CN107018027A - 一种基于贝叶斯估计和共同邻居节点度的链路预测方法 - Google Patents
一种基于贝叶斯估计和共同邻居节点度的链路预测方法 Download PDFInfo
- Publication number
- CN107018027A CN107018027A CN201710366171.XA CN201710366171A CN107018027A CN 107018027 A CN107018027 A CN 107018027A CN 201710366171 A CN201710366171 A CN 201710366171A CN 107018027 A CN107018027 A CN 107018027A
- Authority
- CN
- China
- Prior art keywords
- node
- nodes
- network
- length
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 241001632422 Radiola linoides Species 0.000 abstract 1
- 240000000233 Melia azedarach Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/142—Network analysis or design using statistical or mathematical methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/147—Network analysis or design for predicting network behaviour
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Algebra (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Pure & Applied Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种基于贝叶斯估计和共同邻居节点度的链路预测方法,建立网络模型,任取两个未直接连接节点作为种子节点,分别计算它们之间存在和不存在连边的概率,根据二节点之间长度为2或3路径中间节点度信息,分别计算二节点之间产生和不产生连边概率,根据贝叶斯估计和共同邻居节点度,计算二节点之间长度为2和3路径每一中间节点似然值,相似性分数为所有中间节点似然值之和;遍历网络,用上述方法获取任意两个种子节点间相似性分数,将所有种子节点对按相似性分数降序排列,取前B个分数值对应节点对为预测连边。本发明根据贝叶斯估计,结合共同邻居节点度,区分两节点间局部路径中不同中间节点具有不同重要性,算法预测效果好。
Description
技术领域
本发明涉及网络科学和链路预测领域,特别是指一种基于贝叶斯估计和共同邻居节点度的链路预测方法。
背景技术
现实生活中的复杂系统可以使用复杂网络进行研究,网络中的节点代表复杂系统中的个体,连边代表系统中节点之间的相互关系。链路预测是复杂网络的重要研究领域之一,因为链路预测可以对网络的演化过程中节点之间可能产生的链路进行预测,所有可以提前预判出网络的演化趋势,并且可以判断出网络中并不存在的“幽灵边”,能够更好的帮助研究人员研究网络的内在规律。
链路预测问题受到研究人员的广泛关注。相比较而言,基于网络结构的链路预测算法相对于基于网络节点属性信息的预测算法更加可靠、准确。共同邻居(CN)算法是一种基于网络结构的经典链路预测算法,这种算法又被称为结构等价算法,即节点之间有很多的共同邻居节点,那么这两个节点就越相似,在CN算法的基础之上衍生出的链路预测算法有Salton算法、Jaccard算法、Sorenson算法、HPI(大度节点有利指标)、HDI(大度节点不利指标)、LHN-I算法、AA算法和RA算法等等,其中Salton算法又被称为余弦相似性算法,Sorenson算法常被用于生态学数据的研究,HPI算法常被用来分析新陈代谢网络的拓扑相似性,AA算法的思想是度小的共同邻居节点的贡献大于度大的共同邻居节点,RA算法是在AA算法的基础之上,受资源分配过程的启发而提出来的;基于路径的相似性算法,主要包括了局部路径指标(Local Path,LP)、Katz算法LHN-II算法,这些算法克服了CN算法使用的网络有效信息过少的缺点,从全局的角度利用网络的有效信息,因此,一定程度上提高了链路预测的精确性。
上述的一些经典算法主要考虑的是网络中的拓扑结构特性,即两个节点之间的网络特征越相似,那么这两个节点之间越有可能产生链路,这些方法在很多网络中的仿真被证实是有效的,但是这些传统的经典算法只考虑了没有直接连边的节点对之间长度为二的路径的中间节点的度数信息,并没有考虑长度大于二的路径的中间节点的属性,事实上网络中的这些属性对于节点对之间产生链路有很大的作用。传统的基于共同邻居节点度的算法只考虑长度为2的路径的中间节点的度数,没有考虑节点的其他属性,从而无法有效区分中间节点对没有直接连边的节点对产生链路的贡献。
发明内容
为了克服现有的基于共同邻居节点度的链路预测方法只考虑路径长度等于2的路径的中间节点,并且,只考虑这些节点的度数而导致的预测精度不高的不足,本发明提出了一种准确度较高的基于贝叶斯估计和共同邻居节点度的链路预测方法。
本发明解决其技术问题所采用的技术方案是:
一种基于贝叶斯估计和共同邻居节点度的链路预测方法,包括以下步骤:
步骤一:建立网络模型G(V,E),V代表网络中的节点集合,E代表网络中的连边集合,网络的节点总数记为N,用U表示网络中节点对的集合,|U|=N(N-1)/2表示网络中节点对的总数;
步骤二:任意选取网络中的两个节点x和y作为种子节点,计算它们之间存在直接连边的可能性:
其中,|E|表示网络中实际存在的连边总数,A1表示x和y两个节点之间存在直接连边;
步骤三:计算网络中任意两个节点x和y之间不存在直接连边的概率:
其中,A0表示x和y两个节点之间不存在直接连边;
步骤四:根据节点x和y之间长度为2或者3的路径的一个中间节点Vw的度信息,计算节点x和y之间产生连边的概率:
P(A1|Vw)=Cw
其中,Cw=2Ew/kw(kw-1),kw表示节点Vw的度数,Ew表示节点Vw的kw个邻居节点之间实际存在的边数;
步骤五:根据节点x和y之间长度为2或者3的路径的一个中间节点Vw的度信息,计算节点x和y之间不产生连边的概率:
P(A0|Vw)=1-Cw;
步骤六:根据贝叶斯估计的方法,计算节点x和y之间长度为2和3的路径的任意一个中间节点Vw的似然值
步骤七:对节点x和y之间长度为2和3的路径的每一个中间节点,重复步骤四至步骤六,计算每一个中间节点的似然值
步骤八:计算节点x和y的相似性分数:
其中Q表示节点x和y之间长度为2和3的所有路径中的所有中间节点的数量,kj表示第j个中间节点的度数;
步骤九:遍历整个网络,对任意两个未连接节点,重复步骤二至步骤八,计算所有未连接节点对之间的相似性分数,并按照相似性分数值从高到低排列顺序,取前B个相似性分数值对应的节点对为预测连边,其中,B为设定的一个正整数,B≤D,D为网络中所有未连接节点对的数量。
本发明的有益效果为:考虑网络中两个未连接节点之间路径长度等于2或3的局部路径,区分网络中的中间节点的度数对产生链路的贡献,提出了一种基于贝叶斯估计和和共同邻居节点度的链路预测方法,链路预测准确度较高。
附图说明
图1为网络中的任意一个不存在直接连边的节点对之间的不同中间节点对这个节点对之间产生链路的影响。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1,一种基于贝叶斯估计和和共同邻居节点度的链路预测方法,包括以下步骤:
步骤一:建立网络模型G(V,E),V代表网络中的节点集合,E代表网络中的连边集合,网络的节点总数记为N,用U表示网络中节点对的集合,|U|=N(N-1)/2表示网络中节点对的总数;
步骤二:任意选取网络中的两个节点x和y作为种子节点,即图1中黑色圆点表示,计算它们之间存在直接连边的可能性:
其中,|E|表示网络中实际存在的连边总数,A1表示x和y两个节点之间存在直接连边;
步骤三:计算网络中任意两个节点x和y之间不存在直接连边的概率,如图1所示:
其中,A0表示x和y两个节点之间不存在直接连边;
步骤四:根据节点x和y之间长度为2或者3的路径的一个中间节点Vw(如图1所示)的度信息,计算节点x和y之间产生连边的概率:
P(A1|Vw)=Cw
其中,Cw=2Ew/kw(kw-1),kw表示节点Vw的度数,Ew表示节点Vw的kw个邻居节点之间实际存在的边数;
步骤五:根据节点x和y之间长度为2或者3的路径的一个中间节点Vw(如图1所示)的度信息,计算节点x和y之间不产生连边的概率:
P(A0|Vw)=1-Cw;
步骤六:根据贝叶斯估计的方法,计算节点x和y之间长度为2和3的路径的任意一个中间节点Vw的似然值
步骤七:对节点x和y之间长度为2和3的路径的每一个中间节点,重复步骤四至步骤六,计算每一个中间节点的似然值
步骤八:计算节点x和y的相似性分数:
其中Q表示节点x和y之间长度为2和3的所有路径中的所有中间节点的数量,kj表示第j个中间节点的度数;
步骤九:遍历整个网络,对任意两个未连接节点,重复步骤二至步骤八,计算所有未连接节点对之间的相似性分数,并按照相似性分数值从高到低排列顺序,取前B个相似性分数值对应的节点对为预测连边,其中,B为设定的一个正整数,B≤D,D为网络中所有未连接节点对的数量。
如上所述,本专利实施的具体实现步骤使本发明更加清晰。在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
Claims (1)
1.一种基于贝叶斯估计和共同邻居节点度的链路预测方法,其特征在于:包括以下步骤:
步骤一:建立网络模型G(V,E),V代表网络中的节点集合,E代表网络中的连边集合,网络的节点总数记为N,用U表示网络中节点对的集合,|U|=N(N-1)/2表示网络中节点对的总数;
步骤二:任意选取网络中的两个节点x和y作为种子节点,计算它们之间存在直接连边的可能性:
其中,|E|表示网络中实际存在的连边总数,A1表示x和y两个节点之间存在直接连边;
步骤三:计算网络中任意两个节点x和y之间不存在直接连边的概率:
其中,A0表示x和y两个节点之间不存在直接连边;
步骤四:根据节点x和y之间长度为2或者3的路径的一个中间节点Vw的度信息,计算节点x和y之间产生连边的概率:
P(A1|Vw)=Cw
其中,Cw=2Ew/kw(kw-1),kw表示节点Vw的度数,Ew表示节点Vw的kw个邻居节点之间实际存在的边数;
步骤五:根据节点x和y之间长度为2或者3的路径的一个中间节点Vw的度信息,计算节点x和y之间不产生连边的概率:
P(A0|Vw)=1-Cw;
步骤六:根据贝叶斯估计的方法,计算节点x和y之间长度为2和3的路径的任意一个中间节点Vw的似然值
步骤七:对节点x和y之间长度为2和3的路径的每一个中间节点,重复步骤四至步骤六,计算每一个中间节点的似然值
步骤八:计算节点x和y的相似性分数:
其中Q表示节点x和y之间长度为2和3的所有路径中的所有中间节点的数量,kj表示第j个中间节点的度数;
步骤九:遍历整个网络,对任意两个未连接节点,重复步骤二至步骤八,计算所有未连接节点对之间的相似性分数,并按照相似性分数值从高到低排列顺序,取前B个相似性分数值对应的节点对为预测连边,其中,B为设定的一个正整数,B≤D,D为网络中所有未连接节点对的数量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710366171.XA CN107018027B (zh) | 2017-05-23 | 2017-05-23 | 一种基于贝叶斯估计和共同邻居节点度的链路预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710366171.XA CN107018027B (zh) | 2017-05-23 | 2017-05-23 | 一种基于贝叶斯估计和共同邻居节点度的链路预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107018027A true CN107018027A (zh) | 2017-08-04 |
CN107018027B CN107018027B (zh) | 2020-01-10 |
Family
ID=59450382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710366171.XA Active CN107018027B (zh) | 2017-05-23 | 2017-05-23 | 一种基于贝叶斯估计和共同邻居节点度的链路预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107018027B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109039722A (zh) * | 2018-07-20 | 2018-12-18 | 中电科新型智慧城市研究院有限公司 | 基于共同邻节点资源分配和朴素贝叶斯的链路预测方法 |
CN111669288A (zh) * | 2020-05-25 | 2020-09-15 | 中国人民解放军战略支援部队信息工程大学 | 基于有向异构邻居的有向网络链路预测方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090144032A1 (en) * | 2007-11-29 | 2009-06-04 | International Business Machines Corporation | System and computer program product to predict edges in a non-cumulative graph |
CN103905246A (zh) * | 2014-03-06 | 2014-07-02 | 西安电子科技大学 | 基于分组遗传算法的链路预测方法 |
CN104765825A (zh) * | 2015-04-10 | 2015-07-08 | 清华大学 | 基于协同融合原理的社交网络链路预测方法及装置 |
CN105376243A (zh) * | 2015-11-27 | 2016-03-02 | 中国人民解放军国防科学技术大学 | 基于分层随机图的在线社会网络差分隐私保护方法 |
CN106326637A (zh) * | 2016-08-10 | 2017-01-11 | 浙江工业大学 | 一种基于局部有效路径度的链路预测方法 |
-
2017
- 2017-05-23 CN CN201710366171.XA patent/CN107018027B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090144032A1 (en) * | 2007-11-29 | 2009-06-04 | International Business Machines Corporation | System and computer program product to predict edges in a non-cumulative graph |
CN103905246A (zh) * | 2014-03-06 | 2014-07-02 | 西安电子科技大学 | 基于分组遗传算法的链路预测方法 |
CN104765825A (zh) * | 2015-04-10 | 2015-07-08 | 清华大学 | 基于协同融合原理的社交网络链路预测方法及装置 |
CN105376243A (zh) * | 2015-11-27 | 2016-03-02 | 中国人民解放军国防科学技术大学 | 基于分层随机图的在线社会网络差分隐私保护方法 |
CN106326637A (zh) * | 2016-08-10 | 2017-01-11 | 浙江工业大学 | 一种基于局部有效路径度的链路预测方法 |
Non-Patent Citations (2)
Title |
---|
WEIYU ZHANG,ET AL.: "《Accurate and fast link prediction in complex networks》", 《2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC)》 * |
吕琳媛: "《复杂网络链路预测》", 《电子科技大学学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109039722A (zh) * | 2018-07-20 | 2018-12-18 | 中电科新型智慧城市研究院有限公司 | 基于共同邻节点资源分配和朴素贝叶斯的链路预测方法 |
CN109039722B (zh) * | 2018-07-20 | 2021-05-28 | 中电科新型智慧城市研究院有限公司 | 基于共同邻节点资源分配和朴素贝叶斯的链路预测方法 |
CN111669288A (zh) * | 2020-05-25 | 2020-09-15 | 中国人民解放军战略支援部队信息工程大学 | 基于有向异构邻居的有向网络链路预测方法及装置 |
CN111669288B (zh) * | 2020-05-25 | 2023-02-14 | 中国人民解放军战略支援部队信息工程大学 | 基于有向异构邻居的有向网络链路预测方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107018027B (zh) | 2020-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110532436B (zh) | 基于社区结构的跨社交网络用户身份识别方法 | |
Li et al. | Link prediction in social networks based on hypergraph | |
Feldman et al. | Strategyproof facility location and the least squares objective | |
CN104966125B (zh) | 一种社交网络的物品评分及推荐方法 | |
CN102880657B (zh) | 基于搜索者的专家推荐方法 | |
Liao et al. | Predicting missing links via correlation between nodes | |
CN110826164B (zh) | 一种基于局部和全局连通性的复杂网络节点重要度评估方法 | |
Zhang et al. | Mechanism design for finding experts using locally constructed social referral web | |
CN107332687A (zh) | 一种基于贝叶斯估计和共同邻居的链路预测方法 | |
CN103559320A (zh) | 对异质网络中对象进行排序的方法 | |
Tang et al. | Novel distance and similarity measures for hesitant fuzzy sets and their applications to multiple attribute decision making | |
Wang et al. | Multi-attribute integrated measurement of node importance in complex networks | |
CN104484365B (zh) | 一种多源异构在线社会网络中网络主体之间社会关系的预测方法与系统 | |
CN107018027A (zh) | 一种基于贝叶斯估计和共同邻居节点度的链路预测方法 | |
Tang et al. | Cross-graph embedding with trainable proximity for graph alignment | |
CN108133426B (zh) | 一种社交网络链路推荐方法 | |
CN110442800A (zh) | 一种融合节点属性和图结构的半监督社区发现方法 | |
Zhang et al. | Identifying missing and spurious connections via the bi-directional diffusion on bipartite networks | |
CN107193954A (zh) | 一种基于贝叶斯估计和局部路径的链路预测方法 | |
CN107086933B (zh) | 一种基于贝叶斯估计和种子节点度的链路预测方法 | |
CN107194069A (zh) | 一种基于贝叶斯估计和大度节点有利的链路预测方法 | |
CN107231252A (zh) | 一种基于贝叶斯估计和种子节点邻居集合的链路预测方法 | |
Chen et al. | Dynamic Fair Federated Learning Based on Reinforcement Learning | |
CN109492677A (zh) | 基于贝叶斯理论的时变网络链路预测方法 | |
CN107135107A (zh) | 一种基于贝叶斯估计和大度节点不利的链路预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |