CN107008334A - 一种光催化分解水制氢催化剂的改性方法 - Google Patents

一种光催化分解水制氢催化剂的改性方法 Download PDF

Info

Publication number
CN107008334A
CN107008334A CN201610055835.6A CN201610055835A CN107008334A CN 107008334 A CN107008334 A CN 107008334A CN 201610055835 A CN201610055835 A CN 201610055835A CN 107008334 A CN107008334 A CN 107008334A
Authority
CN
China
Prior art keywords
modifying
tio
hydrogen production
water decomposition
decomposition catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610055835.6A
Other languages
English (en)
Inventor
王晋刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAILANDE ENERGY SOURCE TECHN DEVELOPMENT Co Ltd TIANJIN
Original Assignee
HAILANDE ENERGY SOURCE TECHN DEVELOPMENT Co Ltd TIANJIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAILANDE ENERGY SOURCE TECHN DEVELOPMENT Co Ltd TIANJIN filed Critical HAILANDE ENERGY SOURCE TECHN DEVELOPMENT Co Ltd TIANJIN
Priority to CN201610055835.6A priority Critical patent/CN107008334A/zh
Publication of CN107008334A publication Critical patent/CN107008334A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种光催化分解水制氢催化剂的改性方法,以低成本天然埃洛石纳米管(HNTs)为载体,以钛酸丁酯、硝酸镍、硝酸铁、硝酸铈为前驱物,在载体表面原位合成纳米二氧化钛(TiO2),然后经过浸渍、干燥、煅烧、氢还原等工序,在复合载体表面生成具有晶格缺陷的铁酸镍铈催化活性中心。本发明的优点是:该方法工艺简单,操作方便,成本低,光催化中心高度分散,催化剂活性高,光生电子复合率低,且催化剂具有抗烧结和坍塌特性。

Description

一种光催化分解水制氢催化剂的改性方法
技术领域
本发明涉及一种光催化分解水制氢催化剂的改性方法。
背景技术
利用太阳光分解水制氢是未来解决能源危机的理想方法之一。与核能相比,太阳能更为安全;与水能、风能相比,太阳能利用的成本较低,而且不受地理条件的限制。日本学者Fujishima和Honda自上世纪六十年代末对光照n-型半导体TiO2电极导致水的分解从而产生氢气这一现象的发现,揭示了利用太阳能分解水制氢的可能性。TiO2由于其良好的化学稳定性,抗磨损性和无毒等特点,成为半导体光催化领域的主要研究对象之一。但是常规制备的TiO2存在着晶粒尺寸大,比表面积小以及低分散性等缺点,而且TiO2光催化剂中的大部分仅能吸收只占太阳光总能3 %~5 %的紫外线,研究和制备对太阳光高效吸收和转化的光解水催化剂成为太阳能半导体光解水制氢技术发展的关键因素。
发明内容
本发明的目的是针对上述存在问题,提供一种光催化分解水制氢催化剂的改性方法,该方法工艺简单,操作方便,成本低,光催化中心高度分散,催化剂活性高,光生电子复合率低,且催化剂具有抗烧结和坍塌特性。
本发明的技术方案:一种光催化分解水制氢催化剂的改性方法,以低成本天然埃洛石纳米管(HNTs)为载体,以钛酸丁酯、硝酸镍、硝酸铁、硝酸铈为前驱物,在载体表面原位合成纳米二氧化钛(TiO2),然后经过浸渍、干燥、煅烧、氢还原等工序,在复合载体表面生成具有晶格缺陷的铁酸镍铈催化活性中心,具体包括如下步骤:(1)将天然埃洛石纳米管除铁后,置于乙醇与水的混合溶液;(2)将一定量钛酸丁酯溶于乙醇溶液,磁力搅拌下加入(1)中溶液,继续搅拌,然后过滤、干燥,即在埃洛石表面生成锐钛矿型纳米二氧化钛;(3)将(2)中所得埃洛石/二氧化钛复合粉末置于硝酸镍、硝酸铁和硝酸铈混合溶液中浸渍,然后干燥、煅烧,最后氢气还原,即得CeO2-NiFe2O4/TiO2-HNTs。
所述煅烧温度500~800℃。
所述氢气还原温度200~500℃,氢气浓度5%~10%,稀释气为氮气。
所述催化活性中心成分为CeO2-NiFe2O4/TiO2
所述催化组分为CeO2-NiFe2O4/TiO2-HNTs,其中单质Ni含量为0.1%~10%,NiFe2O4的含量为1%~15%,CeO2的含量为0.1%~5%,TiO2的含量为1%~25%。
本发明的优点是:埃洛石纳米管价格低廉,具有长径比高的尺寸优势,可高度分散催化中心,防止催化剂烧结和结构坍塌;锐钛型二氧化钛具有结构稳定和光催化活性,尖晶石型铁酸镍具有协同二氧化钛具有结构稳定和光催化活性;单质镍具有解离氢键的催化作用,促进水解制氢活性;氧化铈具有提高晶格氧传递效率作用,且破坏尖晶石铁酸镍的完美晶体结构,提高催化活性。
具体实施方式
下面结合实施例对本发明进一步说明,但是它们并不是对本发明作任何限制。这里仅指出,本发明中使用的试剂和测试设备除特别标明出处之外,均为市售的通用产品。
实施例1。
一种光催化分解水制氢催化剂的改性方法,包括如下步骤:(1)将3.0 g天然埃洛石纳米管酸洗,再水洗至中性,置于200 ml体积比为1:1的乙醇与水混合溶液,并用2%稀硝酸调pH为4左右;(2)将15 ml钛酸丁酯溶于20 ml乙醇溶液,磁力搅拌下加入(1)中溶液,连续搅拌3 h后,80℃干燥24 h,即在埃洛石表面生成锐钛矿型纳米二氧化钛;(3)然后将(2)中所得埃洛石/二氧化钛复合粉末置于浓度均为1.5%的硝酸镍、硝酸铁和1.0%硝酸铈混合溶液中浸渍6 h,然后80℃干燥6 h,再500℃煅烧6 h,最后2%氢气500℃还原3 h,即得CeO2-NiFe2O4/TiO2-HNTs,其中单质Ni含量为0.4%,NiFe2O4的含量为3.8%,CeO2的含量为0.9%,TiO2的含量为20.2%。
实施例2。
一种光催化分解水制氢催化剂的改性方法,包括如下步骤:(1)将3.0 g天然埃洛石纳米管酸洗,再水洗至中性,置于200 ml体积比为1:1的乙醇与水混合溶液,并用2%稀硝酸调pH为4左右;(2)将20 ml钛酸丁酯溶于20 ml乙醇溶液,磁力搅拌下加入(1)中溶液,连续搅拌3 h后,80℃干燥24 h,即在埃洛石表面生成锐钛矿型纳米二氧化钛;(3)然后将(2)中所得埃洛石/二氧化钛复合粉末置于浓度均为2.5%的硝酸镍、硝酸铁和1.5%硝酸铈混合溶液中浸渍6 h,然后80℃干燥6 h,再800℃煅烧6 h,最后5%氢气300℃还原3 h,即得CeO2-NiFe2O4/TiO2-HNTs,其中单质Ni含量为1.2%,NiFe2O4的含量为2.9%,CeO2的含量为1.3%,TiO2的含量为19.3%。
实施例3。
一种光催化分解水制氢催化剂的改性方法,包括如下步骤:(1)将3.0 g天然埃洛石纳米管酸洗,再水洗至中性,置于200 mL体积比为1:1的乙醇与水混合溶液,并用2%稀硝酸调pH为4左右;(2)将5 ml钛酸丁酯溶于20 mL乙醇溶液,磁力搅拌下加入(1)中溶液,连续搅拌3 h后,80℃干燥24 h,即在埃洛石表面生成锐钛矿型纳米二氧化钛;(3)然后将(2)中所得埃洛石/二氧化钛复合粉末置于浓度均为1.5%的硝酸镍、硝酸铁和0.5%硝酸铈混合溶液中浸渍6 h,然后80℃干燥6 h,再700℃煅烧6 h,最后2%氢气400℃还原3 h,即得CeO2-NiFe2O4/TiO2-HNTs,其中单质Ni含量为0.8%,NiFe2O4的含量为5%,CeO2的含量为0.5%,TiO2的含量为12.5%。
本发明公开一种光催化分解水制氢催化剂的改性方法,本领域技术人员可通过借鉴本文内容,适当改变工艺路线等环节实现,尽管本发明的方法已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容与范围内对本文所述的方法进行改动或重新组合,来实现最终结果。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明的内容和范围。

Claims (5)

1.一种光催化分解水制氢催化剂的改性方法,其特征在于:以低成本天然埃洛石纳米管(HNTs)为载体,以钛酸丁酯、硝酸镍、硝酸铁、硝酸铈为前驱物,在载体表面原位合成纳米二氧化钛(TiO2),然后经过浸渍、干燥、煅烧、氢还原等工序,在复合载体表面生成具有晶格缺陷的铁酸镍铈催化活性中心,具体包括如下步骤:(1)将天然埃洛石纳米管除铁后,置于乙醇与水的混合溶液;(2)将一定量钛酸丁酯溶于乙醇溶液,磁力搅拌下加入(1)中溶液,继续搅拌,然后过滤、干燥,即在埃洛石表面生成锐钛矿型纳米二氧化钛;(3)将(2)中所得埃洛石/二氧化钛复合粉末置于硝酸镍、硝酸铁和硝酸铈混合溶液中浸渍,然后干燥、煅烧,最后氢气还原,即得CeO2-NiFe2O4/TiO2-HNTs。
2.根据权利要求1所述一种光催化分解水制氢催化剂的改性方法,其特征在于:所述煅烧温度500~800℃。
3.根据权利要求1所述一种光催化分解水制氢催化剂的改性方法,其特征在于:所述氢气还原温度200~500℃,氢气浓度5~10%,稀释气为氮气。
4.根据权利要求1所述一种光催化分解水制氢催化剂的改性方法,其特征在于:所述催化活性中心成分为CeO2-NiFe2O4/TiO2
5.根据权利要求1所述一种光催化分解水制氢催化剂的改性方法,其特征在于:所述催化组分为CeO2-NiFe2O4/TiO2-HNTs,其中单质Ni含量为0.1%~10%,NiFe2O4的含量为1%~15%,CeO2的含量为0.1%~5%,TiO2的含量为1%~25%。
CN201610055835.6A 2016-01-28 2016-01-28 一种光催化分解水制氢催化剂的改性方法 Pending CN107008334A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610055835.6A CN107008334A (zh) 2016-01-28 2016-01-28 一种光催化分解水制氢催化剂的改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610055835.6A CN107008334A (zh) 2016-01-28 2016-01-28 一种光催化分解水制氢催化剂的改性方法

Publications (1)

Publication Number Publication Date
CN107008334A true CN107008334A (zh) 2017-08-04

Family

ID=59438767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610055835.6A Pending CN107008334A (zh) 2016-01-28 2016-01-28 一种光催化分解水制氢催化剂的改性方法

Country Status (1)

Country Link
CN (1) CN107008334A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107837802A (zh) * 2017-11-03 2018-03-27 盛槿滺 一种复合光催化剂及其制备方法
CN110479286A (zh) * 2019-09-09 2019-11-22 井冈山大学 一种钛铁镍高析氢活性电催化剂的制备方法
CN113786825A (zh) * 2021-09-10 2021-12-14 蚌埠学院 一种纳米铁酸镍/钛酸锌改性微孔氧化硅、制备方法及其应用
CN115151340A (zh) * 2020-02-28 2022-10-04 杰富意矿物股份有限公司 复合体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107837802A (zh) * 2017-11-03 2018-03-27 盛槿滺 一种复合光催化剂及其制备方法
CN110479286A (zh) * 2019-09-09 2019-11-22 井冈山大学 一种钛铁镍高析氢活性电催化剂的制备方法
CN110479286B (zh) * 2019-09-09 2022-03-08 井冈山大学 一种钛铁镍高析氢活性电催化剂的制备方法
CN115151340A (zh) * 2020-02-28 2022-10-04 杰富意矿物股份有限公司 复合体
CN113786825A (zh) * 2021-09-10 2021-12-14 蚌埠学院 一种纳米铁酸镍/钛酸锌改性微孔氧化硅、制备方法及其应用

Similar Documents

Publication Publication Date Title
Zhou et al. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature
Bao et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde
Li et al. Reactant activation and photocatalysis mechanisms on Bi-metal@ Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation
Huang et al. A strategy for constructing highly efficient yolk-shell Ce@ Mn@ TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3
Vattikuti et al. In situ fabrication of the Bi2O3–V2O5 hybrid embedded with graphitic carbon nitride nanosheets: oxygen vacancies mediated enhanced visible-light–driven photocatalytic degradation of organic pollutants and hydrogen evolution
Guan et al. Solvent-exfoliation of transition-metal dichalcogenide MoS2 to provide more active sites for enhancing photocatalytic performance of BiOIO3/g-C3N4 photocatalyst
Huang et al. High selectivity of visible-light-driven La-doped TiO2 photocatalysts for NO removal
He et al. Facile fabrication of novel Cd3 (C3N3S3) 2/CdS porous composites and their photocatalytic performance for toluene selective oxidation under visible light irradiation
Yuan et al. La-doping induced localized excess electrons on (BiO) 2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression
Li et al. Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst: Insight into the effect of graphene coupling
Yan et al. TiO 2/vanadate (Sr 10 V 6 O 25, Ni 3 V 2 O 8, Zn 2 V 2 O 7) heterostructured photocatalysts with enhanced photocatalytic activity for photoreduction of CO 2 into CH 4
Zhang et al. Building heterogeneous nanostructures for photocatalytic ammonia decomposition
Gao et al. Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO 2 nanotubes and its effect on Rhodamine B photocatalytic oxidation
Li et al. Enhancement of photocatalytic NO removal activity of gC 3 N 4 by modification with illite particles
Wang et al. In-situ preparation of Ti3C2/Ti3+-TiO2 composites with mosaic structures for the adsorption and Photo-degradation of flowing acetaldehyde under visible light
Zheng et al. A novel g-C3N4/tourmaline composites equipped with plasmonic MoO3− x to boost photocatalytic activity
Shao et al. In-situ irradiated XPS investigation on 2D/1D Cd0. 5Zn0. 5S/Nb2O5 S-scheme heterojunction photocatalysts for simultaneous promotion of antibiotics removal and hydrogen evolution
CN107008334A (zh) 一种光催化分解水制氢催化剂的改性方法
CN104785234A (zh) 一种蜂窝式活性炭负载催化剂板
Ma et al. Nanoscaled Bi2O4 confined in firework-shaped TiO2 microspheres with enhanced visible light photocatalytic performance
Du et al. ZIF-67/CoOOH cocatalyst modified g-C3N4 for promoting photocatalytic deep oxidation of NO
Li et al. Visible light driven Z-scheme Fe2O3/SmFeO3/palygorskite nanostructure for photo-SCR of NOx
Mahalakshmi et al. Synthesis of few-layer g-C3N4 nanosheets-coated MoS2/TiO2 heterojunction photocatalysts for photo-degradation of methyl orange (MO) and 4-nitrophenol (4-NP) pollutants
Liu et al. A novel amorphous CoS x/NH 2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light
Zhao et al. Nonhydrolytic sol-gel in-situ synthesis of novel recoverable amorphous Fe2TiO5/C hollow spheres as visible-light driven photocatalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170804

WD01 Invention patent application deemed withdrawn after publication