not easy to play an immune enhancing effect on this antigen. The 23-valent polysaccharide vaccine has a protection rate of 50-70% against invasive lung chain infection, and can only be used for vaccination in people over 2 years old, while the peak age of onset of pneumonia is 6-12 months old; (6) with Polysaccharides with repetitive structures are T cell-independent type 2 immunogens. Without the participation of T cells, they cannot induce immune memory effects. The antibodies that stimulate the body to produce are mainly IgM and IgG2, which cannot effectively activate the complement system.
半化学结合技术(也称结合技术)开发疫苗的方法是从20世纪80年代出现的开发细菌疫苗的技术。John Robbins通过将流行性嗜血杆菌b型(Haemophilusinfluenzaetypeb,Hib)荚膜多糖(Polyribosylribitolphosphate,PRP),用共价键的形式连接到蛋白载体(破伤风类毒素)合成出了流行性嗜血杆菌b型多糖PRP-破伤风类毒素结合疫苗(PRP-TT),在免疫动物后,能够产生杀菌的保护性抗体,从而开创了新一代细菌疫苗开发技术。特别有意义的是,对于年龄小于2岁的婴幼儿来说,由于免疫系统发育不完善,多糖对于婴幼儿是属于一种非T细胞依赖性抗原,不能够刺激机体如成人一样产生长效的针对于所述多糖来源的细菌特异性保护IgG抗体。因此,多糖对于小于2岁的婴幼儿是一种半抗原,不能够作为疫苗来接种小于2岁的儿童。当将细菌多糖以共价键的形式连接到蛋白载体,如破伤风类毒素(Tetanus Toxoid,TT),由于蛋白质是一种T细胞依赖性抗原,能够将共价键连接的多糖转变成T细胞依赖性抗原,从而刺激机体产生针对于所述多糖的特异性IgG抗体,保护机体不受细菌的感染。流行性嗜血杆菌b型多糖-破伤风类毒素(PRP-TT)结合疫苗开发的成功,开创了一个开发细菌疫苗的技术平台,即将细菌多糖,如荚膜多糖、O-特异性多糖(O-specificpolysaccharide)、或寡聚糖(Oligosaccharide),以共价键连接到蛋白载体上而制成的结合疫苗。基于这一概念的成功,医学生物研究界通过采用同一种化学合成方法开发出了不同细菌的结合疫苗;同样也用不同的合成技术开发出同一种细菌的结合疫苗。The method of developing vaccines by semi-chemical combination technology (also known as combination technology) is a technology for developing bacterial vaccines that emerged in the 1980s. John Robbins synthesized Haemophilus influenzae b by covalently linking the capsular polysaccharide (Polyribosylribitolphosphate, PRP) of Haemophilus influenzaetypeb (Hib) to a protein carrier (tetanus toxoid). Type polysaccharide PRP-tetanus toxoid conjugate vaccine (PRP-TT) can produce bactericidal protective antibodies after immunizing animals, thus creating a new generation of bacterial vaccine development technology. Of particular significance is that for infants and young children younger than 2 years old, due to the immature immune system, polysaccharide is a T-cell-independent antigen for infants and young children, and cannot stimulate the body to produce long-term effects like adults. IgG antibodies are specifically protected against bacteria from which the polysaccharide is derived. Therefore, polysaccharide is a hapten for infants and young children under the age of 2, and cannot be used as a vaccine to vaccinate children under 2 years of age. When bacterial polysaccharides are covalently linked to protein carriers, such as Tetanus Toxoid (TT), since protein is a T cell-dependent antigen, it can convert covalently linked polysaccharides into T cells. dependent antigen, thereby stimulating the body to produce specific IgG antibodies against the polysaccharide, and protecting the body from bacterial infection. The successful development of Haemophilus influenzae type b polysaccharide-tetanus toxoid (PRP-TT) conjugate vaccine has created a technological platform for the development of bacterial vaccines, namely bacterial polysaccharides, such as capsular polysaccharides, O-specific polysaccharides (O -specific polysaccharide), or oligosaccharide (Oligosaccharide), a conjugate vaccine made by covalently linking to a protein carrier. Based on the success of this concept, the medical biological research community has developed conjugate vaccines of different bacteria by using the same chemical synthesis method;
荚膜多糖能够屏蔽细菌细胞表面功能成分,使其免于被宿主免疫系统识别,防止补体系统被细菌表面的蛋白激活和免疫细胞吞噬。如果细菌被免疫细胞吞噬,荚膜多糖也能够避免细菌被杀灭。荚膜多糖是脑膜奈瑟氏菌的主要抗原成分之一,作为疫苗对较大的儿童有一定的保护力。然而,荚膜多糖对2岁以下婴幼儿、老年人以及B细胞免疫缺陷的人群免疫效果差,接种剂不能达到抗体保护水平,且抗体很快消失。所述多糖疫苗与其它多糖疫苗一样,属T细胞非依赖性抗原,具有年龄相关的免疫原性,且不诱生T细胞依赖性的加强应答。通过将多糖与某种蛋白质共价结合,可使多糖转化成T细胞依赖性抗原,从而刺激婴幼儿的T细胞依赖性抗体的合成,并可产生加强应答,同时还能提高免疫球蛋白(IgG)的抗体比例。这种多糖结合疫苗不仅能够保护婴幼儿(2岁以下儿童),还能够大大地增强抵抗力差的病人对细菌感染的抵抗力,因此具有十分广阔的应用前景。1980年,JohnRobbins用溴化氰来随机活化Hib荚膜多糖,然后,将己二酰二肼(Adipic Dihydrazide,ADH)作为连接物(linker)加到活化的多糖上,最后以EDC法将衍化后的多糖共价键地连接到载体蛋白破伤风类毒素上,合成出了流行性嗜血杆菌b型多糖-破伤风类毒素结合疫苗(PRP-TT)。由于在每个多糖链上有多个活化点,蛋白载体上同样的有多个连接点,形成的结合物是一种多糖和蛋白交叉连接的大分子,平均分子量约为5×106Da。1980年,Harold Jennings在美国专利4356170里,陈述了用牛血清蛋白(Bovine serum albumin,BSA)为载体,将脑膜炎球菌的A,C群多糖通过还原胺法共价键地连接到BSA上,合成出了流行性脑膜炎多糖-BAS结合疫苗。1987年和1990年,Porter Anderson分别在美国专利4673574和4902506里,描述了用变异无毒株白喉毒素197(Cross reaction material sub197,CRM197)作为载体蛋白,以还原胺法合成了流行性嗜血杆菌b型寡聚糖-变异无毒株白喉毒素197(HbOC-CRM197)结合疫苗。具体的方法是用高碘酸钠氧化Hib荚膜多糖,产生在两末端为醛基的寡聚糖,通过还原剂氰基硼氢化钠(sodiumcyanoborohydride),将寡聚糖共价键连接到蛋白载体上。形成分子量约为90kDa的脂多糖结合物,制成了含有30%的多糖和每一个蛋白上带有6个糖分子的结合疫苗。随后,美国默克(Merck,Sharpe and Dohme)以巯基化学方法,用纯化的奈瑟氏脑膜炎B群菌株(Neisseria meningitidis groups B)细菌表面蛋白复合物(outer membraneprotein complex,OMP)作为蛋白载体,合成出流行性嗜血杆菌b型多糖-细菌表面蛋白复合物(PRP-OMP)结合疫苗。运用这些合成技术,先后开发出了三种现已广泛用于临床接种的流行性嗜血杆菌b型结合疫苗,即PRP-TT、PRP-HbOC和PRP-OMP。Hib结合疫苗的成功为开发其它细菌结合疫苗提供了理论和技术基础,随后的开发进入了技术更为复杂的多价结合疫苗阶段,其原因是某些传染病,如肺炎球菌导致的肺炎、流行性脑膜炎球菌所致的脑膜炎等,可由多种不同的血清型或菌株感染所致,并且各血清型或菌株间由于细菌表面多糖的化学结构的不同,其抗体没有交叉免疫反应,因此,接种单一的血清型或菌株结合疫苗,无法保护被接种人体免于其它血清型或菌株的感染。由于这个原因,合成和配制多价结合疫苗来扩大疫苗的保护覆盖率成为开发的主要目标。Capsular polysaccharides can shield bacterial cell surface functional components from being recognized by the host immune system, preventing the complement system from being activated by proteins on the bacterial surface and phagocytosed by immune cells. Capsular polysaccharides can also prevent bacteria from being killed if they are engulfed by immune cells. Capsular polysaccharide is one of the main antigenic components of Neisseria meningitidis, and as a vaccine, it has certain protection for older children. However, capsular polysaccharide has poor immune effect on infants and young children under 2 years old, the elderly and people with B cell immunodeficiency. The polysaccharide vaccine, like other polysaccharide vaccines, is a T-cell-independent antigen, has age-related immunogenicity, and does not induce a T-cell-dependent booster response. By covalently combining polysaccharides with a certain protein, the polysaccharides can be converted into T-cell-dependent antigens, thereby stimulating the synthesis of T-cell-dependent antibodies in infants and young children, and can produce a booster response, while also increasing the immunoglobulin (IgG) ) of the antibody ratio. This polysaccharide conjugate vaccine can not only protect infants and young children (children under 2 years old), but also can greatly enhance the resistance of patients with poor resistance to bacterial infection, so it has a very broad application prospect. In 1980, John Robbins used cyanogen bromide to randomly activate the Hib capsular polysaccharide, then, Adipic Dihydrazide (ADH) was added to the activated polysaccharide as a linker, and finally the derivatized polysaccharide was derivatized by the EDC method. The polysaccharide is covalently linked to the carrier protein tetanus toxoid to synthesize the Haemophilus influenzae type b polysaccharide-tetanus toxoid conjugate vaccine (PRP-TT). Since there are multiple activation points on each polysaccharide chain, there are also multiple connection points on the protein carrier, and the formed conjugate is a macromolecule cross-linked between polysaccharide and protein, with an average molecular weight of about 5×106Da. In 1980, Harold Jennings stated in U.S. Patent No. 4,356,170 that bovine serum albumin (BSA) was used as a carrier to covalently link the A and C groups of meningococcal polysaccharides to BSA by reducing amine method. Synthesized meningitis polysaccharide-BAS conjugate vaccine. In 1987 and 1990, Porter Anderson described in U.S. patents 4,673,574 and 4,902,506, respectively, that the mutated avirulent strain of diphtheria toxin 197 (Cross reaction material sub197, CRM197) was used as a carrier protein to synthesize Haemophilus epidemic by reducing amine method. Type b oligosaccharide-variant avirulent diphtheria toxin 197 (HbOC-CRM197) conjugate vaccine. The specific method is to oxidize the Hib capsular polysaccharide with sodium periodate to generate oligosaccharides with aldehyde groups at both ends, and the oligosaccharides are covalently linked to the protein carrier through the reducing agent sodium cyanoborohydride (sodium cyanoborohydride). superior. A lipopolysaccharide conjugate with a molecular weight of about 90kDa was formed, and a conjugate vaccine containing 30% polysaccharide and 6 sugar molecules on each protein was prepared. Subsequently, Merck, Sharpe and Dohme in the United States used thiol chemistry to use purified Neisseria meningitidis groups B bacterial surface protein complex (outer membraneprotein complex, OMP) as a protein carrier, Haemophilus influenzae type b polysaccharide-bacterial surface protein complex (PRP-OMP) conjugate vaccine was synthesized. Using these synthetic techniques, three types of Haemophilus epidemic b conjugate vaccines, which are now widely used in clinical vaccination, have been developed successively, namely PRP-TT, PRP-HbOC and PRP-OMP. The success of Hib conjugate vaccine provides a theoretical and technical basis for the development of other bacterial conjugate vaccines, and subsequent development has entered the stage of more complex multivalent conjugate vaccines. The reason is that some infectious diseases, such as pneumonia caused by pneumococcus, epidemic Meningitis caused by meningococcus, etc., can be caused by a variety of different serotypes or strains of infection, and due to the difference in the chemical structure of bacterial surface polysaccharides between serotypes or strains, their antibodies have no cross-immunity reaction. Therefore, Vaccination with a single serotype or strain conjugate vaccine does not protect the vaccinated person from infection by other serotypes or strains. For this reason, synthesis and formulation of multivalent conjugate vaccines to expand the protective coverage of vaccines has become a major goal of development.
通过多年的努力,用结合技术开发出了多种覆盖率广的多价结合疫苗。细菌荚膜多糖-蛋白结合疫苗最早出现在20世纪30年代,Goebel和Avery将3型肺炎球菌多糖连接到马血清球蛋白上,产生的偶联物能在动物身上产生多糖专一的抗体,同时提供相应的免疫保护。1987年,世界上第一个多糖蛋白结合疫苗,B型流感嗜血杆菌(HiB)多糖-破伤风类毒素(TT)结合疫苗被美国FDA批准进入市场。默克公司、辉瑞公司和诺华公司相继开发了HiB多糖-破伤风类毒素结合疫苗和流行性脑膜炎多糖-破伤风类毒素结合疫苗,并成功上市。2000年,美国惠氏(Wyeth)公司成功开发并上市了7价肺炎球菌多糖-CRM197结合疫苗,是由7个不同的肺炎球菌血清型多糖分别共价键连接到CRM197蛋白载体上,混合配制而成的一种多价疫苗,用以预防小儿肺炎,所述7个血清型肺炎球菌涵盖了北美和欧洲90%以上流行的肺炎球菌不同血清型菌株。2006年,Sanofi Pasteur开发出了4价脑膜炎球菌多糖-破伤风类毒素结合疫苗,用于预防4种流行性脑膜炎球菌群,即A,C,Y,W135,所致的脑膜炎。2009年,GlaxoSmithKline(GSK)也开发出了一种10价肺炎球菌多糖-蛋白质结合疫苗,用以预防10种肺炎球菌血清型所导致的肺炎。所述疫苗运用了三种蛋白质作为蛋白载体,其中最主要的载体是蛋白-D(Protein D,PD),有8个血清型多糖是用这个蛋白作为载体。蛋白-D是用非可分型的流行性嗜血杆菌的基因重组方法表达出来的无酯化表面蛋白,能够刺激机体产生保护性抗体,有潜在的预防非可分型的流行性嗜血杆菌感染所致的急性中耳炎,其他还有破伤风类毒素和白喉内毒素作为作为载体,被分别用作血清型18C和19F的结合疫苗的蛋白载体。从以上结合疫苗产品的设计,可以看出,结合疫苗的开发从单价疫苗过渡到技术上更为复杂的多价疫苗,提高了细菌疫苗的覆盖率。Through years of efforts, a variety of multivalent conjugate vaccines with wide coverage have been developed by combining technology. Bacterial capsular polysaccharide-protein conjugate vaccines first appeared in the 1930s. Goebel and Avery linked type 3 pneumococcal polysaccharides to horse serum globulin, and the resulting conjugates produced polysaccharide-specific antibodies in animals. Provide corresponding immune protection. In 1987, the world's first polysaccharide protein conjugate vaccine, Haemophilus influenzae type B (HiB) polysaccharide-tetanus toxoid (TT) conjugate vaccine was approved by the US FDA to enter the market. Merck, Pfizer and Novartis have successively developed HiB polysaccharide-tetanus toxoid conjugate vaccine and meningitis polysaccharide-tetanus toxoid conjugate vaccine, which have been successfully marketed. In 2000, Wyeth Corporation of the United States successfully developed and marketed a 7-valent pneumococcal polysaccharide-CRM197 conjugate vaccine, which is composed of seven different pneumococcal serotype polysaccharides covalently linked to the CRM197 protein carrier and mixed and formulated. A multivalent vaccine for the prevention of pediatric pneumonia, the 7 serotypes of pneumococcus cover more than 90% of the different serotype strains of pneumococcus circulating in North America and Europe. In 2006, Sanofi Pasteur developed a 4-valent meningococcal polysaccharide-tetanus toxoid conjugate vaccine for the prevention of meningitis caused by 4 meningococcal groups, namely A, C, Y, W135. In 2009, GlaxoSmithKline (GSK) also developed a 10-valent pneumococcal polysaccharide-protein conjugate vaccine to prevent pneumonia caused by 10 pneumococcal serotypes. The vaccine uses three proteins as protein carriers, among which the most important carrier is protein-D (Protein D, PD), and 8 serotype polysaccharides use this protein as the carrier. Protein-D is a non-esterified surface protein expressed by the genetic recombination method of non-typeable Haemophilus influenzae, which can stimulate the body to produce protective antibodies and has the potential to prevent non-typeable Haemophilus influenzae For acute otitis media caused by infection, other tetanus toxoid and diphtheria endotoxin are used as carriers, which are used as protein carriers for conjugate vaccines of serotypes 18C and 19F, respectively. From the design of the above conjugated vaccine products, it can be seen that the development of conjugated vaccines has transitioned from monovalent vaccines to technically more complex multivalent vaccines, improving the coverage of bacterial vaccines.
多糖蛋白缀合疫苗(结合疫苗)是目前最先进的疫苗技术,在特异抗原上加上蛋白质载体,可增加其免疫原性。蛋白质载体具有T细胞依赖特性,多糖蛋白缀合疫苗可将非T细胞依赖性质的多糖抗原转变为T细胞依赖性质的抗原,激发机体的T辅助细胞产生一系列的免疫增强效应。荚膜多糖结合疫苗,在多糖上加蛋白载体,由非T细胞依赖性抗原变为T细胞依赖性抗原,增加其免疫原性。结合疫苗接种后产生的抗体在质量和数量上是一代疫苗的400-1000倍,产生免疫保护更广更强,保护时间更长久,达到高效保护。2000年,美国辉瑞公司第一个7价肺炎球菌结合疫苗上市;美国辉瑞公司开发婴幼儿更有针对性的7(4、6B、9V、14、18C、19F和23F)价肺炎球菌蛋白疫苗,对5岁以下儿童也有效。荚膜多糖蛋白结合疫苗,在多糖上加蛋白载体,由非T细胞依赖性抗原变为T细胞依赖性抗原,可增加其免疫原性,可用于6周龄以上的儿童。目前辉瑞公司正在中国注册13价结合疫苗,增加了6个血清型(1,3,5,7F,6A,19A)。但是我国的资料显示肺炎球菌感染菌株血清型依次为:5、6、1、19、23、14、2、4,辉瑞7价肺炎球菌结合疫苗对我国常见致病菌型覆盖率只有50%左右,而13价结合疫苗的覆盖率也仅有70%。惠氏7价肺炎球菌结合疫苗需要接种4针剂,每针860元,价格昂贵,不利于推广。13价疫苗估计其价格将更为昂贵。因此美国辉瑞公司的7和13价结合疫苗不太适合我国大范围的儿童肺炎预防。Polysaccharide protein conjugate vaccine (conjugated vaccine) is the most advanced vaccine technology at present. Adding protein carrier to specific antigen can increase its immunogenicity. Protein carriers have T cell-dependent properties, and polysaccharide-protein conjugate vaccines can convert T-cell-independent polysaccharide antigens into T-cell-dependent antigens, and stimulate the body's T helper cells to produce a series of immune-enhancing effects. Capsular polysaccharide conjugate vaccine, adding a protein carrier to the polysaccharide, changes from a T cell-independent antigen to a T-cell-dependent antigen, increasing its immunogenicity. The quality and quantity of antibodies produced by the combined vaccine are 400-1000 times that of the first-generation vaccine, resulting in broader and stronger immune protection, longer protection time, and high-efficiency protection. In 2000, the first 7-valent pneumococcal conjugate vaccine was launched by Pfizer in the United States; Pfizer in the United States developed a more targeted 7 (4, 6B, 9V, 14, 18C, 19F and 23F) pneumococcal protein vaccine for infants and young children. Also effective for children under 5 years old. Capsular polysaccharide protein conjugate vaccine, adding a protein carrier to the polysaccharide, changes from a T cell-independent antigen to a T-cell-dependent antigen, which can increase its immunogenicity and can be used for children over 6 weeks old. Pfizer is currently registering a 13-valent conjugate vaccine in China, adding 6 serotypes (1, 3, 5, 7F, 6A, 19A). However, my country's data show that the serotypes of pneumococcal infection strains are: 5, 6, 1, 19, 23, 14, 2, and 4. The Pfizer 7-valent pneumococcal conjugate vaccine covers only about 50% of common pathogenic bacteria in my country. , and the coverage of 13-valent conjugate vaccine is only 70%. Wyeth 7-valent pneumococcal conjugate vaccine requires 4 injections, 860 yuan per injection, which is expensive and not conducive to promotion. The 13-valent vaccine is estimated to be more expensive. Therefore, the 7- and 13-valent conjugate vaccines of Pfizer in the United States are not suitable for the prevention of large-scale childhood pneumonia in my country.
尽管13价肺炎球菌结合疫苗已经上市,但是其中有几个血清型的免疫效果相对其他血清型较低,如3型。且随着不同血清型的增加和同种载体蛋白的重复使用,使得载体蛋白用量增多,其免疫原性反而降低。GlaxoSmithKline在开发10价肺炎球菌多糖结合疫苗的设计中,选择了蛋白-D为载体,其原因是基于二个方面的考虑。其一,是为了避免重复使用已经作为百白破疫苗组分的破伤风类毒素和白喉类毒素作为载体。临床试验表明,当多价肺炎结合疫苗与其他含有与蛋白载体相同组分的单价疫苗或多联疫苗同时接种时,比如Hib-TT、百白破-Hib多糖结合疫苗-IPV(灭活脊髓灰质炎疫苗)-乙肝疫苗(简称6联疫苗),多价肺炎球菌结合疫苗中的大部分血清型多糖的免疫原性会受到抑制,特别是对用破伤风类毒素作为载体的血清型多糖免疫原性影响尤其明显。原因是多价肺炎球菌结合疫苗中作为载体的破伤风类毒素和白喉类毒素总浓度过高,在同时接种含有百白破组分的联合疫苗时,如6联疫苗,会造成所谓载体受体竞争性抑制效应,降低了结合疫苗多糖部分的免疫原性。SanofiPasteur的11价肺炎球菌多糖-TT和DT混合载体蛋白结合疫苗和Merck的7价肺炎球菌多糖-OMP结合疫苗(PCV-OMP),都是临床试验结果不佳而导致产品开发失败的例子,原因就在与此。其二,是赋予蛋白载体以真正的保护性免疫原性功能。临床试验证明蛋白-D能够刺激机体产生保护性抗体,有潜在的预防非可分型流行性嗜血杆菌感染造成的急性中耳炎。GlaxoSmithKline的10价肺炎球菌多糖结合疫苗选择蛋白-D作为载体,使得蛋白载体产生的抗体具有临床意义的保护作用,是结合疫苗技术开发过程上的一大进步。Although 13-valent pneumococcal conjugate vaccines are already on the market, several serotypes are less effective than others, such as type 3. And with the increase of different serotypes and the repeated use of the same carrier protein, the amount of carrier protein increases, but its immunogenicity decreases. GlaxoSmithKline chose protein-D as the carrier in the design of the 10-valent pneumococcal polysaccharide conjugate vaccine for two reasons. One is to avoid the repeated use of tetanus toxoid and diphtheria toxoid that have been used as DTP vaccine components as carriers. Clinical trials have shown that when the multivalent pneumonia conjugate vaccine is administered simultaneously with other monovalent vaccines or multiple vaccines containing the same components as the protein carrier, such as Hib-TT, DTP-Hib polysaccharide conjugate vaccine-IPV (inactivated polio). Inflammation vaccine)-hepatitis B vaccine (abbreviated as 6 combined vaccine), the immunogenicity of most serotype polysaccharides in the multivalent pneumococcal conjugate vaccine will be inhibited, especially for the serotype polysaccharide immunogen using tetanus toxoid as a carrier Sexual influence is particularly pronounced. The reason is that the total concentration of tetanus toxoid and diphtheria toxoid as carriers in the multivalent pneumococcal conjugate vaccine is too high. The competitive inhibitory effect reduces the immunogenicity of the polysaccharide portion of the conjugate vaccine. SanofiPasteur's 11-valent pneumococcal polysaccharide-TT and DT mixed carrier protein conjugate vaccine and Merck's 7-valent pneumococcal polysaccharide-OMP conjugate vaccine (PCV-OMP) are examples of poor clinical trial results that lead to product development failures. The reasons right here. The second is to endow the protein carrier with a real protective immunogenic function. Clinical trials have shown that protein-D can stimulate the body to produce protective antibodies and has the potential to prevent acute otitis media caused by non-typeable Haemophilus epidemic infection. GlaxoSmithKline's 10-valent pneumococcal polysaccharide conjugate vaccine selects protein-D as a carrier, which makes the antibodies produced by the protein carrier have clinically meaningful protective effects, which is a major progress in the development of conjugate vaccine technology.
不过,非可分型的流行性嗜血杆菌实际临床意义受到所述类细菌感染率低下的限制,其感染导致的急性中耳炎发病率较低。但这些结合疫苗有一个共同点缺点,就是蛋白载体没有赋予免疫原性的保护功能,也就是说,尽管结合疫苗载体能够刺激机体产生抗体,但是,疫苗的设计者并没有利用其抗体具有的保护性来预防传染病,同时,也没有确定其产生的抗体是否达到保护性滴度水平。破伤风类毒素、白喉类毒素和白喉无毒变异株毒素等传统蛋白被选择作为载体的主要原因,并不是因为它们的产生的抗体具有保护性,而是从其安全性和能够增强结合物中多糖的免疫原性来考虑。显而易见,破伤风类毒素和白喉类毒素已经是百白破三联疫苗的二个组分,被常规接种;所以,结合疫苗中的破伤风类毒素和白喉类毒素载体是否能够刺激机体产生达到保护性抗体滴度并不重要,相反的,结合疫苗中的多糖部分的抗体滴度才是疫苗设计者需要关注的主要问题。另外,一些正在开发中的结合疫苗产品所用的载体,如E.coli所表达的基因缺失突变脱毒的重组铜绿假单胞菌外毒素A(rEPA),E.coli所表达的基因缺失突变脱毒的重组霍乱毒素等也都是基于相同的考量。However, the actual clinical significance of the non-typeable Haemophilus epidemicis is limited by the low infection rate of this class of bacteria, which causes a low incidence of acute otitis media. However, these conjugate vaccines have a common disadvantage, that is, the protein carrier does not confer the protective function of immunogenicity. That is, although the conjugate vaccine carrier can stimulate the body to produce antibodies, the vaccine designer does not take advantage of the protection provided by the antibodies. sex to prevent infectious diseases, at the same time, it has not been determined whether the antibody produced reaches protective titer levels. Traditional proteins such as tetanus toxoid, diphtheria toxoid and diphtheria avirulent variant toxin were chosen as carriers not because the antibodies they produced were protective, but because of their safety and ability to enhance the binding Consider the immunogenicity of polysaccharides. Obviously, tetanus toxoid and diphtheria toxoid are two components of DTP vaccine and are routinely vaccinated; therefore, whether the tetanus toxoid and diphtheria toxoid carriers in the conjugate vaccine can stimulate the body to produce protective effects Antibody titers are not important, on the contrary, antibody titers that bind to the polysaccharide moiety in the vaccine are the main concern for vaccine designers. In addition, the vectors used in some conjugate vaccine products under development, such as the recombinant Pseudomonas aeruginosa exotoxin A (rEPA) expressed by E. Recombinant cholera toxin, etc. are also based on the same considerations.
新多糖结合疫苗的种类和型别在逐年增加,而可供选择的载体蛋白种类较少,不同疫苗重复使用载体蛋白较多。接种相同载体蛋白的不同结合疫苗可能会产生免疫抑制效应,导致不同疫苗之间免疫效果的相互影响。而且,多糖结合物的主要载体蛋白如TT等,其本身作为疫苗已大范围接种婴幼儿,人群体内原有的针对载体蛋白的高滴度特异性抗体可能会抑制机体对结合疫苗中多糖的特异性免疫反应。The types and types of new polysaccharide conjugate vaccines are increasing year by year, but there are fewer types of carrier proteins to choose from, and many carrier proteins are reused for different vaccines. Inoculation of different conjugate vaccines with the same carrier protein may produce immunosuppressive effects, resulting in the mutual influence of immune effects between different vaccines. Moreover, the main carrier proteins of polysaccharide conjugates, such as TT, have been widely used as vaccines for infants and young children. The original high titer specific antibodies against the carrier proteins in the population may inhibit the body's specificity to the polysaccharides in the conjugate vaccine. Sexual immune response.
中国专利(ZL02159032.X)公开了一种多糖-蛋白结合疫苗的制备方法,也是目前制备多糖结合疫苗最常使用的技术之一。在所述技术中,以己二酸二酰肼(ADH)作为连接剂结合多糖与蛋白。这种结合方式首先需要将多糖经溴化氰活化,即在碱性条件下用溴化氰作用于多糖分子上的羟基,形成氰酸酯,然后与ADH反应;氰酸酯中的一个碳氧键断裂,与ADH一端的氨基发生加成反应,从而将酯酰肼(AH)基团导入多糖分子,形成多糖-AH衍生物;多糖-AH衍生物在碳二亚胺(EDAC)的介导下与载体蛋白形成稳定的结合物。这样的结合方式可减少多糖与载体蛋白结合的空间位阻,保留了多糖的抗原表位,同时避免了多糖本身的溶解性,减少多糖与抗血清反应的副作用。A Chinese patent (ZL02159032.X) discloses a method for preparing a polysaccharide-protein conjugate vaccine, which is also one of the most commonly used technologies for preparing polysaccharide conjugate vaccines. In the technique, adipic acid dihydrazide (ADH) is used as a linker to bind polysaccharides and proteins. This combination method first needs to activate the polysaccharide by cyanogen bromide, that is, use cyanogen bromide to act on the hydroxyl group on the polysaccharide molecule under alkaline conditions to form cyanate ester, and then react with ADH; a carbon oxygen in the cyanate ester The bond is broken, and an addition reaction occurs with the amino group at one end of ADH, so that the ester hydrazide (AH) group is introduced into the polysaccharide molecule to form a polysaccharide-AH derivative; the polysaccharide-AH derivative is mediated by carbodiimide (EDAC) It forms stable conjugates with carrier proteins. Such a binding method can reduce the steric hindrance of the binding of the polysaccharide to the carrier protein, retain the antigenic epitope of the polysaccharide, avoid the solubility of the polysaccharide itself, and reduce the side effects of the reaction between the polysaccharide and the antiserum.
然而,上述传统的多糖-蛋白结合技术存在着以下不足之处:(1)多糖-AH衍生物会继续与溴化氰活化的多糖反应,形成多糖的自身聚合物,降低了多糖-蛋白的结合效率;(2)EDAC在介导ADH衍化多糖与载体蛋白结合的同时,容易引起多糖与载体蛋白的自身交联,从而降低多糖-蛋白的结合效率;(3)多糖和载体蛋白均为大型生物分子,中间靠仅有6个碳原子长度的ADH相连,多糖和蛋白质的结构势必会相互影响,使得多糖的一些重要抗原表位易被蛋白质所屏蔽,进而降低多糖的免疫原性。因此,多糖-蛋白结合疫苗的免疫原性和抗体持效性仍有待进一步提高,如多糖结合疫苗需要免疫三次才能产生免疫效果。这些不足之处限制了多糖结合疫苗的进一步发展。However, the above-mentioned traditional polysaccharide-protein binding technology has the following shortcomings: (1) The polysaccharide-AH derivative will continue to react with the polysaccharide activated by cyanogen bromide to form a self-polymer of the polysaccharide, which reduces the binding of the polysaccharide-protein. (2) EDAC mediates the binding of ADH-derived polysaccharides to carrier proteins, and at the same time easily causes self-crosslinking of polysaccharides and carrier proteins, thereby reducing the binding efficiency of polysaccharides and proteins; (3) Both polysaccharides and carrier proteins are large organisms. The molecules are connected by ADH with a length of only 6 carbon atoms in the middle. The structures of polysaccharides and proteins are bound to affect each other, making some important epitopes of polysaccharides easily shielded by proteins, thereby reducing the immunogenicity of polysaccharides. Therefore, the immunogenicity and antibody persistence of the polysaccharide-protein conjugate vaccine still need to be further improved. For example, the polysaccharide conjugate vaccine needs to be immunized three times to produce an immune effect. These shortcomings limit the further development of polysaccharide conjugate vaccines.
四、人轮状病毒的危害及其流行病学研究4. The harm of human rotavirus and its epidemiological study
在世界范围内,轮状病毒(Rotavirus)是导致儿童严重性腹泻的主要病原体,在发达国家,因急性腹泻住院的儿童中,轮状病毒的检出率占35~52%。在美国,估计每年有3百万儿童患轮状病毒腹泻,致使82000人住院治疗,150人死亡。在发展中国家,轮状病毒也是导致2岁以下婴幼儿严重胃肠炎最常见的病原体,估计每年有超过1.25亿5岁以下的儿童患轮状病毒性腹泻,其中一千八百万儿童患中度腹泻,87万死亡。在中国,儿童出生率约一千七百万,估计每年大约有35万儿童由于患轮状病毒腹泻导致死亡,排世界第二位。由于所述病毒的感染对2岁以下婴幼儿腹泻的发病率和致死率的增加有显著作用,开发预防轮状病毒感染,有效且安全的疫苗是当务之急。Worldwide, rotavirus is the main pathogen causing severe diarrhea in children. In developed countries, the detection rate of rotavirus accounts for 35-52% of children hospitalized for acute diarrhea. In the United States, an estimated 3 million children suffer from rotavirus diarrhea each year, resulting in 82,000 hospitalizations and 150 deaths. Rotavirus is also the most common causative agent of severe gastroenteritis in infants and young children under 2 years of age in developing countries, with more than 125 million children under 5 years of age estimated to suffer from rotavirus diarrhoea each year, of whom 18 million suffer from Moderate diarrhea, 870,000 deaths. In China, the birth rate of children is about 17 million, and it is estimated that about 350,000 children die each year due to rotavirus diarrhea, ranking second in the world. Since infection with the virus has a significant effect on the increased morbidity and mortality of diarrhea in infants under 2 years of age, the development of an effective and safe vaccine to prevent rotavirus infection is a top priority.
轮状病毒属呼肠孤病毒科(Reoviridae genus),是导致人类和众多动物腹泻的病原体。全病毒直径70nm,具有特殊的三壳结构,最里层的核壳结构为核壳蛋白,包裹有病毒基因。病毒的基因由双股RNA的11个分段式片段组成,为6个结构蛋白和5个非结构蛋白编码。核壳蛋白是由VP1,VP2和VP3三个病毒蛋白构成;中间壳蛋白为VP6,外壳蛋白是由VP4和VP7组成。由于轮状病毒的基因是双股的RNA,多片段结构,这种结构的基因可以进行基因间的某种程度的重新组合,即轮状病毒基因的重配(reassortment)。当二个或者多个病毒同时感染一个宿主细胞后,在新病毒颗粒的包装阶段,各个病毒的基因片段将在细胞内重新组合,造成重配基因发生。轮状病毒这种重配基因的能力导致了人体对其免疫反应的多样性,也增加了制作特异性轮状病毒疫苗的难度。Rotaviruses belong to the Reoviridae genus and are pathogens that cause diarrhea in humans and many animals. The diameter of the whole virus is 70nm, and it has a special three-shell structure. The innermost nucleocapsid structure is nucleocapsid protein, which is wrapped with virus genes. The gene of the virus consists of 11 segmented segments of double-stranded RNA, encoding 6 structural and 5 nonstructural proteins. The nucleocapsid protein is composed of three viral proteins, VP1, VP2 and VP3; the intermediate capsid protein is VP6, and the coat protein is composed of VP4 and VP7. Since the rotavirus gene is a double-stranded RNA with a multi-segment structure, the gene of this structure can undergo a certain degree of recombination between genes, that is, the reassortment of the rotavirus gene. When two or more viruses infect a host cell at the same time, in the packaging stage of new virus particles, the gene segments of each virus will be recombined in the cell, resulting in the occurrence of reassortment genes. The ability of rotavirus to reassort genes has led to the diversity of the body's immune response to it, and it has also increased the difficulty of making specific rotavirus vaccines.
轮状病毒根据病毒抗原性的不同可分成不同的型,亚型和血清型。现已发现有7个血清型(A型~G型),大多数人类病原体属于A、B和C型。流行病学调查发现致使人类和动物患病的轮状病毒中以A型最常见,是疫苗开发的主要目标。A型轮状病毒根据其VP6抗原特性的不同,进一步分类为亚型,绝大部分病毒株属于亚型I或II中的一种。不同的轮状病毒表面壳蛋白VP7和VP4的中和抗原簇有所不同,能够独立地诱导各自的中和性抗体,病毒的血清型可由VP4和VP7抗原的特异性决定。A型轮状病毒根据VP7和VP4的不同可进一步分类成G血清型和P血清型。由于轮状病毒基因是由11个片段组成,VP7和VP4的编码基因能够独立分离组合,产生了一种二进制方式进行的基因重配。VP7是一种糖蛋白(glycoprotein),因其抗原特性分为15种不同的G血清型,与其特异性的核酸序列,即基因型(genotype)相对应;也就是说,每一G血清型都有其特异的基因型,因此,通常G血清型和G基因型可通用。全球鉴定出的人类致病轮状病毒株中,超过90%的是G1,G2,G3,G4,和G9株,共有10个血清型从人体上分离出来(见表1)。VP4是一种能够被胰蛋白酶切断成两个不同的病毒蛋白,即VP8和VP5病毒蛋白,由其的抗原性的不同而决定的血清型为P血清型,有些P血清型可进一步分为2个亚血清型。由于缺乏区别不同VP4血清型分型的血清或单克隆抗体,阻碍了VP4的血清型分型。RT-PCR的应用才使得VP4的基因型分型成为可能,并运用于样品的流行病学调查。因此,VP4基本上是根据基因序列来进行分类,目前共发现14个P血清型和至少26个P基因型(标于括号中)。P血清型和P基因型可能不对应,需要同时标出,例如,轮状病毒Wa毒株被标示为P1A[8]G1病毒。人类致病的毒株中,G1,G3,G4和G9的P和G血清型组合通常是P1A[8],而G2通常是P1B[4]。由此可见,在世界范围内流行的轮状病毒享有相同的交叉中和的抗原簇(epitopes)P1血清型,至少有7个VP4血清型在人类轮状病毒中被发现。在流行病学上有意义的人类毒株的G血清型1,3,和4是属于P血清型的1A亚血清型,和G血清型2是P血清型的1B亚血清型。Rotavirus can be divided into different types, subtypes and serotypes according to the different antigenicity of the virus. Seven serotypes (A-G) have been identified, and most human pathogens belong to A, B, and C types. Epidemiological investigations have found that type A is the most common type of rotavirus that causes disease in humans and animals, and is the main target for vaccine development. Type A rotaviruses are further classified into subtypes according to their VP6 antigenic characteristics, and most virus strains belong to one of subtypes I or II. Different rotavirus surface capsid proteins VP7 and VP4 have different neutralizing antigen clusters and can induce their own neutralizing antibodies independently. The serotype of the virus can be determined by the specificity of VP4 and VP7 antigens. Type A rotavirus can be further classified into G serotype and P serotype according to VP7 and VP4. Since the rotavirus gene is composed of 11 segments, the coding genes for VP7 and VP4 can be separated and combined independently, resulting in a binary reassortment of genes. VP7 is a glycoprotein that is classified into 15 different G serotypes due to its antigenic properties, corresponding to its specific nucleic acid sequence, the genotype; that is, each G serotype Has its specific genotype, therefore, usually G serotype and G genotype can be used in common. Of the human pathogenic rotavirus strains identified globally, more than 90% are G1, G2, G3, G4, and G9 strains, and a total of 10 serotypes have been isolated from humans (see Table 1). VP4 is a virus protein that can be cleaved by trypsin into two different viral proteins, namely VP8 and VP5 viral proteins. The serotype determined by its antigenicity is P serotype, and some P serotypes can be further divided into 2 subserotypes. Serotyping of VP4 is hindered by the lack of serum or monoclonal antibodies that distinguish different VP4 serotypes. The application of RT-PCR makes it possible to genotype VP4 and apply it to epidemiological investigation of samples. Therefore, VP4 is basically classified according to the gene sequence, and a total of 14 P serotypes and at least 26 P genotypes (marked in brackets) have been found so far. The P serotype and P genotype may not correspond and need to be marked together, for example, the Wa strain of rotavirus is marked as the P1A[8]G1 virus. In human pathogenic strains, the combination of P and G serotypes for G1, G3, G4, and G9 is usually P1A [8], while G2 is usually P1B [4]. It can be seen that the rotaviruses circulating worldwide share the same cross-neutralizing antigenic cluster (epitopes) P1 serotype, and at least seven VP4 serotypes have been found in human rotavirus. Epidemiologically significant human strains of G serotypes 1, 3, and 4 are subserotype 1A belonging to serotype P, and serotype G 2 is subserotype 1B of serotype P.
由于自然轮状病毒感染能够很好地诱导免疫保护,至少对严重轮状病毒的感染,因此,大多数开发疫苗的努力放在减毒活疫苗上。最初的研究集中于使用动物轮状病毒株,通过称之为Jennerian法来进行,原因是自然减毒的动物毒株在人体是安全的,而且主要产生的是混合型免疫保护。Since natural rotavirus infection induces immune protection well, at least against severe rotavirus infection, most efforts to develop vaccines have been placed on live attenuated vaccines. Initial research focused on the use of animal rotavirus strains, by what is known as the Jennerian method, since naturally attenuated animal strains are safe in humans and yield predominantly mixed immune protection.
在发现轮状病毒是导致儿童严重性腹泻的病原体10年后,于1983年,开始了用猪轮状病毒株RIT4237(G6P[1]型),制成的第一个轮状病毒减毒活疫苗进行了临床试验,在芬兰试验的结果显示,所述疫苗是安全和有效的,通过混合型人类轮状病毒(heterotypichuman rotaviruses)的作用,预防严重轮状病毒腹泻的保护率达80%。但是,在随后的其他国家进行的临床试验效果令人失望,显示低或者没有保护作用,所述试验以失败告终。在1987年,猴轮状病毒RRV毒株被用以开发减活疫苗,是第一批开发的轮状病毒疫苗中的另一个。临床试验表明,尽管所述疫苗能够诱导机体产生保护性抗体,但结果不稳定,究其原因在于,RRV毒株的G血清型是G3P[3],当人体感染的轮状病毒是同型的G血清型时,即G3,疫苗的效果显著;如果是不同型的G血清型感染时,则效果不佳。随后,RRV株通过基因重配的方法将人类毒株中的VP7基因引入到所述毒株中,使得人类轮状病毒中常见的其他三种G血清型G1,G2和G4也能够在RRV重配毒株上表达,这导致了4价Rotashield疫苗的开发成功。所述疫苗于1998年获得FDA批准上市销售,但是由于大规模接种后发现了少数,但是数量明显升高的肠套叠副作用病例的发生,在1999年而被生产公司下市。在1988年,开始用另一个轮状病毒毒株,即WC3猪毒株(G6P[5]型),进行临床试验时,开始结果证明有效,但是在随后的试验中显示没有显著的保护性,所述疫苗也停止了继续试验。到1990年,为了使得WC3毒株的抗原结构更接近于人类轮状病毒,通过基因重配(gene reassortment)的方法,将为VP4和VP7蛋白编码的基因从人类轮状病毒引入到WC3重配毒株上,这种方法称之为改进的Jennerian法。所述毒株和方法就是被Merck用以开发RotaTeq的5价(pentavalent)疫苗的开发方法。2006年,由Merck生产5价的WC3-基因重配疫苗RotaTeq也被批准上市,所述疫苗含有VP7和VP4这两个人类轮状病毒蛋白取代基因,即G1,G2,G3,G4中的相应的VP7蛋白基因,和P[8]的相应的VP4。临床试验表明,所述疫苗没有肠套叠副作用,对由于G1-G4轮状病毒所致的胃肠炎的保护率为74%,对严重胃肠炎的保护率达98%,对住院和急症访问的保护率为94.5%。同年,GSK生产的人类轮状病毒减毒活疫苗Rotarix也获得上市批准,这个疫苗是基于减毒的人类毒株89-12,血清型为G1P[8]株,是世界范围内最常见血清型。所述病毒是从一个患轮状病毒胃肠炎的患者临床样品中分离出来,并在组织细胞多次传代变异减毒后获得。临床试验表明,在注射两个剂量后,对所有轮状病毒感染的保护率达87%以上,对严重的胃肠炎的保护率达96%,对需要住院胃肠炎病例的保护率达100%。进一步试验表明,所述疫苗的范围保护不仅仅包括由G1P[8]株导致的胃肠炎,而且包括了与VP4有关的G3P[8],G4[8]和G9P[8]株导致的胃肠炎。对G3,G4和G9轮状病毒感染保护的有效性与G1的相同,超过了95%,而对G2株的有效性是75%,对所有轮状病毒致胃肠炎住院的保护率为75%。In 1983, 10 years after the discovery of rotavirus as the causative agent of severe diarrhea in children, the first live attenuated rotavirus was produced using the porcine rotavirus strain RIT4237 (G6P[1] type). The vaccine was clinically tested, and the results of the trial in Finland showed that the vaccine was safe and effective, with 80% protection against severe rotavirus diarrhea through the action of heterotypic human rotaviruses. However, subsequent clinical trials in other countries were disappointing, showing little or no protection, and the trials failed. In 1987, the simian rotavirus RRV strain was used to develop a live attenuated vaccine, another of the first rotavirus vaccines to be developed. Clinical trials have shown that although the vaccine can induce the body to produce protective antibodies, the results are not stable. When the serotype is G3, the effect of the vaccine is significant; if it is a different type of G serotype infection, the effect is not good. Subsequently, the RRV strain introduced the VP7 gene from the human strain into the strain by gene reassortment, so that the other three G serotypes G1, G2 and G4 commonly found in human rotaviruses can also be reassorted in RRV. expression on the matched strain, which led to the successful development of the 4-valent Rotashield vaccine. The vaccine was approved for marketing by the FDA in 1998, but was removed from the market in 1999 due to the occurrence of a few but significantly increased cases of intussusception side effects after large-scale vaccination. In 1988, clinical trials with another rotavirus strain, the WC3 swine strain (G6P[5] type), were initially shown to be effective, but subsequent trials showed no significant protection, The vaccine was also discontinued from continuing trials. By 1990, in order to make the antigenic structure of the WC3 strain closer to that of human rotavirus, the genes encoding VP4 and VP7 proteins were introduced from human rotavirus into WC3 reassortment by gene reassortment. On strains, this method is called the modified Jennerian method. The strains and methods described are the development methods used by Merck to develop the pentavalent vaccine for RotaTeq. In 2006, RotaTeq, a 5-valent WC3-gene reassortment vaccine produced by Merck, was also approved for marketing. The vaccine contains two human rotavirus protein replacement genes, VP7 and VP4, that is, the corresponding genes in G1, G2, G3, and G4. The VP7 protein gene, and the corresponding VP4 of P[8]. Clinical trials show that the vaccine has no intussusception side effect, the protection rate against gastroenteritis due to G1-G4 rotavirus is 74%, the protection rate against severe gastroenteritis is 98%, and the protection rate against hospitalization and emergency The protection rate for access is 94.5%. In the same year, Rotarix, a live attenuated human rotavirus vaccine produced by GSK, was also approved. . The virus was isolated from a clinical sample of a patient suffering from rotavirus gastroenteritis, and obtained after multiple passages of histiocytes attenuated by mutation. Clinical trials have shown that following two doses of injection, protection against all rotavirus infections is over 87%, protection against severe gastroenteritis is 96%, and protection against gastroenteritis requiring hospitalization is 100% %. Further experiments showed that the scope of protection of the vaccine includes not only gastroenteritis caused by the G1P[8] strain, but also gastric gastroenteritis caused by the VP4-related G3P[8], G4[8] and G9P[8] strains enteritis. Efficacy of protection against G3, G4 and G9 rotavirus infection was the same as that of G1, exceeding 95%, while the efficacy against G2 strain was 75%, and the protection rate against all rotavirus-induced gastroenteritis hospitalization was 75% %.
统计数据表明,G1株在世界范围内是最常检测到的毒株,在亚洲、北美和欧洲,G1-G4株占总感染轮状病毒的97.5%。在南美洲、非洲、澳大利亚占83.5%-90.4%,同时,在这些地区G5、G8和G9毒株开始变得重要起来。从P血清型来看,P1A[8]株最常见,接下来的是P1B[4]株。这一结果是可以预见的,因为VP7血清型G1是P1A[8],为最常检测到的VP7血清型;其他两个流行病学重要的VP7血清型,G3和G4,也具有相同的VP4血清型。另一个主要血清型G2的VP4有P1B[4]的特征。尽管G和P血清型或基因型可有多种不同的组合,但是,4种P-G的组合,即P[8]G1,P[4]G2,P[8]G3,和P[8]G4组成了88.5%的常见的致病性毒株。Statistics show that the G1 strain is the most frequently detected strain worldwide, with G1-G4 strains accounting for 97.5% of total rotavirus infections in Asia, North America and Europe. In South America, Africa, Australia accounted for 83.5%-90.4%, meanwhile, G5, G8 and G9 strains began to become important in these regions. In terms of P serotypes, the P1A[8] strain is the most common, followed by the P1B[4] strain. This result is predictable because the VP7 serotype G1 is P1A [8], the most commonly detected VP7 serotype; the other two epidemiologically important VP7 serotypes, G3 and G4, also share the same VP4 serotype. VP4 of the other major serotype, G2, is characteristic of P1B[4]. Although there are many different combinations of G and P serotypes or genotypes, there are four P-G combinations, namely P[8]G1, P[4]G2, P[8]G3, and P[8]G4 constitutes 88.5% of the common pathogenic strains.
由此可见,如果以G血清型的VP7蛋白来配置疫苗,需要包含多种不同的G血清型毒株来提高疫苗的覆盖率,即G1、G2、G3、G4、G9、G8和G5,7价的轮状病毒减毒活疫苗也是目前开发新一代疫苗的努力方向。如果从另一个策略来开发轮状病毒疫苗,以P血清型决定蛋白VP4的不同来配制新一代的疫苗,则可大大减少疫苗中包含的毒株品种来达到相同发覆盖率。从以上的分析可见,如果以P[8]和P[4]两个P血清型毒株来配制疫苗,免疫的效果将和7价的G血清型相当。从临床上使用的Rotarix和Rotateq效果来看,几乎没有区别,而且,现有的统计数据上看,Rotarix似乎比Rotateq更有效。从分析这两个疫苗所包含的毒株血清型决定蛋白的组成来看,Rotarix仅含有G1这一种VP7病毒蛋白;尽管Rotateq含有G1、G2、G3、和G4的四种VP7病毒蛋白,免疫效果并没有增强;而从两者含有的P血清型决定蛋白VP4的数量来看,Rotarix含有P[8]一种,而Rotateq含有P[8](其中一个毒株)和P[5](WC-3原始毒株为G6P[5])两种;但是Rotarix中的重要抗原成分P[8]的含量将高于Rotateq中的含量。由此可见,从P血清型的角度来评估,含P[8]的VP4毒株轮状病毒疫苗有着重大的意义。如果新一代疫苗中包含有P血清型的P[8]、P[4]和P[6]三种VP4抗原成分,即可涵盖全球大部分地区的流行毒株。It can be seen that if the VP7 protein of the G serotype is used to configure the vaccine, it is necessary to include a variety of different G serotype strains to improve the coverage of the vaccine, namely G1, G2, G3, G4, G9, G8 and G5, 7 Valuable live attenuated rotavirus vaccine is also the current effort to develop a new generation of vaccines. If rotavirus vaccines are developed from another strategy, a new generation of vaccines can be formulated with differences in the P serotype-determining protein VP4, which can greatly reduce the number of strains included in the vaccine to achieve the same coverage. It can be seen from the above analysis that if the vaccine is formulated with two P serotype strains, P[8] and P[4], the immunization effect will be equivalent to that of the 7-valent G serotype. From the clinical use of Rotarix and Roateq, there is little difference, and Rotarix appears to be more effective than Roateq based on the available statistics. From the analysis of the composition of the serotype-determining proteins of the strains contained in these two vaccines, Rotarix contains only one VP7 viral protein, G1; The effect was not enhanced; and judging from the amount of P serotype-determining protein VP4 contained in both, Rotarix contains P[8] one, while Rotateq contains P[8] (one of the strains) and P[5] ( The original strains of WC-3 are G6P[5]); however, the content of the important antigenic component P[8] in Rotarix will be higher than that in Roateq. It can be seen that from the perspective of P serotype, the VP4 strain rotavirus vaccine containing P[8] is of great significance. If the new generation vaccine contains the three VP4 antigen components of P[8], P[4] and P[6] of the P serotype, it can cover the circulating strains in most parts of the world.
五、纳米微球在生物技术中的应用及前景5. Application and prospect of nano-microspheres in biotechnology
纳米材料是指晶粒尺寸小于100纳米的单晶体或多晶体,独特的小尺寸效应和表面或界面等效应,使其具备了许多优异的或全新的性能,它正日益受到人们的重视。例如纳米材料对药物研究领域的不断渗透和影响,已经引发了药物领域一场深远的革命。药物是人类用于抵御和预防疾病的重要物质,长期以来,药物的研究开发已经为临床提供了许多的治疗手段,为患者带来了许多益处。但是,现有药物仍存在着许多问题,如药物无法在循环系统内滞留并达到有效浓度、无法到达特定的治疗目标、无法通过血脑屏障、无法在某个局部形成较高浓度而同时又不产生毒副作用等(吴新荣.载药纳米微粒的应用及研究进展[J].中国医院药物学杂志,2001,21(3):171-173.)。磁性纳米微球药物载体是纳米技术与现代医药学结合的产物,由于它具有小尺寸效应、良好的靶向性、生物相容性、生物降解性和功能基团等优点,因此有望克服传统药物所带来的这些缺陷。磁性纳米微粒也可用于蛋白质和酶的纯化、回收以及酶的固定化,操作简单,且提高酶的稳定性。利用磁性纳米微粒进行免疫分析,具有特异性好、分离快、重现性好的特点。使用磁性微球载体进行介入治疗,在磁控血管内进行栓塞,则具有磁控导向、靶位栓塞等优点。Nanomaterials refer to single crystals or polycrystals with a grain size of less than 100 nanometers. The unique small size effect and surface or interface effects make them have many excellent or brand-new properties, and they are increasingly attracting people's attention. For example, the continuous penetration and influence of nanomaterials on the field of pharmaceutical research has triggered a profound revolution in the field of pharmaceuticals. Drugs are important substances for human beings to resist and prevent diseases. For a long time, the research and development of drugs has provided many clinical treatments and brought many benefits to patients. However, there are still many problems with the existing drugs, such as the inability of the drugs to stay in the circulatory system and reach an effective concentration, unable to reach specific therapeutic targets, unable to pass through the blood-brain barrier, unable to form a high concentration in a local area without Toxic and side effects, etc. (Wu Xinrong. Application and research progress of drug-loaded nanoparticles [J]. Chinese Journal of Hospital Pharmacy, 2001,21(3):171-173.). Magnetic nanosphere drug carrier is the product of the combination of nanotechnology and modern medicine. Because of its advantages of small size effect, good targeting, biocompatibility, biodegradability and functional groups, it is expected to overcome traditional drugs. these defects. Magnetic nanoparticles can also be used for purification and recovery of proteins and enzymes and immobilization of enzymes, which are easy to operate and improve the stability of enzymes. The use of magnetic nanoparticles for immunoassay has the characteristics of good specificity, fast separation and good reproducibility. The use of magnetic microsphere carriers for interventional therapy and embolization in magnetron blood vessels has the advantages of magnetron guidance and target embolization.
磁性纳米微球在生物医学中的应用随研究的深入日渐广泛,具体有:The application of magnetic nano-microspheres in biomedicine is becoming more and more extensive with the deepening of research, specifically:
1、固定化酶1. Immobilized enzyme
生物高分子例如酶分子等都具有很多官能团,可以通过物理吸附、交联、共价偶合等方式将他们固定在磁性微粒的表面。用磁性纳米微球固定化酶的优点是:易于将酶与底物和产物分离;提高酶的生物相容性和免疫活性;提高酶的稳定性,且操作简单可降低成本。Bendkiene等制备了壳聚糖磁性微球,用作固定化载体。酶被固定在这种载体上之后,可以很容易地用磁性装置从反应的混合液中分离回收。国内的研究者对这方面也作了探索,丁小斌等采用分散聚合法,合成出Fe3O4/(St-MPEO)(St-苯乙烯,MPEO-聚环氧乙烷大单体)微球,所述微球具有两亲结构,在大多数极性、非极性介质中都具有良好的溶胀性能,使得微球固载的化合物在多种介质中都具有较高的活性(Ding XB,Wei L,Zhao HZ.Synthesisand characterization of aliphatic polycarbonatediols[J].Applied PolymerScience,2001,79(3):1847-1851)。所述磁性纳米微球载体可望用于蛋白质和酶的纯化、回收以及酶的固定化、细胞分离等领域。Biopolymers such as enzyme molecules have many functional groups, which can be immobilized on the surface of magnetic particles by physical adsorption, cross-linking, covalent coupling, etc. The advantages of immobilizing enzymes with magnetic nano-microspheres are: easy separation of enzymes from substrates and products; improved biocompatibility and immune activity of enzymes; improved stability of enzymes, and simple operation can reduce costs. Bendkiene et al. prepared chitosan magnetic microspheres as immobilization carriers. After the enzyme is immobilized on this carrier, it can be easily separated and recovered from the reaction mixture by a magnetic device. Domestic researchers have also explored this aspect. Ding Xiaobin et al. used dispersion polymerization to synthesize Fe3O4/(St-MPEO) (St-styrene, MPEO-polyethylene oxide macromonomer) microspheres. The microspheres have an amphiphilic structure and have good swelling properties in most polar and non-polar media, making the compounds immobilized on the microspheres have high activity in a variety of media (Ding XB, Wei L, Zhao HZ. Synthesis and characterization of aliphatic polycarbonatediols [J]. Applied Polymer Science, 2001, 79(3): 1847-1851). The magnetic nano-microsphere carrier is expected to be used in the fields of purification and recovery of proteins and enzymes, immobilization of enzymes, cell separation and the like.
2、靶向药物2. Targeted drugs
具有靶向性的药物载体微球是指载药微球能高选择地分布于作用对象,从而增强疗效、减少副作用。最初的靶向药物载体微球是根据临床需要,通过选用对机体各种组织或病变部位亲和力不同的载体制作载药微球,或将单克隆抗体与载体结合,以使药物能够输送到治疗期望达到的特定部位。随着人们对治疗的要求越来越高,靶向定位也因受基质的限制而不能完全令人满意,因此就出现了磁性纳米微球载药系统。这种系统在外加磁场的作用下,通过动(静)脉注人到病变组织,把载体定向到病变部位(靶位),使所含药物得到定位释放,集中到病变部位发生作用(A Paul,Alivisatos.Ultrasensitive magneticbiosensor for homogeneous immunoassay[J].Science,2001,12(5):53-60)。德国的Lubbe等完成了世界上第一例应用磁性药物靶向治疗的临床实验。在对14个晚期实体瘤患者的磁靶向治疗中,发现患者对磁性靶向药物的耐受性很好。Lexion等也应用磁性微球作为药物载体治疗兔子的鳞癌(Lexion C,Amold W,Klein RJ,et al.Locotegional cancertreatment with magnetic drug targeting[J].Cancer Res,2000,60(23):6641-6648),国内的陶凯雄等用阿霉素磁性蛋白微球治疗鼠种植性胃肿瘤(陶凯雄,孙宏武,陈道达,等.阿霉素磁性蛋白微球靶向治疗鼠种植性胃肿瘤[J].中华实验外科杂志,2000,17(1):63-64)),郭军等用平阳霉素磁性微球治疗口腔领面部海绵状血管瘤25例。此外,强磁场也具有抑癌作用(郭军,李澄,吴汉江.平阳霉素磁性微球靶向治疗口腔颌面部海绵状血管瘤25例临床报告[J].南京铁道医学院学报,2000,19(2):112-114))。徐慧显等用葡萄糖磁性微球固定化L-天冬酞胺酶来治疗急性淋巴白血病,也取得了良好的治疗效果。这些结果都表明,随磁场强度的提高磁性药物在肿瘤部位的聚集增多,利用外加磁场的磁导向作用,使药物定点于靶部位,发挥集中、高效的抗肿瘤作用。正是由于磁性纳米微球的靶向性和表面结合的特异性载体,使人们有望利用它来追踪和消灭正在转移的癌细胞,从而成为人体内消灭癌细胞的“生物导弹”。但是,目前应用磁性药物治疗的肿瘤多位于体表或离体表较近,因此外加磁场的强度可以较弱,且易于控制,若治疗深部器官或组织的肿瘤,则需要进一步优化磁场强度、定位和药物载体颗粒大小等。而要提高磁性微球的磁化强度则有一定的难度,因为磁性微粒表面的包覆层会大大降低其磁性能,另外,颗粒大小的可控也是有待解决的一个问题。Targeted drug carrier microspheres refer to drug-loaded microspheres that can be selectively distributed to the target, thereby enhancing curative effect and reducing side effects. The initial targeted drug carrier microspheres are based on clinical needs, by selecting carriers with different affinities to various tissues or lesions of the body to make drug-loaded microspheres, or combining monoclonal antibodies with carriers, so that the drug can be delivered to the desired therapeutic target. specific parts reached. As people's requirements for treatment are getting higher and higher, the targeting positioning is also not completely satisfactory due to the limitation of the matrix, so the magnetic nano-microsphere drug-carrying system has appeared. Under the action of an external magnetic field, this system injects people into the diseased tissue through arterial (intravenous) veins, and orients the carrier to the diseased site (target site), so that the contained drugs are localized and released, and concentrated to the diseased site for action (A Paul , Alivisatos. Ultrasensitive magneticbiosensor for homogeneous immunoassay [J]. Science, 2001, 12(5):53-60). Germany's Lubbe et al. completed the world's first clinical trial using magnetic drug targeted therapy. In the magnetic targeting therapy of 14 patients with advanced solid tumors, the patients were found to be well tolerated by the magnetic targeting drugs. Lexion et al. also applied magnetic microspheres as drug carriers to treat squamous cell carcinoma in rabbits (Lexion C, Amold W, Klein RJ, et al. Locotegional cancer treatment with magnetic drug targeting[J]. Cancer Res, 2000, 60(23): 6641- 6648), domestic Tao Kaixiong et al. used doxorubicin magnetic protein microspheres to treat mouse implanted gastric tumors (Tao Kaixiong, Sun Hongwu, Chen Daoda, et al. Doxorubicin magnetic protein microspheres targeted therapy for mouse implanted gastric tumors[J]. Chinese Journal of Experimental Surgery, 2000, 17(1): 63-64)), Guo Jun et al. used Pingyangmycin magnetic microspheres to treat 25 cases of cavernous hemangioma of the oral and collar. In addition, strong magnetic field also has tumor suppressor effect (Guo Jun, Li Cheng, Wu Hanjiang. Clinical report of 25 cases of oral and maxillofacial cavernous hemangioma targeted with Pingyangmycin magnetic microspheres [J]. Journal of Nanjing Railway Medical College, 2000, 19(2):112-114)). Xu Huixian et al. used glucose magnetic microspheres to immobilize L-aspartame to treat acute lymphoblastic leukemia, and also achieved good therapeutic effects. These results all show that with the increase of the magnetic field strength, the aggregation of magnetic drugs at the tumor site increases, and the magnetic guidance effect of the external magnetic field is used to make the drug localize at the target site and exert a concentrated and efficient anti-tumor effect. It is precisely because of the targeting and surface-bound specific carrier of magnetic nanospheres that people are expected to use it to track and eliminate cancer cells that are metastasizing, thus becoming a "biological missile" for eliminating cancer cells in the human body. However, most of the tumors that are currently treated with magnetic drugs are located on the body surface or close to the body surface, so the intensity of the applied magnetic field can be weak and easy to control. If the tumors in deep organs or tissues are treated, it is necessary to further optimize the magnetic field intensity and positioning. and drug carrier particle size, etc. However, it is difficult to improve the magnetization of magnetic microspheres, because the coating layer on the surface of the magnetic particles will greatly reduce their magnetic properties. In addition, the controllability of particle size is also a problem to be solved.
3、细胞分离和免疫分析3. Cell isolation and immunoassay
如果磁性微粒表面引接具有生物活性的专一性抗体,在外加磁场的作用下,利用抗体和细胞的特异性结合,就可以得到免疫磁性微球(Immunomagnetic microspheres,IMMS)或免疫磁性珠(Immunomagnetic beads,IMBS),利用它们可快速有效地将细胞分离或进行免疫分析。尤其是采用IMBS对细胞、细胞器表面所特有的抗原物质进行分离时,具有简便快速、分离纯度高、保留靶物质活性等特点。Mccole等用IMBS分离被肝吸虫感染过的成年牛外周血中的T淋巴细胞,分出的细胞纯净,用于肝吸虫感染机制效果良好。John用连有单抗的IMMS检测沙门氏菌,整个检测过程只需2-3h,灵敏度为103-104菌体/ml,一定量血液和粪便的存在对分析无干扰,与凝集法和免疫荧光法相比,灵敏度提高103倍。Glenn用IMBS分离呼吸合包体病毒,结合酶联免疫分析,减低了传统管和微孔分析中的扩散和非特异性吸附,复合物的形成只需7min,而传统微孔法则需120min。细胞的分离技术还可用于癌症的治疗。康继超等用物理吸附结合化学键共价结合的方法,将抗人膀胧癌单克隆抗体连接到预先制备的聚苯乙烯磁性微球载体的表面,构建了能特异地与靶细胞结合并赋予其以磁响应性的免疫磁性微球。结果表明,所构建的IMMS可有效地和靶细胞结合,用IMMS从动物骨髓中分离癌细胞的初步实验表明,IMM可有效清除癌细胞,而骨髓细胞仅有很少量的损失。免疫分析在现代生物分析技术中是一种重要的方法,它对蛋白质、抗原、抗体及细胞的定量分析发挥着巨大的作用。利用磁性纳米微粒载体结合的抗原或抗体进行免疫分析,具有特异性高、分离快、重现性好等特点。景晓燕等采用无乳聚合法,在醇一水体系中,以过二硫酸钾为引发剂,在Fe3O4磁性流体粒子表面形成引发点,以丙烯酸(AA)为稳定剂,通过苯乙烯(ST)与丙烯酞胺共聚,制备出单分散的胺基磁性微球,所述微球可直接、快速与抗体(抗原)蛋白质交联,避免了其它功能团微球结合免疫试剂时需采用蛋白质为交联剂的缺点(景晓燕,王君,李茹民,等.磁性功能高分子微球的制备研究[J].应用科技,2000,27(1):16-17))。If a specific antibody with biological activity is introduced on the surface of the magnetic particle, and under the action of an external magnetic field, the specific binding between the antibody and the cell can be used to obtain immunomagnetic microspheres (Immunomagnetic microspheres, IMMS) or immunomagnetic beads (Immunomagnetic beads). , IMBS), which can be used to rapidly and efficiently isolate cells or perform immunoassays. Especially when IMBS is used to separate antigenic substances specific to the surface of cells and organelles, it has the characteristics of simplicity and rapidity, high separation purity, and retention of target substance activity. McCole et al. used IMBS to isolate T lymphocytes from the peripheral blood of adult bovines infected with liver flukes. John uses IMMS with monoclonal antibody to detect Salmonella. The whole detection process only takes 2-3 hours, and the sensitivity is 103-104 bacteria/ml. The presence of a certain amount of blood and feces does not interfere with the analysis, compared with agglutination method and immunofluorescence method , the sensitivity is increased by 103 times. Glenn used IMBS to separate respiratory inclusion body viruses, combined with ELISA, to reduce diffusion and non-specific adsorption in traditional tube and microwell assays. The formation of complexes only took 7 minutes, while the traditional micropore method took 120 minutes. Cell isolation techniques can also be used for cancer treatment. Kang Jichao et al. used the method of physical adsorption and chemical bond covalent bonding to connect the anti-human bladder cancer monoclonal antibody to the surface of the pre-prepared polystyrene magnetic microsphere carrier, and constructed a structure that can specifically bind to target cells and endow them with Magnetically responsive immunomagnetic microspheres. The results show that the constructed IMMS can effectively bind to the target cells. Preliminary experiments using IMMS to isolate cancer cells from animal bone marrow show that IMM can effectively remove cancer cells, while only a small amount of bone marrow cells are lost. Immunoassay is an important method in modern bioanalytical technology, which plays a huge role in the quantitative analysis of proteins, antigens, antibodies and cells. The use of antigens or antibodies bound to magnetic nanoparticle carriers for immunoassay has the characteristics of high specificity, fast separation, and good reproducibility. Jing Xiaoyan et al. adopted the emulsion-free polymerization method. In the alcohol-water system, potassium peroxodisulfate was used as an initiator to form an initiation point on the surface of Fe3O4 magnetic fluid particles, and acrylic acid (AA) was used as a stabilizer. ) and acrylamide to prepare monodisperse amine-based magnetic microspheres, which can be directly and quickly cross-linked with antibody (antigen) proteins, avoiding the need to use protein as a Disadvantages of cross-linking agents (Jing Xiaoyan, Wang Jun, Li Rumin, et al. Preparation of Magnetic Functional Polymer Microspheres [J]. Applied Science and Technology, 2000, 27(1): 16-17)).
4、磁控检塞4. Magnetic control plug
在通常的介人治疗过程中,会发生异位栓塞及梗死等现象,并引起严重的并发症,这是临床上急需解决的棘手问题,而使用磁性微球载体的介人治疗,在磁控血管内进行栓塞则具有磁控导向、靶位栓塞等优点,为解决以上难题提供了途径。学者们着重在磁球粒径、磁控时间、磁场强度、磁性微球包裹材料(粗糙、携带正电荷、具有疏水特性)等方面做了细致的研究。Minalnimura等运用热疗和动脉栓塞相结合的疗法用于鼠肝癌模型的研究。他们研制了DM-MS动脉导管局部给药,外加500kHz的磁场。治疗3d后,肿瘤增长率(栓塞-热疗组、单纯栓塞组和对照组)分别为28%、124%和385%(Minalnimura T,Sato H,Kasaoka S,et al.Tumor regression by inductive hyperthermia combined with hepaticembolization using dextran magnetite incorporated microspheres in rats[J].IntJ Oncol,2000,16(6):1153-1160)。此研究显示DM-MS热疗和栓塞相结合疗法是一种抗肿瘤可行性疗法,具有广阔的研究和应用前景。Goodwin等对阿霉素磁性微球肝动脉栓塞和药物靶向对抗肿瘤疗法的毒性做了研究(Goodwin SC,Bittner CA,Peterson CL,etal.Single-dose toxicity study of hepatic intra-arterial infusion ofdoxorubicin coupled to a novel magnetically targeted drug carrier[J].Toxical,2001,60(1):117-183)。他们建立的猪肝癌模型结果显示阿霉素磁性微球低剂量无毒副作用。只有当磁性微球的含量>=75mg(含或不含阿霉素)靶区才有较好的效果,肝癌细胞的坏死程度与栓塞程度成正比,阿霉素不能在全身自由循环而成功地被控制在靶区。惠旭辉等用自制的聚甲基丙烯酸甲醋磁性微球对血管内栓塞进行了探讨,实验表明,30-50um的PMMA磁性微球具有磁响应能力强、磁控栓塞效果好、在高血流速情况下仍能实现靶位栓塞等优点,是一种较好的磁控血管内栓塞材料(惠旭辉,高立达,何能前.聚甲基丙烯酸甲酯磁性微球血管内栓塞实验研究[J].四川医学,2001,22(10):928-929))。在磁控栓塞中,磁性微球载体的大小是影响靶区定位最重要的因素。如果粒径较小,则磁响应性弱,磁控度较差,不能用于高血流速或较大管径血管内的磁控栓塞。因此,与磁性微球在其他方面的应用有所不同,在磁控栓塞介人治疗中,一般采用粒径较大的磁性微球。During the usual interventional therapy, phenomena such as ectopic embolism and infarction will occur and cause serious complications. This is a thorny problem that needs to be solved urgently in clinical practice. However, the interventional therapy using magnetic microsphere carriers is very important in magnetic control. Intravascular embolization has the advantages of magnetron guidance and target embolization, which provides a way to solve the above problems. Scholars have made meticulous research on the particle size of magnetic spheres, magnetron time, magnetic field strength, and magnetic microsphere encapsulation materials (rough, positively charged, and hydrophobic). Minalnimura et al. used a combination of hyperthermia and arterial embolization in a mouse model of hepatocellular carcinoma. They developed a DM-MS arterial catheter for local administration with an applied 500kHz magnetic field. After 3 days of treatment, the tumor growth rates (embolization-hyperthermia group, simple embolization group, and control group) were 28%, 124%, and 385%, respectively (Minalnimura T, Sato H, Kasaoka S, et al. Tumor regression by inductive hyperthermia combined with hepaticembolization using dextran magnetite incorporated microspheres in rats[J]. IntJ Oncol, 2000, 16(6):1153-1160). This study shows that the combination of DM-MS hyperthermia and embolization is a feasible anti-tumor therapy and has broad research and application prospects. Goodwin et al. studied the toxicity of doxorubicin magnetic microspheres hepatic artery embolization and drug-targeted antitumor therapy (Goodwin SC, Bittner CA, Peterson CL, et al. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier[J]. Toxical, 2001, 60(1):117-183). The results of the pig liver cancer model they established showed that the low dose of doxorubicin magnetic microspheres had no toxic side effects. Only when the content of magnetic microspheres >= 75mg (with or without doxorubicin) in the target area has a better effect, the degree of necrosis of liver cancer cells is proportional to the degree of embolism, and doxorubicin cannot circulate freely throughout the body and successfully controlled in the target area. Hui Xuhui et al. discussed intravascular embolism with self-made polymethyl methacrylate magnetic microspheres. Experiments showed that 30-50um PMMA magnetic microspheres have strong magnetic response ability, good magnetic control embolization effect, and high blood pressure. It can still achieve target embolization and other advantages under the condition of flow rate, and it is a better magnetically controlled intravascular embolization material (Hui Xuhui, Gao Lida, He Nengqian. Experimental study on intravascular embolization of polymethyl methacrylate magnetic microspheres [J]. Sichuan Medicine, 2001, 22(10):928-929)). In magnetron embolization, the size of the magnetic microsphere carrier is the most important factor affecting the positioning of the target area. If the particle size is small, the magnetic responsiveness is weak and the degree of magnetic control is poor, so it cannot be used for magnetron embolization in blood vessels with high blood flow or large diameter. Therefore, different from the application of magnetic microspheres in other aspects, magnetic microspheres with larger particle size are generally used in magnetron embolization interventional therapy.
也有报告指出,纳米微球可作为DNA疫苗的载体蛋白和佐剂,但应用于预防性多糖和/或蛋白类疫苗未见报道。There are also reports that nanospheres can be used as carrier proteins and adjuvants for DNA vaccines, but there is no report on the application of prophylactic polysaccharide and/or protein vaccines.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的上述问题,本发明的目的是提供一种免疫原性更强的缀合疫苗。In view of the above problems existing in the prior art, the object of the present invention is to provide a conjugated vaccine with stronger immunogenicity.
为实现上述发明目的,本发明采用的技术方案如下:For realizing the above-mentioned purpose of the invention, the technical scheme adopted in the present invention is as follows:
一种缀合疫苗,其为多价肺炎球菌多糖与两种或两种以上的载体蛋白经连接体而成的缀合疫苗,其中,连接体为磁性纳米微球。A conjugated vaccine is a conjugated vaccine formed by linking a polyvalent pneumococcal polysaccharide and two or more carrier proteins, wherein the linker is a magnetic nano-microsphere.
作为一种优选方案,所述磁性纳米微球的磁性微粒位于磁性纳米微球的内部为核,高分子材料包裹于磁性微粒的外部。As a preferred solution, the magnetic particles of the magnetic nano-microspheres are located inside the magnetic nano-microspheres as cores, and the polymer material is wrapped around the outside of the magnetic particles.
作为进一步优选方案,磁性微粒为Fe3O4。As a further preferred solution, the magnetic particles are Fe 3 O 4 .
作为进一步优选方案,磁性纳米微球粒径为0.1-10μm,优选为0.1-5μm。As a further preferred solution, the particle size of the magnetic nano-microspheres is 0.1-10 μm, preferably 0.1-5 μm.
作为另一种优选方案,高分子材料为生物高分子材料,选自壳聚糖、聚乙二醇、聚乳酸-羟基乙酸共聚物(PLGA)、聚乳酸-聚乙二醇共聚物(PELA)中的一种或以上的混合物;最佳为PLGA或PELA。As another preferred solution, the polymer material is a biopolymer material, selected from chitosan, polyethylene glycol, polylactic acid-glycolic acid copolymer (PLGA), polylactic acid-polyethylene glycol copolymer (PELA) One or more of the mixtures; the best is PLGA or PELA.
作为另一种优选方案,多价肺炎球菌多糖为多种肺炎球菌荚膜多糖,优选为分离提纯血清型肺炎球菌荚膜上的荚膜多糖,所述血清型肺炎球菌的血清型包括1、2、3、4、5、6A、6B、7F、8、9N、9V、10A、11A、12F、14、15B、17F、18C、19A、19F、20、22F、23F和/或33F。As another preferred solution, the polyvalent pneumococcal polysaccharide is a variety of pneumococcal capsular polysaccharides, preferably the capsular polysaccharide on the capsule of isolated and purified serotype pneumococcus, and the serotypes of the serotype pneumococcus include 1, 2 , 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and/or 33F.
作为进一步优选方案,多价肺炎球菌多糖与两种载体蛋白的质量比为(0.5~2):1,优选为(0.5~1):1,其中各载体蛋白间的质量比优选为1:1。As a further preferred solution, the mass ratio of the polyvalent pneumococcal polysaccharide to the two carrier proteins is (0.5-2):1, preferably (0.5-1):1, wherein the mass ratio between the carrier proteins is preferably 1:1 .
作为一种优选优选方案,所述载体蛋白选自重组人轮状病毒蛋白、白喉类毒素、破伤风类毒素、载体蛋白CRM197、嗜血流感杆菌表面蛋白HiD、百日咳Prn表面蛋白、百日咳Fha抗原和/或肺炎球菌表面蛋白A(rPspA)。As a preferred preferred solution, the carrier protein is selected from recombinant human rotavirus protein, diphtheria toxoid, tetanus toxoid, carrier protein CRM197, Haemophilus influenzae surface protein HiD, pertussis Prn surface protein, pertussis Fha antigen and/or pneumococcal surface protein A (rPspA).
作为进一步优选方案,所述载体蛋白中有一种为嗜血流感杆菌表面蛋白HiD或肺炎球菌表面蛋白A(rPspA)。As a further preferred solution, one of the carrier proteins is Haemophilus influenzae surface protein HiD or pneumococcal surface protein A (rPspA).
作为进一步优选方案,重组人轮状病毒蛋白为P基因型轮状病毒蛋白的部分氨基酸序列或全序列,优选为P基因型轮状病毒毒株P[8]、P[4]、P[6]或P[11]中的一种;其中,P基因型轮状病毒毒株选自P[8]G1、P[4]G2、P[8]G3、P[8]G4、P[8]G9、P[8]G5或P[6]G8中的一种。As a further preferred solution, the recombinant human rotavirus protein is the partial amino acid sequence or the whole sequence of the P genotype rotavirus protein, preferably the P genotype rotavirus strains P[8], P[4], P[6 ] or one of P[11]; wherein, the P genotype rotavirus strain is selected from P[8]G1, P[4]G2, P[8]G3, P[8]G4, P[8 ]G9, P[8]G5, or P[6]G8.
作为更进一步优选方案,P基因型P[8]的轮状病毒毒株选自Wa、Ku、P、YO、MO、VA70、D、AU32、CH-32、CH-55、CHW2、CH927A、W161、F45、Ai-75、Hochi、Hosokawa、BR1054、WT78或WI79毒株中的一种。As a further preferred solution, the rotavirus strain of P genotype P[8] is selected from Wa, Ku, P, YO, MO, VA70, D, AU32, CH-32, CH-55, CHW2, CH927A, W161 , F45, Ai-75, Hochi, Hosokawa, BR1054, WT78 or one of the WI79 strains.
作为更进一步优选方案,P基因型P[4]的轮状病毒毒株选自DS-1、RV-5、S2、L26、KUN、E210、CHW17、AU64、107E18、MW333或TB-Chen毒株中的一种。As a further preferred solution, the rotavirus strain of P genotype P[4] is selected from DS-1, RV-5, S2, L26, KUN, E210, CHW17, AU64, 107E18, MW333 or TB-Chen strains one of the.
作为更进一步优选方案,P基因型P[6]的轮状病毒毒株选自M37、1076、RV-3、ST3、SC2、BrB、McN13、US1205、MW023、US585或AU19毒株中的一种。As a further preferred solution, the rotavirus strain of P genotype P[6] is selected from one of M37, 1076, RV-3, ST3, SC2, BrB, McN13, US1205, MW023, US585 or AU19 strains .
作为另一种进一步优选方案,重组人轮状病毒蛋白选自VP8、VP4、VP8多肽链片段、核VP8、VP4多肽链片段、VP8特异性抗原簇肽链或VP4特异性抗原簇肽链中的一种。As another further preferred solution, the recombinant human rotavirus protein is selected from VP8, VP4, VP8 polypeptide chain fragment, nuclear VP8, VP4 polypeptide chain fragment, VP8-specific antigenic cluster peptide chain or VP4-specific antigenic cluster peptide chain A sort of.
作为另一种进一步优选方案,重组轮状病毒蛋白是G血清型轮状病毒的VP7蛋白的部分氨基酸序列或全序列。As another further preferred solution, the recombinant rotavirus protein is the partial amino acid sequence or the whole sequence of the VP7 protein of serotype G rotavirus.
作为另一种进一步优选方案,重组轮状病毒蛋白是G血清型轮状病毒的VP7蛋白的部分氨基酸序列或全序列。As another further preferred solution, the recombinant rotavirus protein is the partial amino acid sequence or the whole sequence of the VP7 protein of serotype G rotavirus.
作为更进一步优选方案,G血清型轮状病毒毒株选自G1、G2、G3、G4、G9、G5、G8、G10或G11血清型中的一种。As a further preferred solution, the G serotype rotavirus strain is selected from one of the G1, G2, G3, G4, G9, G5, G8, G10 or G11 serotypes.
作为更进一步优选方案,所述G血清型轮状病毒毒株选自P[8]G1、P[4]G2、P[8]G3、P[8]G4、P[8]G9、P[8]G5或P[6]G8血清型中的一种。As a further preferred solution, the G serotype rotavirus strain is selected from P[8]G1, P[4]G2, P[8]G3, P[8]G4, P[8]G9, P[8] 8] One of the G5 or P[6]G8 serotypes.
本发明的另一目的是提供所述缀合疫苗的制备方法,具体是将多价肺炎球菌多糖与两种或以上的载体蛋白分别与磁性纳米微球偶联而成。Another object of the present invention is to provide a method for preparing the conjugated vaccine, which is specifically prepared by coupling the polyvalent pneumococcal polysaccharide and two or more carrier proteins to magnetic nano-microspheres, respectively.
作为一种优选方案,所述缀合疫苗的制备方法,具体包括以下步骤:As a preferred version, the preparation method of the conjugated vaccine specifically includes the following steps:
a)分别分离提纯多种血清型肺炎球菌荚膜上的荚膜多糖;a) Separate and purify the capsular polysaccharides on the capsules of various serotypes of pneumococcus respectively;
b)分别制备并分离提纯所选用的载体蛋白;b) respectively preparing and separating and purifying the selected carrier protein;
c)分别将各种荚膜多糖与磁性纳米微球偶联成多糖-磁性纳米微球偶联体;c) Respectively coupling various capsular polysaccharides and magnetic nano-microspheres into polysaccharide-magnetic nano-microsphere conjugates;
d)再将多糖-磁性纳米微球偶联体分别与多种载体蛋白偶联结合;d) Conjugate the polysaccharide-magnetic nano-microsphere conjugates with various carrier proteins respectively;
e)分离纯化步骤d)所得偶联体成所述缀合疫苗原液。e) Separation and purification of the conjugate obtained in step d) into the conjugate vaccine stock solution.
作为进一步优选方案,所述缀合疫苗的制备方法,具体包括以下步骤:As a further preferred version, the preparation method of the conjugated vaccine specifically includes the following steps:
a)分别分离提纯多种血清型肺炎球菌荚膜上的荚膜多糖;a) Separate and purify the capsular polysaccharides on the capsules of various serotypes of pneumococcus respectively;
b)分别分离提纯所选用的多种载体蛋白;b) Separate and purify the selected multiple carrier proteins respectively;
c)分别将各种荚膜多糖与磁性纳米微球偶联成多糖-磁性纳米微球偶联体,再经化学改性,从而将所述多糖-磁性纳米微球偶联体表面未与多糖反应的-OH改性为-CHO;c) Respectively coupling various capsular polysaccharides and magnetic nano-microspheres into polysaccharide-magnetic nano-microsphere conjugates, and then chemically modifying them, so that the surface of the polysaccharide-magnetic nano-microsphere conjugates is free from polysaccharide The -OH of the reaction is modified to -CHO;
d)再将多糖-磁性纳米微球偶联体分别与多种载体蛋白偶联结合;d) Conjugate the polysaccharide-magnetic nano-microsphere conjugates with various carrier proteins respectively;
e)分离纯化步骤d)所得偶联体成所述缀合疫苗原液。e) Separation and purification of the conjugate obtained in step d) into the conjugate vaccine stock solution.
作为进一步优选方案,所述制备方法还包括制备磁性纳米微球,包括先制备纳米磁性粒子再制备磁性纳米微球的过程;其中纳米磁性粒子可通过化学共沉淀法、水热法或溶胶法热解法制备,磁性纳米微球可通过包埋法、单体聚合法或原位法制备,优选为采用化学共沉淀法制备纳米磁性粒子再将纳米磁性粒子与高分子材料经快速膜乳化结合溶剂萃取法和/或包埋法或单体聚合法制备磁性纳米微球;最优选为采用化学共沉淀法制备纳米磁性粒子再将纳米磁性粒子与高分子材料经快速膜乳化结合溶剂萃取法和/或包埋法制备粒径均一的磁性纳米微球;其中磁性微粒优选为Fe3O4。As a further preferred solution, the preparation method further includes the preparation of magnetic nano-microspheres, including the process of first preparing nano-magnetic particles and then preparing magnetic nano-microspheres; wherein the nano-magnetic particles can be heated by chemical co-precipitation method, hydrothermal method or sol method. Solution preparation, magnetic nano-microspheres can be prepared by embedding method, monomer polymerization method or in-situ method, preferably by chemical co-precipitation method to prepare nano-magnetic particles, and then the nano-magnetic particles and polymer materials are emulsified and combined with solvent by rapid membrane Magnetic nano-microspheres are prepared by extraction method and/or embedding method or monomer polymerization method; most preferably, nano-magnetic particles are prepared by chemical co-precipitation method, and then nano-magnetic particles and polymer materials are subjected to rapid membrane emulsification combined with solvent extraction method and/or or embedding method to prepare magnetic nano-microspheres with uniform particle size; wherein the magnetic particles are preferably Fe 3 O 4 .
作为更进一步优选方案,上述纳米磁性离子的制备方法可可参照现有技术中Fe3O4磁性纳米微球的方法制备,具体可参见下述具体实施方式,并不作为本发明是否可实现的关键因素。As a further preferred solution, the preparation method of the above-mentioned nano-magnetic ions can be prepared by referring to the method of Fe 3 O 4 magnetic nano-microspheres in the prior art. For details, please refer to the following specific embodiments, which is not the key to whether the present invention can be realized or not. factor.
作为更进一步优选方案,步骤a中多糖的分离纯化工艺可根据所需的多糖及蛋白种类根据现有技术进行操作。As a further preferred solution, the separation and purification process of the polysaccharide in step a can be operated according to the prior art according to the type of polysaccharide and protein required.
作为更进一步优选方案,步骤b中的蛋白的制备及分离纯化工艺可根据所需的多糖及蛋白种类根据现有技术进行操作。As a further preferred solution, the preparation, separation and purification process of the protein in step b can be operated according to the prior art according to the type of polysaccharide and protein required.
作为更进一步优选方案,步骤c的具体操作为:在偶联介质反应缓冲液中,室温下、pH4.0-9.0下,将步骤a所得多糖与磁性纳米微球共反应6-24小时得多糖-磁性纳米微球偶联体,再通过25%戊二醛对其进行进一步改性,使得多糖-磁性纳米微球偶联体表面未与多糖反应的-OH改性为-CHO;其中偶联介质优选为PB、PBS或TBS,最佳为0.1M TBS溶液;反应缓冲液的最佳pH为6;最佳反应时间为12-16小时。As a further preferred solution, the specific operation of step c is: in the coupling medium reaction buffer, at room temperature and pH 4.0-9.0, co-react the polysaccharide obtained in step a with the magnetic nano-microspheres for 6-24 hours - Magnetic nano-microsphere conjugate, which is further modified by 25% glutaraldehyde, so that the -OH that is not reacted with polysaccharide on the surface of the polysaccharide-magnetic nano-microsphere conjugate is modified to -CHO; wherein the coupling The medium is preferably PB, PBS or TBS, the best is 0.1M TBS solution; the best pH of the reaction buffer is 6; the best reaction time is 12-16 hours.
作为更进一步优选方案,步骤d的具体操作为:在偶联介质反应缓冲液中,4℃、pH4.0-9.0下,将步骤c所得经化学改性的多糖-磁性纳米微球偶联体与载体蛋白共反应12-24小时;其中偶联介质优选为PB、PBS或TBS,最佳为0.1M TBS溶液;反应缓冲液的最佳pH为6;最佳反应时间为24小时。As a further preferred solution, the specific operation of step d is as follows: in the coupling medium reaction buffer, at 4°C and pH 4.0-9.0, the chemically modified polysaccharide-magnetic nano-microsphere conjugate obtained in step c is combined Co-react with carrier protein for 12-24 hours; wherein the coupling medium is preferably PB, PBS or TBS, the best is 0.1M TBS solution; the best pH of the reaction buffer is 6; the best reaction time is 24 hours.
作为更进一步优选方案,步骤e的分离纯化是将偶联结合物和未反应的多糖和载体蛋白分离纯化,纯化方法可用层析法或超滤法;可根据获得的缀合疫苗的分子大小进行分离纯化,层析法优选采用Superdex200凝胶过滤柱、Sepharose CL-4B或Sepharose CL-6B进行;而超滤法是采用不同滞留分子量膜来分离结合物和未反应物。As a further preferred solution, the separation and purification of step e is to separate and purify the conjugated conjugate, unreacted polysaccharide and carrier protein, and the purification method can be chromatography or ultrafiltration; it can be carried out according to the molecular size of the obtained conjugated vaccine. For separation and purification, chromatography is preferably performed using Superdex200 gel filtration column, Sepharose CL-4B or Sepharose CL-6B; while ultrafiltration uses membranes with different retention molecular weights to separate conjugates and unreacted substances.
所述缀合疫苗制剂可采用水剂或冻干剂。为了增强其免疫原性,可加入佐剂,常用的佐剂有铝佐剂,如氢氧化铝、磷酸铝,本发明优先选择磷酸铝。结合物的溶剂可为0.2氯化钠溶液、1×PBS缓冲液或其它能够稳定多糖或者结合物的缓冲液。本发明的缀合疫苗各制剂的制备方法采用本技术领域的常规手段制备。其中,优选在糖(例如蔗糖或乳糖)存在下进行冻干。The conjugated vaccine formulations can be in aqueous or lyophilized formulations. In order to enhance its immunogenicity, adjuvants can be added. Commonly used adjuvants include aluminum adjuvants, such as aluminum hydroxide and aluminum phosphate. In the present invention, aluminum phosphate is preferred. The solvent of the conjugate can be 0.2 sodium chloride solution, 1×PBS buffer or other buffers capable of stabilizing the polysaccharide or the conjugate. The preparation method of each formulation of the conjugated vaccine of the present invention is prepared by conventional means in the technical field. Of these, lyophilization in the presence of sugars such as sucrose or lactose is preferred.
本发明提供的缀合疫苗可以以任何已有的途径进行免疫,包括真皮层或皮肤给药、肌肉给药等形式。其中,所给予的量是本领域技术人员根据常识可以确定的。The conjugate vaccine provided by the present invention can be immunized by any existing route, including dermal layer or skin administration, intramuscular administration and the like. Wherein, the administered amount can be determined by those skilled in the art according to common sense.
术语定义Definition of Terms
核VP8:是轮状病毒蛋白VP8中的一段具有和细胞表面含有唾液酸(sialic acid)粘合功能的多肽链,通常含有160氨基酸残基。Nuclear VP8: It is a polypeptide chain in the rotavirus protein VP8 that has the function of binding with the cell surface containing sialic acid, usually containing 160 amino acid residues.
VP8多肽链片段:为任何分子量低于全长VP8的多肽链。VP8 polypeptide chain fragment: any polypeptide chain whose molecular weight is lower than the full-length VP8.
VP4多肽链片段:为任何分子量低于全长VP4的多肽链。VP4 polypeptide chain fragment: any polypeptide chain whose molecular weight is lower than the full-length VP4.
VP8特异性抗原簇链:全VP8多肽链含有多个抗原决定簇,通过基因重组的方法剪切去不含重要的氨基酸,而保留含有特异性抗原簇的多肽链,分子量通常小于全长VP8多肽链。VP8-specific antigenic cluster chain: The full VP8 polypeptide chain contains multiple antigenic determinants, which are cleaved by genetic recombination to remove important amino acids, while retaining the polypeptide chain containing specific antigenic clusters, the molecular weight is usually smaller than the full-length VP8 polypeptide chain.
VP4特异性抗原簇链:全VP4多肽链含有多个抗原决定簇,通过基因重组的方法剪切去不含重要的氨基酸,而保留含有特异性抗原簇的多肽链,分子量通常小于全长VP4多肽链。VP4-specific antigenic cluster chain: The full VP4 polypeptide chain contains multiple antigenic determinants, which are cleaved without important amino acids by genetic recombination, while the polypeptide chain containing specific antigenic clusters is retained, and the molecular weight is usually smaller than the full-length VP4 polypeptide. chain.
VP8融合蛋白:用基因重组方法,将VP8蛋白和其它可溶性蛋白多肽链融合表达,以提高VP8在水溶液中的可溶性;或增强VP8的免疫原性。VP8 fusion protein: by gene recombination, VP8 protein and other soluble protein polypeptide chains are fused and expressed to improve the solubility of VP8 in aqueous solution; or to enhance the immunogenicity of VP8.
NSP4蛋白:是非结构性蛋白,具有肠毒素特性,分子量为28kDa,含有175个氨基酸。NSP4 protein: It is a non-structural protein with enterotoxin properties, with a molecular weight of 28kDa and 175 amino acids.
VP8-NSP4融合蛋白:用基因重组的方法,将VP8和NSP4多肽链融合表达,以提高VP8在水溶液中的可溶性,同时使得融合蛋白具有刺激机体产生抗NSP4的保护性抗体。VP8-NSP4 fusion protein: The VP8 and NSP4 polypeptide chains are fused and expressed by gene recombination to improve the solubility of VP8 in aqueous solution, and at the same time, the fusion protein can stimulate the body to produce protective antibodies against NSP4.
荚膜多糖片段:通过物理(如超声波、微粒喷雾)、化学(如酸、碱、酶消化)等方法将由细菌培养液中纯化的多糖(称全多糖或原始多糖)降解(depolymerization)所获得的多糖片段,分子量通常低于原始多糖。荚膜寡聚糖:通过物理(如超声波、微粒喷雾)、化学(如酸、碱、酶消化)等方法将由细菌培养液中纯化的多糖(称全多糖或原始多糖)降解(depolymerization)所获得的多糖片段,分子结构中的单糖残基通常低于10。不过单糖残基数量的定义有差异,有些文献将多于10个少于20个单糖残基的多糖链也成为寡聚糖。Capsular polysaccharide fragment: obtained by depolymerization of purified polysaccharide (called whole polysaccharide or original polysaccharide) in bacterial culture solution by physical (such as ultrasonic wave, microparticle spray), chemical (such as acid, alkali, enzymatic digestion) and other methods Fragments of polysaccharides, usually lower in molecular weight than the original polysaccharide. Capsular oligosaccharide: obtained by depolymerization of purified polysaccharide (called whole polysaccharide or original polysaccharide) in bacterial culture solution by physical (such as ultrasonic wave, microparticle spray), chemical (such as acid, alkali, enzymatic digestion) and other methods The polysaccharide fragment of the molecular structure is usually less than 10 monosaccharide residues. However, there are differences in the definition of the number of monosaccharide residues, and some literatures refer to polysaccharide chains with more than 10 and less than 20 monosaccharide residues as oligosaccharides.
与现有技术相比,本发明具有以下优势:Compared with the prior art, the present invention has the following advantages:
1.所述缀合疫苗是含两种或两种以上不同载体蛋白的免疫缀合物,与现有的肺炎球菌结合疫苗相比,其免疫原性更强,诱发的多糖抗体水平高于单载体结合物,可以在更广阔的人群中引起免疫应答,尤其是婴幼儿;可通过减少各载体剂量而避免载体表位过载;可通过两种载体增强辅助T细胞活性;1. The conjugated vaccine is an immunoconjugate containing two or more different carrier proteins. Compared with the existing pneumococcal conjugate vaccine, its immunogenicity is stronger, and the induced polysaccharide antibody level is higher than that of single Carrier conjugates, which can elicit immune responses in a wider population, especially infants and young children; can avoid carrier epitope overload by reducing the dose of each carrier; can enhance helper T cell activity by both carriers;
2.由于两种载体蛋白中具有保护性的蛋白抗原表位也会诱导比两种蛋白混合注射时更高的免疫反应,相互协同作用,进一步增进了载体蛋白的免疫原性,增加了机体对多糖的免疫反应;2. Since the protective protein epitopes in the two carrier proteins will also induce a higher immune response than when the two proteins are injected together, they synergize with each other, further enhancing the immunogenicity of the carrier protein and increasing the body's ability to respond. Immune response to polysaccharides;
3.本发明首创的采用磁性纳米微球作为多糖与多载体蛋白的连接体,有效地避免在制备过程中荚膜多糖和蛋白质间的自身偶联,能够提高结合产物的收率,并且利于产品的质量控制;可有效延长荚膜多糖与载体蛋白之间的空间距离,减小了载体蛋白对荚膜多糖抗原表位的空间屏蔽效应,有利于提高荚膜多糖的免疫原性;3. The use of magnetic nano-microspheres as the linker between polysaccharide and multi-carrier protein, which is pioneered in the present invention, can effectively avoid the self-coupling between capsular polysaccharide and protein during the preparation process, can improve the yield of the combined product, and is beneficial to the product. It can effectively extend the spatial distance between the capsular polysaccharide and the carrier protein, reduce the space shielding effect of the carrier protein on the epitope of the capsular polysaccharide, and help improve the immunogenicity of the capsular polysaccharide;
4.所述缀合疫苗的制备过程中首创的将磁性纳米微球表面的-OH先与多糖进行偶联反应,再将偶联体经化学改性将未反应-OH改性为-CHO在与载体蛋白中的-NH2进行偶联结合,较现有技术中的结合方法更为稳定;4. In the preparation process of the conjugated vaccine, the first -OH on the surface of the magnetic nano-microspheres is firstly reacted with the polysaccharide, and then the unreacted -OH is modified into -CHO by chemical modification of the conjugated body. Coupling with -NH 2 in the carrier protein is more stable than the binding method in the prior art;
5.其制备方法简单,适合规模化工业生产的需要,未显著改变荚膜多糖和载体蛋白的结构特征。5. The preparation method is simple, suitable for the needs of large-scale industrial production, and the structural characteristics of the capsular polysaccharide and the carrier protein are not significantly changed.
综上述,本发明提供的缀合疫苗制备工艺简单,采用磁性纳米微球为连接物的缀合疫苗能够增强小鼠Th1型免疫应答,以及多糖特异性抗体的免疫持效性、特异性和亲和性,此外还可诱导小鼠产生轮状病毒抗体;具备两种疫苗的预防效果;因此具有十分广阔的应用前景。In summary, the preparation process of the conjugated vaccine provided by the present invention is simple, and the conjugated vaccine using magnetic nano-microspheres as the connector can enhance the Th1 immune response of mice, as well as the immune persistence, specificity and affinity of polysaccharide-specific antibodies. In addition, it can induce mice to produce rotavirus antibodies; it has the preventive effect of two vaccines; therefore, it has a very broad application prospect.
附图说明Description of drawings
图1为本发明实施例1所制得的缀合疫苗的1H-NMR谱图;Fig. 1 is the 1 H-NMR spectrum of the conjugated vaccine prepared in Example 1 of the present invention;
图2为本发明提供的缀合疫苗的多糖特异性抗体的免疫应答实验结果示意图;Figure 2 is a schematic diagram of the results of an immune response experiment of the polysaccharide-specific antibody of the conjugated vaccine provided by the present invention;
图3为本发明提供的缀合疫苗的多糖特异性抗体的免疫持效性实验结果示意图。FIG. 3 is a schematic diagram showing the results of the immunosustainability experiment of the polysaccharide-specific antibody of the conjugated vaccine provided by the present invention.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细、完整地说明。以下所用试剂或设备均为市售品种,如无特殊说明,均按照说明书操作,在此不做赘述。The present invention will be further described in detail and completely below in conjunction with the examples. The reagents or equipment used in the following are all commercially available varieties. If there is no special instruction, they are operated in accordance with the instructions, and will not be repeated here.
以下为结合具体实施例对本发明作进一步的说明,但不应视为对本发明的限定。The present invention is further described below with reference to specific embodiments, but should not be regarded as a limitation of the present invention.
实施例1Example 1
一、制备磁性纳米微球1. Preparation of magnetic nano-microspheres
1.取2.24gFeSO4-7H2O和3.24gFeCl3-6H2O分别溶于10mL和15mL过滤除氧的dddH2O中,溶解后混合均勾,加入100mL过滤除氧的dddH2O;1. Dissolve 2.24g FeSO 4 -7H 2 O and 3.24g FeCl 3 -6H 2 O in 10mL and 15mL of dddH 2 O filtered and deoxygenated, respectively, and mix well after dissolving, and add 100 mL of dddH 2 O filtered and deoxygenated;
2.在N2的保护下搅拌5min,一次性加入50mL1mol/LNaOH溶液,再调节溶液pH至9-10,加快搅拌速度至200-250r/min,连续搅拌30min;2. Stir for 5 min under the protection of N 2 , add 50 mL of 1mol/L NaOH solution at one time, adjust the pH of the solution to 9-10, speed up the stirring speed to 200-250 r/min, and continue to stir for 30 min;
3.将反应容器转移至65-70℃水浴中,继续在N2的保护下搅拌陈化30min;3. Transfer the reaction vessel to a 65-70°C water bath, and continue to stir and age for 30min under the protection of N 2 ;
4.反应完毕定容至100mL,显微镜下观察磁性粒子合成情况;4. After the reaction is completed, the volume is adjusted to 100 mL, and the synthesis of magnetic particles is observed under a microscope;
5.将400mgPLGA溶于10mLEA溶剂中作为油相(O),加入3mL上述磁性粒子溶液作为内水相(W1),采用超声细胞破碎仪(120W、60s)在冰水浴中进行初乳化化制备初乳,再将初乳倒入一定量含15g/LPVA和0.9%(ω)NaCl的水溶液(外水相,W2),磁力搅拌(300r/min、2min)制备预复乳液(W1/0/W2),再将预复乳倒入快速膜乳化的储料罐中,以一定N2压力将其反复压过SPG膜,得粒径均一的纳米微球复乳液滴。此外,未用完的纳米微球可制成冻干剂留用。5. Dissolve 400mg PLGA in 10mL EA solvent as oil phase (O), add 3mL of the above magnetic particle solution as inner water phase (W 1 ), use ultrasonic cell disruptor (120W, 60s) to prepare initial emulsification in ice water bath Colostrum, then poured the colostrum into a certain amount of aqueous solution (outer water phase, W 2 ) containing 15g/LPVA and 0.9% (ω) NaCl, magnetic stirring (300r/min, 2min) to prepare pre-reconstituted emulsion (W 1 / 0/W 2 ), then pour the pre-recombination emulsion into the storage tank for rapid membrane emulsification, and repeatedly press it through the SPG membrane with a certain N 2 pressure to obtain nano-microsphere re-emulsion droplets with uniform particle size. In addition, the unused nano-microspheres can be made into lyophilizer for use.
或通过取Fe3O4磁性粒子与50mL与无水乙醇按等体积加入,超声活化30min后,置60℃水浴中,缓慢的滴加10mLPELA对磁性纳米微球进行-NH2末端改性且将PELA包裹在Fe3O4磁性粒子外,在氮气保护下搅拌反应l0h,制成磁性纳米微球;反应完毕后,用50mL无水乙醇洗漆3次,再用0.01MPBS洗漆三次后,定容至50mL,显微镜下观察磁珠改性情况,至磁性纳米微球表面-NH2末端改为-OH末端。Or by taking Fe 3 O 4 magnetic particles and adding 50 mL and anhydrous ethanol in an equal volume, after ultrasonic activation for 30 min, put them in a 60 ℃ water bath, slowly add 10 mL PELA dropwise to the magnetic nano-microspheres to modify the -NH 2 end and change the PELA was wrapped in Fe 3 O 4 magnetic particles, and the reaction was stirred for 10 h under nitrogen protection to prepare magnetic nano-microspheres; Make up to 50mL, observe the modification of the magnetic beads under a microscope, and change the -NH 2 end to the -OH end on the surface of the magnetic nano-microsphere.
二、肺炎球菌多糖的制备2. Preparation of pneumococcal polysaccharides
1.选取24种血清型(1、2、3、4、5、6A、6B、7F、8、9N、9V、10A、11A、12F、14、15B、17F、18C、19A、19F、20、22F、23F、33F)的肺炎球菌培养;1. Select 24 serotypes (1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F) pneumococcal culture;
2.分别提纯以上各种血清型肺炎球菌中抗原性强的荚膜多糖:肺炎球菌,灭活后离心收集上清液,经超滤浓缩,根据各肺炎球菌血清型特性分别加入适量(体积分数为70%的)预冷乙醇,离心收集,得粗制多糖;将粗制多糖溶于乙酸钠溶液中,然后按1:2比例以冷酚混匀,离心去除蛋白,反复酚提5-6次,收集上清,用蒸馏水透析,透析后液体加2mol/L氯化钙溶液,加入乙醇搅拌,离心去除核酸,收集上清,补加乙醇(终浓度80%搅拌),离心收集沉淀,用乙醇、丙酮洗涤沉淀,脱水干燥后即为多价精制荚膜多糖,置-20℃保存备用。2. Purify the capsular polysaccharides with strong antigenicity in the above various serotypes of pneumococcus: pneumococcus. After inactivation, the supernatant is collected by centrifugation, concentrated by ultrafiltration, and an appropriate amount (volume fraction) is added according to the characteristics of each pneumococcal serotype. 70%) pre-cooled ethanol, collected by centrifugation to obtain crude polysaccharide; dissolved crude polysaccharide in sodium acetate solution, then mixed with cold phenol at a ratio of 1:2, centrifuged to remove protein, and repeated phenol extraction for 5-6 Second, collect the supernatant, dialyze it with distilled water, add 2 mol/L calcium chloride solution to the liquid after dialysis, add ethanol and stir, centrifuge to remove nucleic acids, collect the supernatant, add ethanol (final concentration 80% stirring), and collect the precipitate by centrifugation. The precipitation was washed with ethanol and acetone, dehydrated and dried to obtain the polyvalent refined capsular polysaccharide, which was stored at -20°C for later use.
三、轮状病毒载体蛋白的制备3. Preparation of rotavirus carrier protein
轮状病毒载体蛋白的制备可参见现有技术中的多种重组蛋白的制备方法,本实施例采用CN 101972475中提及的方法制备,可简化为以下步骤,具体参数不做赘述:The preparation of rotavirus carrier protein can refer to the preparation methods of various recombinant proteins in the prior art. This embodiment adopts the method mentioned in CN 101972475 to prepare, which can be simplified into the following steps, and the specific parameters are not repeated:
1、建立轮状病毒的cDNA库1. Establishment of rotavirus cDNA library
选用的为Wa毒株VP8蛋白的VP4基因,扩增引物设计如下:sense引物HWaVP4ρET28:Selected is the VP4 gene of the Wa strain VP8 protein, and the amplification primers are designed as follows: sense primer HWaVP4ρET28:
5’-TTACATATGGCTTCGCTCATTTATAG-3’,anti-sense引物AHWaVP4ρET28:5'-TTACATATGGCTTCGCTCATTTATAG-3', anti-sense primer AHWaVP4ρET28:
5’-CCGGATCCCTAGTCTTCATTAACTTGTGCT-3’。5'-CCGGATCCCTAGTCTTCATTAACTTGTGCT-3'.
2、构建pET28aWaVP8表达全长VP8质粒2. Construction of pET28aWaVP8 expression full-length VP8 plasmid
3、表达重组VP8蛋白3. Expression of recombinant VP8 protein
1)将制得的pET28aWaVP8质粒转化入BL21(DE3)competent细胞中,接种细胞到50μg/mL卡那霉素LB培养皿,在37℃下于CO2培养箱内过夜。1) Transform the prepared pET28aWaVP8 plasmid into BL21(DE3)competent cells, inoculate the cells into a 50 μg/mL kanamycin LB dish, and incubate overnight at 37°C in a CO 2 incubator.
2)挑选出一个菌落,接种到10毫升含有50μg/mL的卡那霉素LB培养液(1%胰蛋白胨、0.5%酵母提取物、1%NaCl,pH7.5)中扩增,在37℃培养过夜。2) Pick out a colony and inoculate it into 10 ml of LB broth (1% tryptone, 0.5% yeast extract, 1% NaCl, pH 7.5) containing 50 μg/mL kanamycin, and expand at 37°C Incubate overnight.
3)将培养液转接种到100毫升的50μg/mL卡那霉素LB培养液,继续培养。待吸光度600nm的OD到达1.0时,将培养液转接种到6升到50μg/mL卡那霉素LB培养液中,继续在37℃,摇速200rpm的摇床内培养,待吸光度600nm的OD到达0.6~0.8时,加入0.3mM的IPTG(异丙基-β-D-硫代半乳糖苷)诱导VP8表达。3) Inoculate the culture solution into 100 ml of 50 μg/mL kanamycin LB culture solution, and continue to culture. When the OD of the absorbance at 600nm reaches 1.0, transfer the culture solution to 6 liters of 50μg/mL kanamycin LB culture solution, and continue to cultivate in a shaker at 37°C with a shaking speed of 200rpm, until the OD of the absorbance at 600nm When reaching 0.6-0.8, 0.3 mM IPTG (isopropyl-β-D-thiogalactoside) was added to induce VP8 expression.
4)在相同的培养条件下,诱导4小时后,以4000g下,在10℃离心20分钟后,收集菌体。4) Under the same culture conditions, after 4 hours of induction, the cells were collected by centrifugation at 4000 g for 20 minutes at 10°C.
5)将细菌悬浮于20mL的1×PBS溶液,用法式压滤壶(Frenchpress)破碎细菌后,在10000g下,在10℃离心30分钟,丢弃上清液,收集沉淀的包涵体。在进一步纯化前,存储包涵体于-40℃。5) Suspend the bacteria in 20 mL of 1×PBS solution, disrupt the bacteria with a French press, centrifuge at 10,000 g for 30 minutes at 10° C., discard the supernatant, and collect the precipitated inclusion bodies. Inclusion bodies were stored at -40°C prior to further purification.
3、从包涵体中纯化VP8蛋白3. Purification of VP8 protein from inclusion bodies
1)称取制备的VP8包涵体0.5克(湿重),用清洗缓冲液(10mMTris,100mM磷酸盐缓冲液,2Murea,pH8.0)悬浮包涵体,在室温下孵育30分钟,以10,000g离心10分钟,收集包涵体。重复以上步骤三次除去污染的杂蛋白。1) Weigh 0.5 g (wet weight) of the prepared VP8 inclusion bodies, suspend the inclusion bodies with washing buffer (10 mM Tris, 100 mM phosphate buffer, 2 Murea, pH 8.0), incubate at room temperature for 30 minutes, and centrifuge at 10,000 g For 10 minutes, the inclusion bodies were collected. Repeat the above steps three times to remove contaminating impurities.
2)将包涵体沉淀溶于溶解缓冲液(10mMTris-HCl,100mM磷酸盐缓冲液,8M尿素,pH8.0)中,在冰上搅拌孵育1小时。以16,000g离心30分钟,收集上清液,丢弃不溶沉淀物。2) The inclusion body pellet was dissolved in lysis buffer (10 mM Tris-HCl, 100 mM phosphate buffer, 8 M urea, pH 8.0), and incubated on ice for 1 hour with stirring. Centrifuge at 16,000 g for 30 minutes, collect the supernatant, and discard the insoluble pellet.
3)用固定金属离子亲和层析色谱法(IMAC)纯化His-tagged重组VP8蛋白。3) The His-tagged recombinant VP8 protein was purified by immobilized metal ion affinity chromatography (IMAC).
4)收集含有VP8的洗脱液,转入透析袋中在含有20mMβ-巯基乙醇1和8M尿素的TBS(pH4.0)中透析,并逐渐降低尿素的浓度(即8,6,4,2,和1M),在4℃中透析过夜。然后在含有2mMβ-巯基乙醇的TBSpH5.5溶液中透析两次,最后在TBS溶液中透析。根据重组VP8蛋白来源的毒株不同,来进行最后透析。4) Collect the eluate containing VP8, transfer it to a dialysis bag and dialyze it in TBS (pH 4.0) containing 20 mM β-mercaptoethanol 1 and 8 M urea, and gradually reduce the concentration of urea (ie, 8, 6, 4, 2). , and 1M), dialyzed overnight at 4°C. It was then dialyzed twice against TBS pH 5.5 solution containing 2 mM β-mercaptoethanol and finally against TBS solution. The final dialysis is performed depending on the strain from which the recombinant VP8 protein is derived.
四、肺炎球菌表面蛋白A(rPspA)的制备4. Preparation of pneumococcal surface protein A (rPspA)
将PspA蛋白克隆至大肠杆菌进行表达并分离纯化,具体包括:The PspA protein was cloned into E. coli for expression, isolation and purification, including:
1.目的基因的优化和重组表达质粒的构建1. Optimization of target gene and construction of recombinant expression plasmid
在GenBank中获取PspA基因序列(GI:193804931)并进行优化,加上His标签后进行全基因合成,将合成的序列经SacⅠ和NdeⅠ双酶切后,定向克隆至同样双酶切的表达载体pET-30a(+)中,转化感受态大肠杆菌BL21Star(DE3),37℃过夜培养,挑取阳性单克隆菌落,扩增培养后提取质粒,用NdeⅠ和SacⅠ双酶切鉴定,并送测序,将测序正确的重组表达质粒命名为pET-30a-rPspA。The PspA gene sequence (GI: 193804931) was obtained from GenBank and optimized. After adding the His tag, the whole gene was synthesized. The synthesized sequence was double digested by SacⅠ and NdeⅠ, and then cloned into the expression vector pET with the same double digestion. -30a(+), transform competent Escherichia coli BL21Star (DE3), cultivate overnight at 37°C, pick positive monoclonal colonies, and extract plasmids after amplifying and culturing. The correctly sequenced recombinant expression plasmid was named pET-30a-rPspA.
2.重组蛋白的诱导表达及纯化2. Inducible expression and purification of recombinant protein
复苏工程菌,以1:100的比例接种2×LB培养基,在37℃,237r/min下扩大培养,当菌体值约为12时,加入IPTG至终浓度为1mmol/L,37℃诱导4h,取样进行SDS-PAGE分析离心收集诱导菌体,加入生理盐水重悬洗涤2次,以1:10(g/mL)的比例加入05mol/LNaCl5mmol/L咪唑20mmol/LPB(pH7.4)的缓冲液重悬菌体,超声波破碎菌体,8000×g离心40min,收集上清,于镍离子层析柱中进行纯化,按说明书操作纯化产物的及分析将载体pET-30a(+)转化的大肠杆菌BL21Star(DE3)全菌体(对照)和将上步纯化样品经SDS-PAGE分离后电转移至硝酸纤维素膜上,用5%脱脂奶粉摇床轻微振荡封闭2h;加入His鼠源单抗(1∶800稀释),4℃过夜;TBST清洗3次,加入HRP标记的羊抗鼠IgG(1∶2000稀释),室温孵育1h;洗涤3次,DAB显色。Resuscitate the engineered bacteria, inoculate 2×LB medium at a ratio of 1:100, and expand the culture at 37°C and 237r/min. When the bacterial cell value is about 12, add IPTG to a final concentration of 1mmol/L, and induce induction at 37°C. 4h, take samples for SDS-PAGE analysis and centrifuge to collect induced bacteria, add physiological saline to resuspend and wash twice, and add 05mol/LNaCl5mmol/L imidazole 20mmol/LPB (pH7.4) at a ratio of 1:10 (g/mL). The bacteria were resuspended in buffer solution, disrupted by ultrasonic wave, centrifuged at 8000 × g for 40 min, the supernatant was collected, and purified in a nickel ion chromatography column. Escherichia coli BL21Star (DE3) whole cells (control) and the purified samples in the previous step were separated by SDS-PAGE, and then electrotransferred to nitrocellulose membranes, and sealed with 5% nonfat milk powder shaker for 2 hours; Antibody (1:800 dilution), overnight at 4°C; washed 3 times with TBST, added HRP-labeled goat anti-mouse IgG (1:2000 dilution), incubated at room temperature for 1 h; washed 3 times, DAB developed color.
五、缀合疫苗的制备V. Preparation of Conjugate Vaccines
1.多糖-磁性纳米微球偶联1. Polysaccharide-magnetic nanosphere coupling
0.1MTBS溶液缓冲液下,pH6.0加入上述步骤制得的任一或多种荚膜多糖和磁性纳米微球,本实施例中采用13价荚膜多糖(1、3、5、6A、6B、7F、9V、14、18C、19A、19F和23F),荚膜多糖与磁性纳米微球的质量比为1:(0.5-1),于室温下反应6-24小时;其中优化的质量比为1:1,于室温下缩醛反应16小时。反应结束后,用透析袋充分透析,除去未反应磁性纳米微球。Under 0.1MTBS solution buffer, pH6.0 adds any one or more capsular polysaccharides and magnetic nano-microspheres obtained by the above steps, and in the present embodiment, 13-valent capsular polysaccharides (1, 3, 5, 6A, 6B) are used. , 7F, 9V, 14, 18C, 19A, 19F and 23F), the mass ratio of capsular polysaccharide and magnetic nano-microspheres is 1:(0.5-1), and the reaction is carried out at room temperature for 6-24 hours; wherein the optimized mass ratio At 1:1, the acetal was reacted at room temperature for 16 hours. After the reaction, fully dialyzed with a dialysis bag to remove unreacted magnetic nanospheres.
2.偶联体改性2. Conjugate modification
取步骤1多糖-磁性纳米微球偶联体30mL,搅拌条件下缓慢滴加2mL25%戊二酸,200r/min搅拌反应6小时;反应完毕后,用0.01MPBS洗涤三次后,定容至30mL,显微镜下观察磁性纳米微球改性情况,使得多糖-磁性纳米微球偶联体表面未与多糖反应的-OH改性为-CHO;N2、4℃保存备用。Take 30 mL of the polysaccharide-magnetic nano-microsphere conjugate in step 1, slowly add 2 mL of 25% glutaric acid dropwise under stirring conditions, and stir at 200 r/min for 6 hours; The modification of the magnetic nano-microspheres was observed under a microscope, so that the -OH that was not reacted with the polysaccharide on the surface of the polysaccharide-magnetic nano-microsphere conjugate was modified to -CHO; N 2 , 4°C was stored for later use.
3.与PspA载体蛋白和轮状病毒蛋白共偶联3. Coconjugate with PspA carrier protein and rotavirus protein
0.1MTBS溶液缓冲液下,4℃、pH4.0-9.0下,将改性后的多糖-磁性纳米微球分别与轮状病毒蛋白和PspA蛋白共反应24小时(为保证足量的载体蛋白与磁性纳米微球,采用过量纳米载体蛋白加入量,如质量比采用多糖:磁性纳米微球:PspA:轮状病毒蛋白=1:1:2:2)。Under 0.1MTBS solution buffer, 4°C, pH 4.0-9.0, the modified polysaccharide-magnetic nanospheres were reacted with rotavirus protein and PspA protein for 24 hours (in order to ensure a sufficient amount of carrier protein and PspA protein). For magnetic nano-microspheres, an excess amount of nanocarrier protein is used, such as the mass ratio of polysaccharide: magnetic nano-microspheres: PspA: rotavirus protein = 1:1:2:2).
4.缀合疫苗的分离纯化4. Isolation and purification of conjugated vaccines
用Superdex200凝胶过滤柱(2.6cm×60cm)进行分离纯化,洗脱液为20mM的磷酸缓冲液(pH7.4),流速为3mL/min。收集对应于多糖-磁性纳米微球-双载体蛋白的洗脱峰。Use Superdex200 gel filtration column (2.6cm×60cm) for separation and purification, the eluent is 20mM phosphate buffer (pH7.4), and the flow rate is 3mL/min. The elution peaks corresponding to the polysaccharide-magnetic nanosphere-double carrier protein were collected.
制得的缀合疫苗的组成分析Compositional analysis of the prepared conjugate vaccine
用1H-NMR进行检测所述缀合疫苗,检测结果见图1。如图1所示,与荚膜多糖分子相比,缀合物在0.4-1.4ppm处出现了特征峰,对应于载体蛋白的脂肪链氨基酸残基。在7.2ppm处出现了对应于载体蛋白的芳香族氨基酸残基的特征峰。这表明荚膜多糖分子成功地偶联了轮状病毒蛋白和PspA载体蛋白两种载体蛋白。在6.2ppm处出现了对应于琥珀酰亚胺的特征峰,这表明多糖结合疫苗的连接桥中含有琥珀酰亚胺。此外,5.2、1.6、3.6出线了PELA的特征峰证明磁性纳米微球PELA作为连接物。因此,荚膜多糖在结合两种载体蛋白前后,其结构未发生明显改变。The conjugated vaccine was detected by 1 H-NMR, and the detection results are shown in Figure 1 . As shown in Figure 1, compared with the capsular polysaccharide molecules, the conjugates exhibited characteristic peaks at 0.4-1.4 ppm, corresponding to the aliphatic chain amino acid residues of the carrier protein. A characteristic peak corresponding to the aromatic amino acid residues of the carrier protein appeared at 7.2 ppm. This indicated that the capsular polysaccharide molecule was successfully coupled to the two carrier proteins, the rotavirus protein and the PspA carrier protein. A characteristic peak corresponding to succinimide appeared at 6.2 ppm, which indicated that succinimide was contained in the linking bridge of the polysaccharide conjugate vaccine. In addition, the characteristic peaks of PELA appeared in 5.2, 1.6, and 3.6, which proved that PELA of magnetic nanospheres was used as a linker. Therefore, the structure of the capsular polysaccharide did not change significantly before and after binding to the two carrier proteins.
通过CL-4B即SEC-MALLS方法检测多糖蛋白缀合物的分子量分布情况;通过免疫双扩的方法使用不同的抗体血清确定多糖蛋白缀合物中的蛋白和多糖种类;通过蒽酮法检测多糖蛋白缀合物的多糖含量;Lowry法蛋白含量检测多糖蛋白缀合物的总蛋白含量,再通过计算得到缀合物的多糖蛋白结合比(Ratio);轮状病毒蛋白、PspA蛋白浓度通过酶联免疫法检测。结果表明:在所述缀合疫苗原液中,各物质的浓度比约为:多糖:磁性纳米微球:PspA:轮状病毒蛋白=1:1:1:1)。The molecular weight distribution of the polysaccharide-protein conjugates was detected by CL-4B (SEC-MALLS) method; the protein and polysaccharide species in the polysaccharide-protein conjugates were determined by the method of double immunostaining using different antibody sera; the polysaccharide was detected by the anthrone method The polysaccharide content of the protein conjugate; the protein content of the Lowry method detects the total protein content of the polysaccharide-protein conjugate, and then calculates the polysaccharide-protein binding ratio (Ratio) of the conjugate; Immunoassay detection. The results show that: in the conjugated vaccine stock solution, the concentration ratio of each substance is about: polysaccharide: magnetic nanosphere: PspA: rotavirus protein = 1:1:1:1).
对比例1Comparative Example 1
本对比例与实施例1的区别仅在于:制得的疫苗中无磁性纳米微粒作为连接体,而且通过现有技术中提及的方法将双载体蛋白与多糖缀合而得。The only difference between this comparative example and Example 1 is that the prepared vaccine has no magnetic nanoparticles as linkers, and is obtained by conjugating dual carrier protein and polysaccharide by the method mentioned in the prior art.
对比例2Comparative Example 2
本对比例与实施例1的区别仅在于:制得的疫苗中无PspA载体蛋白,仅采用多糖-磁性纳米微粒-轮状病毒载体蛋白为缀合疫苗。The only difference between this comparative example and Example 1 is that there is no PspA carrier protein in the prepared vaccine, and only polysaccharide-magnetic nanoparticles-rotavirus carrier protein is used as the conjugated vaccine.
实施例2Example 2
本实施例与实施例1的区别仅在于所述缀合疫苗的载体蛋白为破伤风类毒素载体蛋白和PspA。The only difference between this example and Example 1 is that the carrier proteins of the conjugated vaccine are tetanus toxoid carrier protein and PspA.
制得的缀合疫苗的组成分析结果与实施例1所得结果存在理论误差范围内的一致性。The composition analysis results of the prepared conjugated vaccines were consistent with the results obtained in Example 1 within the theoretical error range.
实施例3Example 3
本实施例与实施例1的区别仅在于:所述缀合疫苗的载体蛋白为轮状病毒载体蛋白和破伤风类毒素载体蛋白。The only difference between this example and Example 1 is that the carrier proteins of the conjugated vaccine are rotavirus carrier protein and tetanus toxoid carrier protein.
制得的缀合疫苗的组成分析结果与实施例1所得结果存在理论误差范围内的一致性。The composition analysis results of the prepared conjugated vaccines were consistent with the results obtained in Example 1 within the theoretical error range.
实施例4Example 4
本实施例与实施例1的区别仅在于:所述缀合疫苗的载体蛋白为轮状病毒载体蛋白和嗜血流感杆菌表面蛋白HiD。The only difference between this example and Example 1 is that the carrier proteins of the conjugated vaccine are rotavirus carrier protein and Haemophilus influenzae surface protein HiD.
制得的缀合疫苗的组成分析结果与实施例1所得结果存在理论误差范围内的一致性。The composition analysis results of the prepared conjugated vaccines were consistent with the results obtained in Example 1 within the theoretical error range.
实施例5Example 5
本实施例与实施例1的区别仅在于:所述缀合疫苗的载体蛋白为载体蛋白CRM197和PspA。制得的缀合疫苗的组成分析结果与实施例1所得结果存在理论误差范围内的一致性。The only difference between this example and Example 1 is that the carrier proteins of the conjugated vaccine are carrier proteins CRM197 and PspA. The composition analysis results of the prepared conjugated vaccines were consistent with the results obtained in Example 1 within the theoretical error range.
实施例6Example 6
本实施例与实施例1的区别仅在于:连接体为PLGA磁性纳米颗粒。The only difference between this example and Example 1 is that the connector is PLGA magnetic nanoparticles.
制得的缀合疫苗的组成分析结果与实施例1所得结果存在理论误差范围内的一致性。The composition analysis results of the prepared conjugated vaccines were consistent with the results obtained in Example 1 within the theoretical error range.
实施例7Example 7
本实施例与实施例1的区别仅在于:连接体为PEG磁性纳米颗粒。The only difference between this example and Example 1 is that the linker is PEG magnetic nanoparticles.
制得的缀合疫苗的组成分析结果与实施例1所得结果存在理论误差范围内的一致性。The composition analysis results of the prepared conjugated vaccines were consistent with the results obtained in Example 1 within the theoretical error range.
疫苗评价Vaccine Evaluation
以下采用免疫原性等疫苗常规效价的评估实验评估实施例1~7及对比例1~2所得疫苗的免疫效果:The immune effects of the vaccines obtained in Examples 1 to 7 and Comparative Examples 1 to 2 were evaluated by the evaluation experiments of the conventional titers of vaccines such as immunogenicity:
A.缀合疫苗免疫原性实验A. Conjugate vaccine immunogenicity experiments
选取100只5周龄的雌性Blab/C小鼠,体重为15-22克。随机分为10组,即实施例1~7、对比例1~2和阳性对照组(Prevnar 13),每组10只小鼠。腹腔注射,每只每次注射为5微克,每周注射1次,共注射3次。21天后眼眶取血。用ELISA法检测小鼠血浆中抗荚膜多糖的IgG、IgG1和IgG2a。实验结果见表1100 5-week-old female Blab/C mice with a body weight of 15-22 g were selected. Randomly divided into 10 groups, namely Examples 1-7, Comparative Examples 1-2 and positive control group (Prevnar 13), with 10 mice in each group. Intraperitoneal injection, each injection of 5 micrograms, once a week, a total of 3 injections. Orbital blood was collected after 21 days. The anti-capsular polysaccharide IgG, IgG1 and IgG2a in mouse plasma were detected by ELISA. The experimental results are shown in Table 1
表1Table 1
如表1所示,实施例1~7中所得的缀合疫苗可显著提升抗体滴度(p<0.0001**),如图2所示,且明显优于对比例1和对比例2以及阳性对照组;由此可见,采用双载体蛋白并以磁性纳米微球与肺炎多糖而得的缀合疫苗可显著增强Th1型免疫应答,且免疫效果明显优于对比例1的无纳米磁性微球连接体和对比例2的单载体蛋白而得的缀合疫苗;但根据实施例1~7所得的免疫应答结果也可知,由PspA或HiD为双载体蛋白之一的免疫应答效果较好,且磁性纳米载体中PELA和PLGA较PEG免疫应答效果好。As shown in Table 1, the conjugated vaccines obtained in Examples 1 to 7 can significantly increase the antibody titer (p<0.0001**), as shown in Figure 2, and are significantly better than Comparative Example 1 and Comparative Example 2 and positive Control group; it can be seen that the conjugated vaccine obtained by using dual carrier protein and magnetic nano-microspheres and pneumococcal polysaccharide can significantly enhance the Th1 immune response, and the immune effect is significantly better than that without nano-magnetic microspheres in Comparative Example 1. However, according to the immune response results obtained in Examples 1 to 7, it can be seen that the immune response effect of PspA or HiD as one of the dual carrier proteins is better, and the magnetic PELA and PLGA in nanocarriers had better immune response than PEG.
B.多糖特异性抗体的免疫持效性、特异性和亲合性实验B. Immune persistence, specificity and affinity experiments of polysaccharide-specific antibodies
分别以实施例1、对比例1和2以及阳性对照所得缀合疫苗进行一下实验。The following experiments were carried out with the conjugated vaccines obtained in Example 1, Comparative Examples 1 and 2, and the positive control, respectively.
1、免疫持效性1. Immunity persistence
通过测定三针免疫后20周内多糖特异性抗体的滴度,以研究多糖特异性抗体的免疫持效性。图3为所述免疫持效性示意图,如图3所示,其多糖特异性IgG滴度较低,随着注射时间增加而逐渐降低,第4周后已无法检测到。对比例1和2产生的多糖特异性IgG滴度要低于实施例1组,而高于阳性对照组。多糖特异性IgG滴度在第2周达峰,在第4-20周内逐渐下降,其中阳性对照组的下降速度最快。第18周后,实施例1组、对比例1、对比例2和阳性对照组的多糖特异性IgG滴度分别是其峰值的20%、15%、12%和10%。因此,本发明提供的缀合疫苗能够增强多糖特异性抗体的免疫持效性。The immune persistence of polysaccharide-specific antibodies was investigated by measuring the titer of polysaccharide-specific antibodies within 20 weeks after three-needle immunization. Figure 3 is a schematic diagram of the immune persistence. As shown in Figure 3, the titer of polysaccharide-specific IgG was low, gradually decreased with the increase of injection time, and could not be detected after the 4th week. The polysaccharide-specific IgG titers produced by Comparative Examples 1 and 2 were lower than those of the Example 1 group, but higher than that of the positive control group. The titer of polysaccharide-specific IgG peaked in the 2nd week and gradually decreased in the 4th to 20th week, and the decline rate of the positive control group was the fastest. After the 18th week, the polysaccharide-specific IgG titers of the Example 1 group, Comparative Example 1, Comparative Example 2 and the positive control group were 20%, 15%, 12% and 10% of their peak values, respectively. Therefore, the conjugated vaccine provided by the present invention can enhance the immune persistence of polysaccharide-specific antibodies.
2、特异性和亲和性2. Specificity and Affinity
向200倍稀释的PS-TT组、PS-PLGA-TT组和PS-PELA-TT组小鼠血浆中加入不同量的荚膜多糖,用ELISA方法检测小鼠血浆中抗荚膜多糖的抗体水平,结果见表2。Different amounts of capsular polysaccharide were added to the plasma of mice in PS-TT group, PS-PLGA-TT group and PS-PELA-TT group diluted by 200 times, and the level of anti-capsular polysaccharide antibody in mouse plasma was detected by ELISA. , and the results are shown in Table 2.
表2Table 2
如表2所示,随着多糖加入量的增加,多糖特异性抗体结合96孔板中多糖的能力逐渐降低。当加入的多糖达到20μg时,抗体结合多糖的能力丧失。这表明由本发明提供的缀合疫苗诱导小鼠产生的抗荚膜多糖抗体能够特异性地结合荚膜多糖。As shown in Table 2, with the increase of the amount of polysaccharide added, the ability of polysaccharide-specific antibodies to bind to polysaccharides in the 96-well plate gradually decreased. When the added polysaccharide reached 20 μg, the ability of the antibody to bind the polysaccharide was lost. This indicates that the anti-capsular polysaccharide antibody induced by the conjugated vaccine provided by the present invention can specifically bind to the capsular polysaccharide.
用硫氰酸铵法测定抗荚膜多糖的抗体亲合性。荚膜多糖组(阴性对照)的多糖特异性抗体亲和指数为1.18mol/L,而阳性对照组、对比例1组、对比例2组组和实施例1组的抗体亲和指数分别为2.65mol/L、2.80mol/L、3.02mol/L和3.21mol/L。这表明本发明提供的缀合疫苗能显著提高多糖特异性抗体的亲合性。Antibody affinity to capsular polysaccharide was determined by the ammonium thiocyanate method. The polysaccharide-specific antibody affinity index of the capsular polysaccharide group (negative control) was 1.18mol/L, while the antibody affinity index of the positive control group, the comparative example 1 group, the comparative example 2 group and the example 1 group were 2.65, respectively mol/L, 2.80 mol/L, 3.02 mol/L and 3.21 mol/L. This shows that the conjugated vaccine provided by the present invention can significantly improve the affinity of polysaccharide-specific antibodies.
C、轮状病毒中和试验结果C. Rotavirus neutralization test results
采用实施例1中方法分别制得的小鼠血清各组(实施例1、对比例1组和对比例2组分别注射一针、两针和三针)的每个小鼠血清各取10μL混合,用于中和试验样品血清。10 μL of each mouse serum from each group of mouse serum prepared by the method in Example 1 (one injection, two injections and three injections were injected in Example 1, Comparative Example 1 and Comparative Example 2, respectively) were mixed , used to neutralize test sample serum.
注射小白鼠产生的抗WaVP8抗体的中和试验在微板(microplate)上用BSC-1细胞进行。将加热灭活血清进行系列稀释后,与100TCID50的Wa轮状病毒毒株混合后,在4℃培养1小时。然后将BSC-1细胞接种到微板上,孵化1小时。加DMEM(不含血清)加入到每个孔,37℃孵化1小时。最后,稀释抗血清能够防止轮状病毒细胞病变效应(CPE)发生的浓度为中和滴度。多糖对照组血清用作阴性对照。实验结果见表3。Neutralization assays by injection of anti-WaVP8 antibodies produced in mice were performed on microplates with BSC-1 cells. The heat-inactivated serum was serially diluted, mixed with a Wa rotavirus strain of 100 TCID50, and incubated at 4°C for 1 hour. BSC-1 cells were then seeded onto microplates and incubated for 1 hour. DMEM (without serum) was added to each well and incubated at 37°C for 1 hour. Finally, the concentration at which the diluted antiserum prevents rotavirus cytopathic effect (CPE) is the neutralizing titer. The polysaccharide control serum was used as a negative control. The experimental results are shown in Table 3.
表3:缀合疫苗注射小白鼠抗体中和轮状病毒Wa毒株试验结果Table 3: Results of antibody neutralization of rotavirus Wa strain in mice injected with conjugate vaccine
如表3所示,缀合疫苗中和轮状病毒效果明显优于对比例1和对比例2,可显著诱导轮状病毒抗体产生。As shown in Table 3, the effect of the conjugate vaccine in neutralizing rotavirus is significantly better than that of Comparative Example 1 and Comparative Example 2, and can significantly induce the production of rotavirus antibodies.
最后有必要在此说明的是:以上实施例只用于对本发明的技术方案作进一步详细地说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。Finally, it is necessary to explain here: the above embodiments are only used to further describe the technical solutions of the present invention in detail, and should not be construed as limiting the protection scope of the present invention. Non-essential improvements and adjustments belong to the protection scope of the present invention.
Claims (25)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410359036 | 2014-07-25 | ||
CN2014103590369 | 2014-07-25 | ||
CN201410491388.XA CN104225589B (en) | 2014-07-25 | 2014-09-23 | A kind of conjugate vaccines and preparation method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410491388.XA Division CN104225589B (en) | 2014-07-25 | 2014-09-23 | A kind of conjugate vaccines and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107029225A CN107029225A (en) | 2017-08-11 |
CN107029225B true CN107029225B (en) | 2020-08-11 |
Family
ID=52215063
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710278093.8A Active CN107029225B (en) | 2014-07-25 | 2014-09-23 | Conjugate vaccine and preparation method thereof |
CN201410491388.XA Active CN104225589B (en) | 2014-07-25 | 2014-09-23 | A kind of conjugate vaccines and preparation method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410491388.XA Active CN104225589B (en) | 2014-07-25 | 2014-09-23 | A kind of conjugate vaccines and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN107029225B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3493837B1 (en) | 2016-08-05 | 2022-08-31 | Sanofi Pasteur, Inc. | Multivalent pneumococcal polysaccharide-protein conjugate composition |
KR102467074B1 (en) | 2016-08-05 | 2022-11-11 | 사노피 파스퇴르 인코포레이티드 | Polyvalent pneumococcal polysaccharide-protein conjugate composition |
KR20200121822A (en) | 2018-02-05 | 2020-10-26 | 사노피 파스퇴르 인코포레이티드 | Polyvalent pneumococcal polysaccharide-protein conjugate composition |
KR102486891B1 (en) | 2018-02-05 | 2023-01-10 | 사노피 파스퇴르 인코포레이티드 | Polyvalent pneumococcal polysaccharide-protein conjugate composition |
CN111989114A (en) | 2018-04-18 | 2020-11-24 | Sk生物科学株式会社 | Capsular polysaccharides of Streptococcus pneumoniae and their immunogenic conjugates |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101972475A (en) * | 2010-04-12 | 2011-02-16 | 李建平 | Bacterial polysaccharide-protein conjugate vaccine and preparation method thereof |
CN102485274A (en) * | 2010-12-01 | 2012-06-06 | 吉林大学 | Preparation method and application of PLGA microspheres as nucleic acid vaccine carrier |
CN103893751A (en) * | 2014-03-26 | 2014-07-02 | 天津康希诺生物技术有限公司 | Pneumococcal polysaccharide and protein conjugated vaccine and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101123990A (en) * | 2004-10-01 | 2008-02-13 | Mida科技有限公司 | Nanoparticles comprising antigen and adjuvant, and immunogenic constructs |
ES2627233T3 (en) * | 2007-10-12 | 2017-07-27 | Massachusetts Institute Of Technology | Vaccine Nanotechnology |
KR102001269B1 (en) * | 2011-09-07 | 2019-07-17 | 미다테크 리미티드 | Nanoparticle-Peptide Compositions |
-
2014
- 2014-09-23 CN CN201710278093.8A patent/CN107029225B/en active Active
- 2014-09-23 CN CN201410491388.XA patent/CN104225589B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101972475A (en) * | 2010-04-12 | 2011-02-16 | 李建平 | Bacterial polysaccharide-protein conjugate vaccine and preparation method thereof |
CN102485274A (en) * | 2010-12-01 | 2012-06-06 | 吉林大学 | Preparation method and application of PLGA microspheres as nucleic acid vaccine carrier |
CN103893751A (en) * | 2014-03-26 | 2014-07-02 | 天津康希诺生物技术有限公司 | Pneumococcal polysaccharide and protein conjugated vaccine and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104225589A (en) | 2014-12-24 |
CN107029225A (en) | 2017-08-11 |
CN104225589B (en) | 2018-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7268125B2 (en) | Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising same and uses thereof | |
JP7227943B2 (en) | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof | |
JP7030235B2 (en) | Polyvalent pneumococcal polysaccharide-protein complex composition | |
WO2015144031A1 (en) | Pneumococcus polysaccharide protein conjugated vaccine and preparation method therefor | |
CN107029225B (en) | Conjugate vaccine and preparation method thereof | |
CN109890415B (en) | Multivalent pneumococcal polysaccharide-protein conjugate composition | |
JP2002508761A (en) | VODETELLA PERTUSSIS Pili-Containing Vaccination Conjugates and BORDETELLA PERTUSSIS Antigen as Carrier in Oral Vaccines | |
US10576138B2 (en) | Vaccines and compositions for the prevention of Salmonella infections | |
JP2021512870A (en) | Polyvalent pneumococcal polysaccharide-protein complex composition | |
JPH09512276A (en) | Group A Streptococcus bacterial polysaccharide immunogenic compositions and immunization methods | |
ES2728653T3 (en) | Vaccine compositions with a protein matrix that includes polycations | |
CN107412765B (en) | Human rotavirus vaccine and preparation method thereof | |
CN113194987B (en) | Multivalent pneumococcal polysaccharide-protein conjugate vaccine | |
CN107050444B (en) | Rotavirus polysaccharide-protein conjugate vaccine and preparation method thereof | |
CN107007829B (en) | A kind of pneumonia multivalent conjugate vaccine and preparation method thereof | |
CN107412764B (en) | A kind of pneumococcal conjugate vaccine and preparation method thereof | |
CN107151270B (en) | Recombinate Δ fHbp-NadA fusion protein carriers and its preparation method and application | |
US5922848A (en) | Method of recovering shiga-like toxins and vaccines comprising inactivated shiga-like toxin | |
CN108619508A (en) | A kind of season influenza-RSV- epidemic meningitis-pneumococcus combined vaccine based on recombinant vector albumen | |
CN106075420A (en) | Multivalent pneumococcal Type B hemophilus influenza combined vaccine | |
CN106075430A (en) | Multivalent pneumococcal ACYW135 meningococcus combined vaccine | |
CN110251667A (en) | A kind of immune combination preparation and its preparation method and application | |
CN110652585A (en) | Polysaccharide-protein conjugate immune preparation and application thereof | |
CN118105477A (en) | Multivalent group B streptococcus polysaccharide-protein conjugate composition, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221223 Address after: Building A9-2, Small and Medium Enterprises Park, Biomedical Industrial Park, No. 858, Gaoxin Avenue, Donghu High tech Zone, Wuhan City, 430206, Hubei Province Patentee after: BRAVOVAX Co.,Ltd. Patentee after: SHANGHAI BOWO BIOTECHNOLOGY Co.,Ltd. Address before: 430075 building a9-2, SME Park, biomedical industrial park, No. 858, Gaoxin Avenue, Donghu high tech Zone, Wuhan City, Hubei Province Patentee before: BRAVOVAX Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A conjugate vaccine and its preparation method Granted publication date: 20200811 Pledgee: SHANGHAI MACROPROCESS LUSTRATION TECHNOLOGY Co.,Ltd. Pledgor: SHANGHAI BOWO BIOTECHNOLOGY Co.,Ltd.|BRAVOVAX Co.,Ltd. Registration number: Y2024310000713 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |