CN107017401B - 三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用 - Google Patents

三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用 Download PDF

Info

Publication number
CN107017401B
CN107017401B CN201710409027.XA CN201710409027A CN107017401B CN 107017401 B CN107017401 B CN 107017401B CN 201710409027 A CN201710409027 A CN 201710409027A CN 107017401 B CN107017401 B CN 107017401B
Authority
CN
China
Prior art keywords
preparation
composite material
doped graphene
dimensional nitrogen
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710409027.XA
Other languages
English (en)
Other versions
CN107017401A (zh
Inventor
倪鲁彬
杨光
刁国旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710409027.XA priority Critical patent/CN107017401B/zh
Publication of CN107017401A publication Critical patent/CN107017401A/zh
Application granted granted Critical
Publication of CN107017401B publication Critical patent/CN107017401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用,将三维氮掺杂石墨烯置于β‑环糊精饱和溶液中超声处理后浸泡形成三维氮掺杂石墨烯@β环糊精复合材料,再与升华硫混合研磨进行反应,氮气保护下高温煅烧得所述的复合材料。本发明制备方法简单,操作简便,制备的复合材料具有较高的硫含量,并且硫纳米颗粒均匀分散在石墨烯上,且由于β‑环糊精独特的性能,使其吸附多硫化物时能有效的阻止多硫化物流向电解液,因而可以达到提高电池的库伦效率与循环稳定性的效果。

Description

三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用
技术领域
本发明属于化学电池制备技术领域,具体涉及一种三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用。
背景技术
随着化石燃料的日益枯竭及其燃烧所带来的日益严重的环境问题,迫切需要寻找新型能源,同时手机、笔记本电脑、数码相机等便携式设备和电动汽车的快速发展,可多次充放电的二次电池得到了广泛应用。其中,出现于20世纪90年代的锂离子二次电池是目前世界上公认的新一代化学电源,已成功商品化并在便携式设备领域中飞速发展。但在电动汽车、航空航天和国防装备等领域,目前商品化锂离子二次电池受限于能量密度,已远不能满足技术发展的需求。因此,需要急切研究开发具有更高能量密度、更长循环寿命、低成本和环境友好等特征的新型化学电源。
其中以金属锂为负极,单质硫为正极材料的锂硫二次电池(简称锂硫电池),其材料理论比容量和电池理论比能量较高,分别达到1672mAh·g-1和2600Wh/kg,目前锂硫电池的实际能量密度已达到390Wh/kg,远高于其他LiFeO4、LiMn2O4等商业化的电极材料。
锂硫电池在放电过程中,单质硫被还原为S-2的过程中会有多个中间态生成,其中Li2Sn (4≤n≤8)易溶于有机电解液,从正极向负极扩散,随着放电的进行,最终在负极生成Li2S沉积下来,而Li2S不溶于有机电解液,造成锂硫电池循环性差、库仑效率低、自放电率高等问题,延缓了其实用化的步伐。
发明内容
本发明的目的在于提出一种制备成本低廉、设备要求简单、导电性较好、循环稳定性较好的锂硫电池正极材料——三维氮掺杂石墨烯@β环糊精@硫的复合材料(3D-N-rGO@β-CD@S)。
实现本发明目的的技术方案是:一种三维氮掺杂石墨烯@β环糊精@硫复合材料及其制备方法,包括如下步骤:
将三维氮掺杂石墨烯(3D-N-rGO)置于β-环糊精(β-CD)饱和溶液中超声处理后浸泡形成三维氮掺杂石墨烯@β环糊精(3D-N-rGO@β-CD)复合材料,再与升华硫混合研磨进行反应,氮气保护下高温煅烧得所述的3D-N-rGO@β-CD@S复合材料。
进一步的,所述的三维氮掺杂石墨烯@β环糊精与升华硫的质量比为8:39。
进一步的,三维氮掺杂石墨烯中氮掺杂量为7.8%~8.2%。
进一步的,超声处理时间为半个小时。
进一步的,浸泡时间为24小时。
进一步的,高温煅烧温度为155±5℃,煅烧时间为20小时。
上述三维氮掺杂石墨烯@β环糊精@硫复合材料作为锂硫电池正极材料的应用。
与现有技术相比,本发明工艺的优点是:(1)制备方法简单,操作简便,制备得到的3D-N-rGO@β-CD@S复合材料具有较高的硫含量,并且硫纳米颗粒均匀分散在石墨烯上。(2)由于β-环糊精独特的性能,使其吸附多硫化物时能有效的阻止多硫化物流向电解液,因而可以达到提高电池的库伦效率与循环稳定性的效果。
附图说明
图1 为本发明制备的3D-N-rGO材料的宏观图。
图2 为本发明制备的3D-N-rGO@β-CD (a)和3D-N-rGO@β-CD@S (b)复合材料的扫描电镜图。
图3为本发明制备的3D-N-rGO@β-CD复合材料的X射线衍射图。
图4为本发明制备的3D-N-rGO@β-CD@S复合材料的热重分析图。
图5为本发明制备3D-N-rGO@β-CD的复合材料的红外光谱图。
图6为本发明制备的3D-N-rGO@β-CD@S复合材料作为锂硫电池正极材料的充放电曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行详细地说明。
实施例1
1)制备3D-N-rGO材料:
取40ml(浓度为2mg/ml)氧化石墨烯(GO)溶液与0.6g尿素混合,常温下磁力搅拌半小时后,将混合溶液移至水热反应釜中,在180℃下水热12小时,冷冻干燥得三维氮掺杂石墨烯海绵(3D-N-rGO)
2)制备3D-N-rGO@β-CD复合材料:
将步骤1)制得的3D-N-rGO材料浸泡在饱和β-CD的饱和水溶液中,超声半小时后常温浸泡24小时,冷冻干燥得3D-N-rGO@β-CD复合材料。
3)制备3D-N-rGO@β-CD@S复合材料:
将步骤2)制得的3D-N-rGO@β-CD复合材料与升华硫按质量比为80mg:390mg混合研磨,将混合材料在氮气的保护下155℃反应20小时得到3D-N-rGO@β-CD@S复合材料。
4)制备锂硫电池正极材料:
称取上述3D-N-rGO@β-CD@S复合材料(70mg),导电剂炭黑(20mg)放在研钵中研磨均匀后,加入粘结剂0.5ml(20mg/ml),混合均匀后,涂布在碳纸上,放在真空干燥箱里干燥;干燥后,用裁片机裁片,称量每片的质量并做记录,然后在手套箱里组装电池,进一步测量其性能。
图1 为采用本发明制备3D-N-rGO材料的宏观图,宏观下为圆柱体状的三维石墨烯海绵。
图2 为采用本发明制备3D-N-rGO@β-CD (a)和3D-N-rGO@β-CD@S (b)复合材料的扫描电镜图,从图中可以看到三维石墨烯的孔洞较大,比表面积较普通石墨烯大,并且β-CD和硫均匀负载到了石墨烯表面。
图3为采用本发明制备的3D-N-rGO@β-CD复合材料的X射线衍射图,复合材料的X射线衍射图的晶型非常尖锐,说明材料合成的非常成功。
图4为采用本发明制备的3D-N-rGO@β-CD@S复合材料的热重分析图,从图中可以看出硫几乎全都负载到了石墨烯表面,并且材料的热稳定性较好。
图5为采用本发明制备3D-N-rGO@β-CD的复合材料的红外光谱图,其出峰位置准确,材料的合成成功。
图6为采用本发明制备的3D-N-rGO@β-CD@S复合材料作为锂硫电池正极材料的充放电曲线图,在0.1C倍率下放电比容量在1200mAh g-1左右,在1C倍率下也有950Ah g-1左右,显示了其较高的放电比容量。

Claims (6)

1.一种三维氮掺杂石墨烯@β环糊精@硫复合材料的制备方法,其特征在于,包括如下步骤:
将三维氮掺杂石墨烯置于β-环糊精饱和溶液中超声处理后浸泡形成三维氮掺杂石墨烯@β环糊精复合材料,再与升华硫混合研磨进行反应,氮气保护下155±5℃下高温煅烧20小时得所述的复合材料,三维氮掺杂石墨烯中氮掺杂量为7.8%~8.2%。
2.如权利要求1所述的制备方法,其特征在于,所述的三维氮掺杂石墨烯@β环糊精与升华硫的质量比为8:39。
3.如权利要求1所述的制备方法,其特征在于,超声处理时间为0.5小时以上。
4.如权利要求1所述的制备方法,其特征在于,浸泡时间为24小时以上。
5.如权利要求1-4任一所述的制备方法制备的三维氮掺杂石墨烯@β环糊精@硫复合材料。
6.如权利要求1-4任一所述的制备方法制备的三维氮掺杂石墨烯@β环糊精@硫复合材料作为锂硫电池正极材料的应用。
CN201710409027.XA 2017-06-02 2017-06-02 三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用 Active CN107017401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710409027.XA CN107017401B (zh) 2017-06-02 2017-06-02 三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710409027.XA CN107017401B (zh) 2017-06-02 2017-06-02 三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107017401A CN107017401A (zh) 2017-08-04
CN107017401B true CN107017401B (zh) 2019-06-25

Family

ID=59451176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710409027.XA Active CN107017401B (zh) 2017-06-02 2017-06-02 三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107017401B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834008B (zh) * 2017-12-26 2019-08-16 扬州大学 氧化石墨烯负载聚-β-环糊精锂硫电池隔膜材料的制备方法
CN109148861A (zh) * 2018-08-30 2019-01-04 广东工业大学 硫/氧化铁/石墨烯电池正极材料、制备方法及锂硫电池
CN111013579B (zh) * 2019-11-20 2022-07-05 珠海复旦创新研究院 负载钯单原子或钯纳米颗粒的限域碳材料及其制备方法
CN115520856B (zh) * 2022-08-19 2024-06-11 上海纳米技术及应用国家工程研究中心有限公司 一种单质碘和硫颗粒锚定在氮掺杂石墨烯轴向平面内部的纳米复合材料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577323A (zh) * 2009-06-11 2009-11-11 上海交通大学 一种二次锂硫电池硫基正极及其制备方法
CN103579583A (zh) * 2012-07-25 2014-02-12 中国科学院大连化学物理研究所 一种锂硫电池正极的制作方法
CN104393349A (zh) * 2014-11-17 2015-03-04 陕西煤业化工技术研究院有限责任公司 一种锂硫电池用保护层及其制备方法和使用该保护层的锂硫电池
CN104777207A (zh) * 2015-04-10 2015-07-15 武汉大学 一种三维氮掺杂石墨烯复合材料及其制备方法和应用
CN106531964A (zh) * 2016-10-21 2017-03-22 上海交通大学 硫正极用水性粘结剂及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609734A (zh) * 2016-02-19 2016-05-25 钟玲珑 一种三维氮掺杂结构锂硫电池正极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577323A (zh) * 2009-06-11 2009-11-11 上海交通大学 一种二次锂硫电池硫基正极及其制备方法
CN103579583A (zh) * 2012-07-25 2014-02-12 中国科学院大连化学物理研究所 一种锂硫电池正极的制作方法
CN104393349A (zh) * 2014-11-17 2015-03-04 陕西煤业化工技术研究院有限责任公司 一种锂硫电池用保护层及其制备方法和使用该保护层的锂硫电池
CN104777207A (zh) * 2015-04-10 2015-07-15 武汉大学 一种三维氮掺杂石墨烯复合材料及其制备方法和应用
CN106531964A (zh) * 2016-10-21 2017-03-22 上海交通大学 硫正极用水性粘结剂及其应用

Also Published As

Publication number Publication date
CN107017401A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
Chen et al. Metal–organic frameworks (MOFs)‐Derived nitrogen‐doped porous carbon anchored on graphene with multifunctional effects for lithium–sulfur batteries
Ye et al. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries
Zheng et al. Copper‐stabilized sulfur‐microporous carbon cathodes for Li–S batteries
Wang et al. An advanced MoS2/carbon anode for high‐performance sodium‐ion batteries
Liu et al. High performance Li–S battery based on amorphous NiS 2 as the host material for the S cathode
Park et al. Si‐encapsulating hollow carbon electrodes via electroless etching for lithium‐ion batteries
Guo et al. Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium‐storage material
CN107017401B (zh) 三维氮掺杂石墨烯@β环糊精@硫复合材料、制备方法及其应用
Zhang et al. A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries
Hwang et al. Nano-compacted Li2S/Graphene composite cathode for high-energy lithium–sulfur batteries
Jiang et al. SiOx/C anodes with high initial coulombic efficiency through the synergy effect of pre-lithiation and fluoroethylene carbonate for lithium-ion batteries
Liu et al. Enhanced zinc ion storage capability of V2O5 electrode materials with hollow interior cavities
Wang et al. Separator modified by Y 2 O 3 nanoparticles-Ketjen Black hybrid and its application in lithium-sulfur battery
Park et al. Catalytic activity of carbon-sphere/Co 3 O 4/RuO 2 nanocomposite for Li-Air batteries
Yang et al. Cellulose nanofiber‐derived carbon aerogel for advanced room‐temperature sodium–sulfur batteries
Yuan et al. A novel sulfur/carbon hollow microsphere yolk− shell composite as a high-performance cathode for lithium sulfur batteries
Yuan et al. Hybrids of MnO 2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries
Wang et al. Controlled synthesis of Fe3O4@ C@ manganese oxides (MnO2, Mn3O4 and MnO) hierarchical hollow nanospheres and their superior lithium storage properties
Yang et al. NiO/Ni nanocomposites embedded in 3D porous carbon with high performance for lithium-ion storage
Yu et al. Nanostructured cobalt oxide-based composites for rechargeable Li-ion batteries
Jia et al. Fabrication of NiO–carbon nanotube/sulfur composites for lithium-sulfur battery application
Zhang et al. Synthesis of spherical Al-doping LiMn 2 O 4 via a high-pressure spray-drying method as cathode materials for lithium-ion batteries
Cheng et al. Nanostructured carbon/antimony composites as anode materials for lithium‐ion batteries with long life
Ming et al. Advanced Metal Oxide@ Carbon Nanotubes for High‐Energy Lithium‐Ion Full Batteries
Wang et al. V 2 O 5/rGO arrays as potential anode materials for high performance sodium ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant