CN107006114A - 减少电磁辐射的射频功率发生器 - Google Patents

减少电磁辐射的射频功率发生器 Download PDF

Info

Publication number
CN107006114A
CN107006114A CN201580068991.XA CN201580068991A CN107006114A CN 107006114 A CN107006114 A CN 107006114A CN 201580068991 A CN201580068991 A CN 201580068991A CN 107006114 A CN107006114 A CN 107006114A
Authority
CN
China
Prior art keywords
power
compartment
shell
power generators
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580068991.XA
Other languages
English (en)
Other versions
CN107006114B (zh
Inventor
A.贝克伦德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN107006114A publication Critical patent/CN107006114A/zh
Application granted granted Critical
Publication of CN107006114B publication Critical patent/CN107006114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0009Casings with provisions to reduce EMI leakage through the joining parts
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B1/00Details
    • H03B1/02Structural details of power oscillators, e.g. for heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H15/00Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2202/00Aspects of oscillators relating to reduction of undesired oscillations
    • H03B2202/08Reduction of undesired oscillations originated from the oscillator in circuit elements external to the oscillator by means associated with the oscillator
    • H03B2202/082Reduction of undesired oscillations originated from the oscillator in circuit elements external to the oscillator by means associated with the oscillator by avoiding coupling between these circuit elements
    • H03B2202/084Reduction of undesired oscillations originated from the oscillator in circuit elements external to the oscillator by means associated with the oscillator by avoiding coupling between these circuit elements through shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • H05H2007/025Radiofrequency systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Particle Accelerators (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明提供一种射频(RF)功率发生器,所述射频功率发生器包括具有系统腔的外壳。外壳将所述系统腔与所述RF功率发生器的外部隔离。所述外壳配置成减少泄漏到所述外部的所述电磁辐射。所述RF功率发生器还包括馈通组件,所述馈通组件包括同轴线,所述同轴线配置成接收RF放大系统产生的电功率。所述同轴线定位在所述系统腔内,并且具有内导体和外导体。所述馈通组件包括连接器护罩,连接器护罩形成通向所述RF功率发生器的所述外部的馈通装置。所述连接器护罩电连接到所述同轴线的所述外导体,并且与所述外壳集成一体,以减少泄漏到所述外部中的电磁辐射。

Description

减少电磁辐射的射频功率发生器
相关申请案的交叉引用
本说明书中阐述的主题类似于第14/575,885、14/575,914和14/575,993号美国申请中所述的主题,这些申请案与本申请在同一天申请。以上申请案以引用的方式全文并入本文中。
背景技术
本说明书中的主题大体上涉及射频(radio-frequency,RF)功率发生器,并且更确切地说,涉及用于减少电磁辐射泄漏的机构和方法。
放射性同位素(也称为放射性核素)具有医疗、成像和研究领域中的许多应用,以及其他非医学相关应用。生产放射性同位素的系统通常包括粒子加速器,例如回旋加速器,用于加速带电粒子束(例如,H离子)并且将所述粒子束指向目标材料以产生同位素。回旋加速器包括粒子源,所述粒子源向加速室的中央区域提供粒子。所述回旋加速器使用电场和磁场来沿加速室内的预定轨道加速和导向粒子。所述磁场由围绕所述加速室的电磁铁和磁轭提供。所述电场由位于加速室内的一对射频(RF)电极(或D形盒,dees)产生。RF电极电连接到RF功率发生器,所述RF功率发生器可包括,例如,振荡器、放大器、控制电路和电源。所述RF功率发生器向RF电极供能,以提供电场。所述加速室内的电场和磁场使粒子通往半径不断增大的螺旋状轨道。当粒子到达轨道的外部部分时,所述粒子被引导向目标材料以产生放射性同位素。除了控制粒子轨道之外,RF电极可用于从加速室内的粒子源提取粒子。
为操作加速室内的RF电极,RF功率发生器产生大量电功率(例如,5千瓦到2兆瓦)。RF功率发生器包括外壳等,外壳具有包括电子真空管的RF放大系统。例如,所述电子真空管可以是三极管、四极管或五极管。RF放大系统可包括一对谐振器,所述谐振器各自具有内导体和外导体。
RF功率发生器的各种电气装置和子系统会产生电磁辐射(或发射)。特别是,谐振器能产生大量辐射。存在可能要求RF功率发生器电磁兼容的法规和/或客户需求,以使RF功率发生器能够可靠地在预期环境中可靠地运行,而不泄漏可能对其他电气部件有害的不良电磁辐射。但是,设计能够将电磁辐射量减少到可接受水平的RF功率发生器可能具有挑战性。例如,RF功率发生器通常具有若干开口,例如,通道或馈通装置(例如,用于接纳电缆或水管)、通气孔(例如,用于进气或排气)或者用于接纳硬件的孔(例如,螺钉)。这些开口可以允许不良电磁辐射泄漏到外部或者有其他电气部件在工作的隔室中。
RF功率发生器通常包括定向耦合器,其沿同轴线测量正向或反射功率。可以监测所述正向功率和反射功率以控制RF功率发生器的性能。定向耦合器通常定位在RF功率发生器的围绕谐振器的壳体的外部。定向耦合器还可能产生不良的电磁辐射。在一个已知系统中,定向耦合器定位在所述外壳内。尽管定向耦合器可有效地沿同轴线监测正向和反射功率,但是所述定向耦合器是具有若干大型互连零部件、细长接缝和螺钉的复杂组件。此类组件可能让电磁辐射泄漏到外部。
发明内容
在一个实施例中,提供一种射频(RF)功率发生器,所述射频功率发生器包括具有系统腔的外壳。所述外壳将系统腔与RF功率发生器的外部隔离。所述RF功率发生器还包括RF放大系统,所述RF放大系统设置在所述系统腔中,并且配置成产生电功率以向粒子加速器供能。所述RF放大系统产生在系统腔内产生电磁辐射。所述外壳配置成减少泄漏到所述外部的所述电磁辐射。RF功率发生器还包括馈通组件(feedthrough assembly),馈通组件包括同轴线,所述同轴线配置成接收所述RF放大系统产生的电功率。同轴线定位在所述系统腔内,并且具有内导体和外导体。馈通组件包括连接器护罩,连接器护罩形成通向RF功率发生器的外部的馈通。连接器护罩电连接到同轴线的外导体,并与所述外壳集成一体,以减少泄漏到所述外部的电磁辐射。
在一个实施例中,提供一种射频(RF)功率发生器,所述射频功率发生器包括具有系统腔的外壳。所述外壳将所述系统腔与RF功率发生器的外部隔离。所述RF功率发生器还包括RF放大系统,RF放大系统设置在所述系统腔中,并且配置成产生电功率以向粒子加速器供能。所述RF放大系统在所述系统腔内产生电磁辐射。所述外壳配置成减少泄漏到所述外部的所述电磁辐射。所述RF功率发生器还包括定位在所述系统腔内的内壳。所述系统腔包括存在于所述内壳与外壳之间的外空间。所述内壳包括内壁,所述内壁形成多个隔室,所述多个隔室具有通向外空间的相应检修孔。所述内壳包括可移动检修板,所述可移动检修板配置成接合所述内壁并且覆盖所述检修孔。所述RF放大系统位于至少一个所述隔室内。所述外壳配置成减少泄漏到所述外空间和所述外部的所述电磁辐射。
在一个实施例中,提供一种射频(RF)功率发生器,所述射频功率发生器包括具有系统腔的外壳。所述外壳将所述系统腔与RF功率发生器的外部隔离。所述RF功率发生器还包括RF放大系统,所述RF放大系统设置在所述系统腔中,并且配置成产生电功率以向粒子加速器供能。所述RF放大系统在所述系统腔内产生电磁辐射。所述外壳配置成减少泄漏到所述外部的所述电磁辐射。所述RF功率发生器还包括定位在所述系统腔内的多个内壁,所述多个内壁形成功率隔室和端口隔室。所述电功率在所述功率隔室内产生。所述端口隔室包括其中的接收所述电功率的内导体。外导体至少部分由至少一个所述内壁形成。所述RF功率发生器还包括定位在所述端口隔室内邻近所述内导体处的拾波元件,其中所述内导体、外导体和拾波元件形成定向耦合器,所述定耦合器设置在所述外壳的所述系统腔内,用于测量正向功率和反射功率。
附图说明
图1是根据一个实施例的同位素产生系统的透视图。
图2示出图1中的具有回旋加速器的同位素产生系统的透视图,所述回旋加速器处于打开状态以示出所述回旋加速器的部件。
图3是根据一个实施例的具有RF放大系统的射频(RF)功率发生器的透视图。
图4是图3中的RF功率发生器的截面侧视图。
图5是可由图3的RF功率发生器使用的馈通组件的侧视图。
图6示出包括带盖连接器护罩的图5馈通组件的配对端。
图7是由图5同轴线形成的定向耦合器的一部分的截面平面图。
图8是图3中RF功率发生器的一部分的后视图,其中示出连接器护罩的端视图。
图9是图5同轴线的截面侧视图。
图10是可由图3中RF功率发生器使用的系统门的分解图。
图11是可由图3中RF功率发生器使用的系统门的侧视图。
具体实施方式
结合附图进行阅读,将能更好地理解以下对某些实施例的详细描述。尽管附图示出了多个实施例的功能方框,这些功能方框并不一定表示硬件电路的划分。例如,一个或多个功能方框(例如,处理器或存储器)可以是实施在单件硬件(例如,通用信号处理器或随机存取存储器块、硬盘或类似硬件)或多件硬件中。类似地,程序可以是独立程序、集成到操作系统中的子例程、已安装软件包中的功能等。应理解,各项实施例并不限于附图中所示的布置和机制。
在本说明书中,以单数形式或者与“一个”或“一种”结合使用的元件或步骤应理解为不排除多个所述元件或步骤,除非对此类排除做出明确说明,例如通过说明“只有一个”元件或步骤。此外,对“一个实施例”的参考并不旨在解释为排除存在同样包含所列举特征的额外实施例。此外,除非明确做出相反规定,否则“包括”或“具有”具有特定性质的一个元件或多个元件的实施例可包括不具有所述性质的另外的此类元件。
本说明书中阐述的实施例包括射频(RF)功率发生器,所述射频功率发生器包括产生大量电功率的RF放大系统,例如,以向粒子加速器供能。在特定实施例中,RF放大系统包括功率管以及连接到所述功率管的至少一个谐振器。但是,实施例可以包括其他类型的RF放大系统。在一些实施例中,RF功率发生器包括外壳以及位于外壳内的内壳。内壳和外壳可形成位于外壳内的介于两者之间的外空间。所述外空间可以具有设在其中的特定电气系统或装置。内壳可以容纳特定电气系统或装置,例如RF放大系统。因此,RF放大系统可以由内壳和外壳所环绕。
在一些实施例中,RF功率发生器包括具有允许电缆连接到RF放大系统的通道的外壳。所述RF功率发生器可以包括与所述外壳集成一体的连接器护罩。例如,所述连接器护罩可以焊接到外壳。在其他实施例中,所述连接器护罩与所述外壳形成在一起,使得整体同时包括RF功率发生器的外部以及将电缆和内部RF放大系统互连的连接器护罩。
在一些实施例中,RF功率发生器包括容纳RF放大系统以及从所述RF放大系统接收电功率的同轴线的外壳。所述RF功率发生器可以包括定向耦合器,所述定向耦合器连接到所述外壳内的同轴线。所述定向耦合器配置成沿所述同轴线测量正向功率和反射功率。与常规系统不同,定向耦合器位于所述外壳内。在此类实施例中,所述外壳可以减少由定向耦合器产生的电磁辐射泄漏。
特定实施例可以包括输入和输出谐振器,所述输入和输出谐振器可以是,例如,各自包括内导体和外导体的同轴传输线谐振器。所述输入和输出谐振器的特征可以在于高Q(high-Q)谐振器,所述谐振器配置成以指定频率操作,例如,在非常高频率(VHF)带或更高频率带内操作。作为一个示例,所述指定频率可以是100MHz。所述输入和输出谐振器可以是1/4波长谐振器(或者λ/4谐振器)。尽管本说明书中所述的RF功率发生器和RF放大系统用于向粒子加速器供电,应当理解,RF功率发生器和RF放大系统可以用在其他应用中。在特定实施例中,RF功率发生器或RF放大系统是能够产生例如1000W或以上以及500V或以上的大功率系统。
一个或多个实施例提供的技术效果可以包括减少泄漏到外部(或者外部环境)的电磁辐射。电磁辐射的可接受水平可以由法规、准则和/或行业标准确定。作为一个示例,实施例可以提供在距离外壳一(1)米(m)内电磁辐射不超过10毫微瓦的RF功率发生器。在特定实施例中,在五十(50)厘米(cm)内,或者更确切地说,在十(10)厘米(cm)内,电磁辐射可以不超过10毫微瓦。一个或多个实施例提供的另一个技术效果可以包括减少从一个隔室泄漏到邻近或以其他方式邻接隔室的电磁辐射。特定隔室内的允许的电磁辐射量可以随具体应用而变。
本说明书中阐述的实施例可配置成电磁兼容,以使所述实施例控制或限制不良电磁辐射泄漏量。实施例可配置成满足政府机制或商业行业制订的有关电磁兼容性(EMC)发射的一个或多个法规、准则或标准。例如,本说明书中阐述的实施例可配置成满足美国联邦通信委员会(FCC)建立的法规(例如,《美国联邦管理法规》(CFR)第47条第15、18和68部分);美国军方建立的标准(例如,MIL-STD-461E、MIL-STD-464等)。其他标准包括国际无线电干扰特别委员会所制订的标准。特定实施例可以配置成满足CISPR 11和/或欧洲标准EN55011:2009。通过一个示例,实施例可以配置成在距离壳体外表面的10m距离处产生最多100μV/m。
图1是根据一个实施例的同位素产生系统100的透视图。同位素产生系统100包括粒子加速器102,所述粒子加速器可操作地连接到控制柜104和RF功率发生器106。在图示的实施例中,粒子加速器102是等时回旋加速器(isochronous cyclotron),但也可以使用其他类型的粒子加速器。RF能量或功率通过电缆105供应到粒子加速器102。如图所示,粒子加速器102包括磁体108,所述磁体包括磁轭部分111、112以及分别连接到磁轭部分111、112的电磁铁113、114。
图2是粒子加速器102的一部分的透视图。尽管以下说明以粒子加速器102是回旋加速器为示例,但是应了解,实施例可以包括其他粒子加速器及其子系统。如图2中所示,粒子加速器102包括磁体组件108,所述磁体组件具有磁轭部分111、112和电磁铁113、114。在图示的实施例中,电磁铁113、114是电磁线圈。粒子加速器102还可以包括极顶(pole top)116、118。极顶116固定到磁轭部分111,并且极顶118固定到磁轭部分112。如图所示,磁轭部分112可旋转地连接到磁轭部分111。在操作中,磁轭部分112处于封闭位置(如图1中所示),以使极顶116、118彼此相对,并且加速室限定在两者之间。当粒子加速器102不工作时,磁轭部分112可以打开以允许通向加速室。
加速室配置成允许带电粒子,如1H-离子,在其中沿预定弧形路径加速,所述预定弧形路径以螺旋方式围绕延伸在相对的极顶116、118之间的轴。带电粒子从一开始就定位在加速室的中央区域120附近处。当粒子加速器102激活时,带电粒子的路径可以围绕延伸在极顶116、118之间的轴盘旋。在特定实施例中,极顶118包括凸部122和凹部124。粒子加速器102还包括定位在极顶116邻近处的一对RF电极126、128。RF电极126、128的尺寸和形状使其可以在磁轭部分112关闭时,接纳在极顶118的凹部124内。
RF电极126、128配置成由RF功率发生器106(图1)供能,以产生电场。磁场由磁轭部分111、112和电磁铁113、114提供。当电磁铁113、114激活时,磁通量可以流动在极顶116、118之间并且穿过围绕加速室的磁轭部分111、112。当电场与磁场相结合时,粒子加速器102可以沿指定轨道引导粒子。RF电极126、128彼此协作并且形成谐振系统,所述谐振系统包括调谐到预定频率(例如,100MHz)的电感和电容元件。因此,RF电极126、128由RF功率发生器106控制,以加速带电粒子。
在特定实施例中,系统100使用1H-技术并且将带电粒子(负氢离子)通过指定的射束电流送至指定的能量。在此类实施例中,负氢离子通过粒子加速器102加速和导向。负氢离子随后可以撞击剥离箔(未图示),以去除一对电子并且形成正离子1H+。正离子可以导引入抽提系统。但是,本说明书中所述的实施例可以应用到其他类型的粒子加速器和回旋加速器。例如,在其他实施例中,带电粒子可以是阳离子,例如1H+2H+3He+。在此类替代实施例中,所述抽提系统可以包括静电偏转器,所述静电偏转器建立将粒子束引向目标材料的电场。
系统100配置成产生放射性同位素(也称为放射性核素),所述放射性同位素可以用于医疗成像、研究和治疗中,但是也可用于其他非医疗相关应用中,例如科学研究或分析中。当用于医疗用途时,例如核医学(NM)成像或正电子发射断层摄影(PET)成像应用中时,所述放射性同位素还可以称为示踪剂。例如,系统100可以产生质子以制造液体形式的18F-同位素、作为CO211C同位素以及作为NH313N同位素。用于制造这些同位素的目标材料可以是富18O水、天然14N2气体、16O-水。在一些实施例中,系统100还可以产生质子或氘核,以便产生15O气体(氧气、二氧化碳和一氧化碳)和标记15O的水。
系统100还可以配置成将带电粒子加速到预定的能量级。例如,本说明书中所述的一些实施例可以将带电粒子加速到约18MeV或以下的能量。在其他实施例中,系统100将带电粒子加速到约16.5MeV或以下的能量。在特定实施例中,系统100将带电粒子加速到约9.6MeV或以下的能量。在更多特定实施例中,系统100将带电粒子加速到约7.8MeV或以下的能量。但是,本说明书中所述的实施例还可以具有高于18MeV的能量。例如,实施例可以具有高于100MeV、500MeV或以上的能量。类似地,实施例可以利用多个射束电流值。例如,射束电流可以介于约10-30μA之间。在其他实施例中,射束电流可以高于30μA、高于50μA或者高于70μA。但在其他实施例中,射束电流可以高于100μA、高于150μA或者高于200μA。
图3是RF功率发生器130的透视图,RF功率发生器130可用于同位素产生系统,例如同位素产生系统100(图1)。但是可以设想,RF功率发生器130可以用于需要RF功率放大的其他应用中。RF功率发生器130可以类似于RF功率发生器106(图1),并且配置成向RF电极供能,例如RF电极126、128(图2)。RF功率发生器130包括发电机壳体132,在一些实施例中,所述发电机壳体可以称为机柜。发电机壳体132容纳RF功率发生器130的若干互连部件,这些部件协作产生用于操作RF电极的足量电功率。发电机壳体132包括系统腔134,所述系统腔中设有用于产生电功率的若干电气系统。
发电机壳体132包括外壳133,所述外壳具有外壁141-145。外壳133包括系统腔134,并且将所述系统腔134与RF功率发生器130的外部隔离。例如,外壁141-145可以面向个人易于接近的外部或者外部环境和/或在邻近外壁141-145中的一个或多个外壁处定位的设备。发电机壳体132和其他内部屏蔽结构可以配置成获取指定电磁兼容(EMC)。更确切地说,发电机壳体132可以配置成减少泄漏到外部的电磁辐射。
如图所示,RF功率发生器130相对于相互垂直的轴定向,包括纵轴191、横轴192和深度轴193。横轴192横向延伸在外壁142、144之间。纵轴191可以是平行于重力延伸的垂直轴,并且深度轴193可以延伸到系统腔134中。可以设想,在其他实施例中,纵轴191可以不平行于重力延伸。
发电机壳体132还可以包括定位在系统腔134内的内壳150。内壳150可以包括形成多个隔室161-165的内壁151-158。如图所示,内壁151-154是平行于由纵轴191和深度轴193限定的平面而延伸的垂直壁。在图示的实施例中,内壁151沿内壳150的整个高度延伸,所述整个高度小于外壳133的高度。内壁155-157可以是平行于由横轴192和深度轴193限定的平面而延伸的水平壁。内壁151-158可以彼此互连以形成隔室161-165。
隔室161-165还可以部分由外壳133限定。例如,外壁145包括外表面166,所述外表面可以限定隔室161-165的后端。外壁142可以包括内表面(未图示),所述内表面限定隔室161、162、164的侧面。
内壁156可以称为接地平台(grounding deck)156,并且内部155、157可以称为短路平台(shorting decks)。隔室161可以称为功率隔室(或者第一功率隔室)。在特定实施例中,功率隔室161是输出腔或阳极腔。隔室162可以称为功率隔室(或者第二功率隔室)。在特定实施例中,功率隔室162是输入腔或阴极腔。隔室164可以称为端口隔室。在图示的实施例中,功率隔室161和端口隔室164共用内壁155,以使内壁155将功率隔室161和端口隔室164隔开。
RF功率发生器130包括设置在系统腔134内的RF放大系统170。在图示的实施例中,RF放大系统170定位在隔室161-165中的至少一个隔室内。在特定实施例中,RF放大系统170包括功率管172以及输入导体174和输出导体176。功率管172连接到接地平台156。RF放大系统170可以形成包括输入导体174的输入腔谐振器178(参考图4)以及包括输出导体176的输出腔谐振器180(参考图4)。输入导体174和输出导体176是相应输入腔谐振器178和输出腔谐振器180的内导体。输入谐振器178可以包括外导体182(参见图4),所述外导体由内壁153、154、外壁145和可移动检修板202形成(如图4中图示)。外导体182围绕输入导体174。输出谐振器180可以包括外导体184(参见图4),所述外导体由内壁151、外壁142、145和可移动检修板202形成。外导体184围绕输出导体176。
在图示的实施例中,输入谐振器178和输出谐振器180与功率管172相互作用,以产生电功率,从而向例如粒子加速器供能。RF放大系统170可以能够产生例如至少5千瓦的电功率。在一些实施例中,RF放大系统170能够产生至少8千瓦或至少10千瓦。
操作期间,RF放大系统170可以发射电磁辐射,同时产生电功率。在一个示例性实施例中,功率管172是包括阴极、阳极和控制栅(未图示)的功率三极管。所述阴极可以由从电源(未图示)接收电流的细丝加热。加热细丝使阴极发射电子,所述电子经由功率管172流向阳极。控制栅定位在阴极与阳极之间,并且可用于控制电子的流动。尽管在一些实施例中功率管172是功率三极管,但是应了解,可以使用其他功率管,例如四极管或五极管。此外,尽管上文描述了一种类型的RF放大系统,但是应了解,其他实施例可以包括另一种类型的RF放大系统。
在一些实施例中,接地平台156能够移动以改变功率隔室161的大小和/或输出谐振器180的电功率性能。在特定实施例中,RF放大系统170包括可移动托盘组件188,所述可移动托盘组件具有RF放大系统170的多个互连部件。例如,可移动托盘组件188包括接地平台156、功率管172、内壁153、154、157和输入导体174。可移动托盘组件188可以允许部件在发电机壳体132的外部进行组装、检修和/或测试,然后作为一个单元移动到系统腔134内。可移动托盘组件188可以沿纵轴191移动到不同的位置。沿纵轴191移动可移动托盘组件188可以有效地改变RF放大系统170的一个或多个谐振器178、180的长度。在一些实施例中,沿纵轴191移动可移动托盘组件188可以称为RF放大系统170的粗调。可移动托盘组件在第14/575,993号美国专利申请中详述,该专利申请以引用方式全文并入本文中。
内壳150还可以包括导电框架190,所述导电框架配置成接合可移动检修板202。导电框架190包括多个柔性导电元件194(例如,接触弹簧、弹簧夹等),这些柔性导电元件沿内壁151-158的相应边缘分布。导电框架190可以围绕并且限定通向相应隔室161-165的检修孔。内壳150还可以包括锁定装置196,所述锁定装置配置成接合可移动检修板202,并且抵靠导电框架190的导电元件194固定可移动检修板202。
图4是完全装配的RF功率发生器130的截面侧视图。如图所示,发电机壳体132包括系统门200和可移动检修板202。可移动检修板202定位在系统腔134内并且压向导电框架190。如图4中所示,外空间204存在于内壳150与外壳133之间。外空间204可以表示内壳150之外的空间。外空间204和隔室161-165大体上可以共同地形成整个系统腔134。(图4中未图示隔室165(图3))。
每个隔室可以包括当可移动检修板202拆除时通向外空间204的对应检修孔。例如,如图4中所示,功率隔室161具有检修孔211,功率隔室162具有检修孔212,并且端口隔室164具有检修孔214。可移动检修板202配置成接合内壁151-158并且覆盖检修孔211、212、214。因此,内壳150和外壳133的至少一部分可以限定系统腔134的带护罩内空间。内壳150配置成减少其中产生的电磁辐射泄漏到系统腔134中,或者更确切地说,泄漏到外空间204中。内壳150还可以减少其中产生的电磁辐射泄漏到外部。
相对于图3和图4,内壳150和外壳133可以配置成提供阻止电磁辐射泄漏的多个防护结构。例如,电磁辐射的大部分在功率隔室161内产生以及在功率隔室163内产生。在一些实施例中,限定功率隔室161和功率隔室162的壁或表面不存在直接通向外部的开口。例如,外壁145可不具有沿功率隔室161和功率隔室162的、延伸穿过外壁145并且直接通向外部的任何接缝、小孔、馈通装置。同样,外壁142(图3)可不具有沿功率隔室161的任何接缝、小孔、馈通,其延伸穿过外壁142并且直接通向外部。
在RF功率发生器130的操作期间,功率隔室161内产生的电功率由定位在功率隔室161内的磁性拾波回路(magnetic pickup loop)216传送到设置在端口隔室164内的内导体218。内导体218位于内壳150内,并且可以与由内壳150形成的外导体242一起形成同轴线241(如图5中所示)。内导体218可以具有相对较短的长度。例如,内导体218的长度可以介于200mm到500mm之间。在特定实施例中,内导体218的长度是约250到350mm。同轴线241可以经由端口隔室164将电功率传输到通向外部的通道260(如图8中所示)。同轴线241可以在通道260处接合电缆(未图示),例如电缆105(图1)。
在特定实施例中,同轴线241可以形成定向耦合器225(如图4中所示)的一部分,所述定向耦合器配置成沿同轴线241测量正向功率和反射功率。端口隔室164可以包括定向耦合器225。在特定实施例中,同轴线241可以形成馈通组件240(如图4中所示)的一部分,所述馈通组件向位于RF功率发生器130外部的电缆(未图示)供应电功率。
图5是馈通组件240的隔离侧视图。馈通组件240包括:同轴线241,所述同轴线定位在系统腔134(图3)内;以及连接器护罩254,所述连接器护罩至少部分定位在所述外部中并且配置成与电缆(未图示)配合。同轴线241包括外导体242,所述外导体由侧壁243-245和侧壁246(如图6中所示)形成。外导体242形成其中设有内导体218(图3)的线腔248(如图7中所示)。内导体218和外导体242沿中心轴290彼此平行地延伸。
在一个示例性实施例中,外导体242至少部分由外壳133(图3)的内壁或外壁中的至少一者形成。例如,侧壁243-246中的一个或多个侧壁可以由限定端口隔室164(图3)的内壁形成。更确切地说,侧壁246可以构成内壁152(图3)并且侧壁245可以是内壁155(图3)的一部分。在此类实施例中,线腔248可以构成或者是端口隔室164(图3)的一部分,并且连接器护罩254可以定位在端口隔室164内或者沿所述端口隔室定位。
如图所示,馈通组件240具有配对端(mating end)250和相对的载荷端252。在一些实施例中,载荷端252可以包括检修孔214。例如,在一些实施例中,可移动检修板202(图4)可以形成覆盖检修孔214的后壁。连接器护罩254可以形成配合端250并且电连接到外导体242。连接器护罩254可以与外壳133(图3)集成一体,以减少泄漏到外部的电磁辐射。连接器护罩254可以至少部分与外壁145间隔一定距离(图3)。在替代实施例中,连接器护罩254可以与外壳133集成一体,但是凹入系统腔134(图3)内。
在一个示例性实施例中,连接器护罩254焊接到外壳133。在其他实施例中,连接器护罩254可以从外壳133的外壁145或其他部分形成。在图5中,连接器护罩254包括盖256。在将连接器护罩254固定到外壳133之后,可以拆除盖256以露出由连接器护罩254形成的通向RF功率发生器130的外部的通道260(如图8中所示)。通道260允许电缆(未图示)电连接到内导体218,例如电缆105(图1)。
图6是馈通组件240的配对端250的放大透视图。在图示的实施例中,连接器护罩254包括面板平台262、固定壁(securing wall)264和配合头部266。在一些实施例中,连接器护罩254是机械或电连接到外导体242的单独或离散零件。例如,在一些实施例中,面板平台262具有焊接到外导体242的对应边缘的平台边缘263。连接器护罩254和/或面板平台262视情况可以由侧壁243-246中的一者形成并且折叠以与线腔248(图7)对准。
配合头部(mating head)266和固定壁264连接到面板平台262并且沿中心轴290背对面板平台262突出。配合头部266配置成接合电缆。盖256连接到图6中的配对端266。在图示的实施例中,配对端266包括背对外导体242突出的椭圆形主体。但是,在替代实施例中,配合头部266可以具有其他形状。配合头部266包括大体上背对中心轴290的外表面267。
在图示的实施例中,固定壁264可以称为法兰。固定壁264围绕中心轴290环绕配合头部266。固定壁264包括前缘268以及大体上背对中心轴290的外表面270。固定壁264还包括大体上面对中心轴290的内表面272。在图示的实施例中,固定壁264的内表面272与配合头部262的外表面267相对,两者之间存在间隙274。如下所述,前缘268和/或外表面270可以焊接到外壳133(图3)。在焊接期间,间隙274可以将配合头部266与固定壁264隔开,以保护配合头部266。
图7是沿纵轴191观察的同轴线241的一部分的截面图。在一些实施例中,同轴线241可以形成定向耦合器225的一部分,以使定向耦合器225设置在系统腔134(图3)内。在其他实施例中,穿过端口隔室164的同轴线241不形成定向耦合器。在此类实施例中,可以使用定向耦合器,例如在RF功率发生器130(图3)的外部。
图7示出了线腔248内的侧壁246和内导体218。线腔248可以构成图3中所示的端口隔室164。内导体218定位在线腔248的中央,并且平行于外导体242延伸。另如图所示,定向耦合器225可以包括第一拾波元件280和第二拾波元件282。在图示的实施例中,拾波元件(pickup element)280、282包括平行于内导体218和外导体242延伸不同相应长度的板。拾波元件280与侧壁246隔开指定距离284,并且与内导体218隔开指定距离286。同样,拾波元件282与侧壁246隔开指定距离288,并且与内导体218隔开指定距离292。指定距离284和288分别小于指定距离286和292。在一个示例性实施例中,指定距离284小于指定距离286。
内导体218、外导体242和拾波元件280、282形成设置在系统腔134内的定向耦合器225。拾波元件280、282相对于内导体218和外导体242定位,并且配置成沿同轴线241测量正向功率和反射功率。例如,随着电功率传输穿过内导体218,信号可以由正向功率和反射功率进行辐射。这些信号可以电连接到拾波元件280、282(即,检测或感测)并且分别通过通信线294、296通信。为此,指定距离284、286、288和292配置成获取期望性能。例如,通信线294、296可以连接到监控RF功率发生器130的性能的控制系统(未图示)。
另如图7中所示,安装垫片298可以安装到侧壁246,并且连接到线腔248内的内导体218。安装垫片298可以是绝缘或介电材料,配置成相对于外导体242将内导体218固定在线腔248(或端口隔室164)内的指定位置。内导体218还可以定位成与通道260(图8)对准以连接到外部电缆。
图8是RF功率发生器130(图3)的一部分的后视图,并且确切地说,是外壁145的后视图。图9是馈通组件240的配合端250的截面图,并且更详细地示出连接器护罩254。如图所示,通道260与内导体218的配合端302对准。配合端302可以成形为接合电缆的对应部件。例如,配合端302具有图8和图9中的锥形形状。同样,配合端266可以成形为连接到电力电缆的对应部件。在图示的实施例中,配合端266与外壁145间隔一定距离。
如本说明书中所述,在一些实施例中,连接器护罩254可以与外壳133集成一体。例如,在一个示例性实施例中,连接器护罩254焊接到外壁145的壁边缘304。壁边缘304可以限定带护罩孔306(图8),所述带护罩孔的尺寸和形状适于接纳连接器护罩254的一部分。在一些实施例中,连接器护罩254可以连接到外导体242(图9),然后再将连接器护罩254连接到外壁145。因此,内导体218可以与由连接器护罩254形成的通道260对准。连接器护罩254随后可以定位以焊接到外壁145。
在焊接过程中,连接器护罩254的固定壁264的导电材料熔化,并且沿壁边缘304的外壁145的导电材料熔化。更确切地说,固定壁264的前缘268和/或外表面270可熔化。间隙274可以在焊接过程中将配合头部266与热能隔离。更确切地说,间隙274可以降低配合头部266意外熔化并且因此而改变形状的可能性。因此,间隙274的尺寸可以基于在焊接过程中施加的热量进行配置。
熔化的导电材料将聚结,并且当允许冷却或固化时,导电材料有效地结合并且熔化在一起,成为单件导电材料。如上所述,连接器护罩254还可以焊接到外导体242。因此,连接器护罩254和外导体242可以与外壳133(图3)的外壁145集成一体。在此类实施例中,相对于具有接缝的常规系统而言,连接器护罩254和外壁145可以更有效地减少电磁辐射泄漏。
在其他实施例中,连接器护罩254可以以其他方式与外壳133集成一体。例如,连接器护罩254和外壁145可以由通用导电材料件形成。在此类实施例中,连接器护罩254还与外壁145集成一体。但是,应了解,集成一体的连接器护罩254并非是所有实施例所必需的。例如,在一些实施例中,连接器护罩254可以与外壁145形成干涉配合,或者可以使用紧固机制、粘合剂连接到外壁145。
图10是根据一个实施例的系统门200的分解图。简短地返回图3,系统门200配置成接合外壳133,以将RF功率发生器130的元件包封在系统腔134内。为此,外壳133包括门框架310,所述门框架具有前向表面312和反向凹进的内表面314。前向表面312和内表面314彼此垂直。
相对于图10,系统门200可以包括门主体316以及第一导电衬垫318和第二导电衬垫320。门主体316具有外侧322和内侧324。系统门200还包括连接到外侧322的一对把手326。如图所示,门主体316可以包括沿门主体316外周界的紧固件孔328。当系统门200固定到外壳133(图3)时,紧固件(例如,螺钉)可以延伸穿过紧固件孔328并且接合外壳133。
图11是系统门200的侧视图。第一导电衬垫318和第二导电衬垫320沿内侧324定位,并且围绕门主体316的平台部分330。平台部分330可以延伸穿过第一导电衬垫318和第二导电衬垫320的开口,并且延伸到第一导电衬垫318和第二导电衬垫320之外。如图11中的放大图所示,第一导电衬垫318直接抵靠系统门200的法兰332连接,所述法兰连接到平台部分330并且背对其突出。第二导电衬垫320直接连接到平台部分330的平台表面334。法兰332配置成连接门框架310的前向表面312(图3),两者之间存在第一导电衬垫318。平台表面334配置成连接门框架310的内表面314(图3),两者之间存在第二导电衬垫320。
第一导电衬垫318和第二导电衬垫320包括相应的柔性导电元件328、329。例如,导电元件328、329可以是例如接触式弹簧、弹簧夹等。导电元件328配置成向法兰332偏转,并且导电元件329配置成向平台表面334偏转。导电元件328、329可以分别沿法兰332和平台表面334紧密地分布。因此,系统门200与外壳133之间形成的接缝可以是电磁密封的,以减少电磁辐射泄漏。在一些实施例中,导电元件328、329的尺寸和/或中心到中心间距可以不同,以降低形成不需要间隙的可能性。
应了解,上述说明旨在说明而非限定。例如,上述实施例(和/或其方面)可以彼此结合使用。另外,在不脱离本发明主题范围的情况下,可作出许多修改来使特定的情况或材料适于本发明主题的教示。本说明书中所述尺寸、材料类型、各种部件定向以及各种部件数量和位置意图限定特定实施例的参数,然而,它们并不以任何方式进行限定,并且仅为示例性实施例。在查看以上描述之后,所属领域的技术人员将会清楚在权利要求书的精神和范围内的许多其他实施例和修改。因此,应参照所附权利要求书以及这些权利要求有权要求的等效物的完整范围来确定本发明主题的范围。在所附权利要求书中,术语“包括(including)”和“其中(in which)”用作相应术语“包括(comprising)”和“其中(wherein)”的简明英语等效物。此外,在随附权利要求书中,“第一”、“第二”、“第三”等术语仅用作标签,并不用于对相应对象做出数值要求。此外,随附权利要求书中的限制并非以装置加功能的方式撰写,并且并不旨在基于《美国法典》第35编第112(f)条来解释,除非且直到此类权利要求限制明确使用词语“装置用于”,后跟不含进一步结构的功能说明。
本说明书使用示例来公开多个实施例,并且还让所属领域的普通技术人员能够实践多个实施例,包括制造和使用任何装置或系统以及实施所涵盖的任何方法。各项实施例的可取得专利的范围由权利要求书限定,并且可包括所属领域的技术人员想到的其他示例。如果此类其他示例具有的结构要素与权利要求书的字面意义相同,或者如果此类其他示例包括的等效结构要素与权利要求书的字面意义无实质性差别,那么此类其他示例也在权利要求书的范围之内。
当结合附图一起阅读时,将更好地理解本发明主题的某些实施例的前述描述。尽管附图示出了多个实施例的功能方框,这些功能方框并不一定指示硬件电路的区分。因此,例如,可在单件硬件(例如,通用信号处理器、微控制器、随机存取存储器、硬盘或类似硬件)中实施功能块(例如,处理器或存储器)中的一个或多个。类似地,程序可以是独立的程序,可作为子程序并入操作系统中,可以是安装的软件包中的功能,或者类似情况。多个实施例并不限于附图中示出的装置和工具。
如本说明书中所使用,除非明确排除,否则以单数形式表示并前跟字词“一个”或“一种”的元件或步骤应理解为不排除多个所述元件或步骤。此外,对本发明的“一个实施例”的参考并不旨在解释为排除存在同样包含所述特征的额外实施例。此外,除非明确做出相反规定,否则“包括(comprising)”、“包括(comprises)”、“包括(including)”、“包括(includes)”、“具有(having)”或“具有(has)”具有特定性质的一个元件或多个元件的实施例可包括不具有该性质的额外的此类元件。

Claims (20)

1.一种射频(RF)功率发生器,包括:
具有系统腔的外壳,所述外壳将所述系统腔与所述RF功率发生器的外部隔离;
RF放大系统,所述RF放大系统设置在所述系统腔内并且发射电磁辐射,同时产生用于向粒子加速器供能的电功率,所述外壳配置成减少泄漏到所述外部的所述电磁辐射;以及
馈通组件,所述馈通组件包括同轴线,所述同轴线配置成接收由所述RF放大系统产生的所述电功率,所述同轴线定位在所述系统腔内并且具有内导体和外导体,所述馈通组件包括连接器护罩,所述连接器护罩形成通向所述RF功率发生器的所述外部的通道,所述连接器护罩电连接到所述同轴线的所述外导体并且与所述外壳集成一体,以减少泄漏到所述外部的所述电磁辐射。
2.根据权利要求1所述的RF功率发生器,其中所述连接器护罩焊接到所述外壳。
3.根据权利要求1所述的RF功率发生器,其中所述连接器护罩包括配合头部,所述配合头部限定所述通道,并且配置成接合所述外部电缆,所述连接器护罩包括固定壁,所述固定壁围绕所述配合头部并且与所述配合头部隔开,所述固定壁焊接到所述外壳。
4.根据权利要求1所述的RF功率发生器,进一步包括设置在所述系统腔内的定向耦合器,所述定向耦合器包括所述同轴线的所述内导体和所述外导体以及用于沿所述同轴线测量正向功率和反射功率的拾波元件。
5.根据权利要求1所述的RF功率发生器,进一步包括定位在所述系统腔内并且围绕所述RF放大系统的内壳,所述外壳和所述内壳限定两者之间的外空间,所述内壳配置成减少其中产生的泄漏到所述系统腔中的电磁辐射,所述内导体定位在所述内壳内。
6.根据权利要求1所述的RF功率发生器,进一步包括定位在所述系统腔内的内壳,所述内壳包括限定功率隔室和端口隔室的内壁,所述功率隔室具有在其中产生的电功率,其中所述内导体定位在所述端口隔室内并且限定所述端口隔室的内壁是同轴线的外导体的一部分。
7.根据权利要求1所述的RF功率发生器,其中所述RF放大系统配置成产生至少5千瓦。
8.一种射频(RF)功率发生器,包括:
具有系统腔的外壳,所述外壳将所述系统腔与所述RF功率发生器的外部隔离;
RF放大系统,所述RF放大系统设置在所述系统腔内并且发射电磁辐射,同时产生用于向粒子加速器供能的电功率,所述外壳配置成减少泄漏到所述外部的所述电磁辐射;以及
定位在所述系统腔内的内壳,所述系统腔包括存在于所述内壳与所述外壳之间的外空间,所述内壳包括内壁,所述内壁形成多个隔室,所述多个隔室具有通向所述外空间的相应检修孔,所述内壳包括可移动检修板,所述可移动检修板配置成接合所述内壁并且覆盖所述检修孔,所述RF放大系统位于至少一个所述隔室内,所述内壳配置成减少泄漏到所述外空间和所述外部的所述电磁辐射。
9.根据权利要求8所述的RF功率发生器,其中所述隔室包括功率隔室以及与所述功率隔室隔开至少一个所述内壁的端口隔室,用于向所述粒子加速器供能的所述电功率在所述功率隔室内产生,其中所述RF功率发生器包括同轴线,所述同轴线经由所述端口隔室将所述电功率传输到通向所述外部的通道。
10.根据权利要求9所述的RF功率发生器,其中所述功率隔室不存在直接通向所述外部的开口。
11.根据权利要求9所述的RF功率发生器,进一步包括连接器护罩,所述连接器护罩定位在所述端口隔室内或者沿所述端口隔室定位,并且形成通向所述外部的所述通道,所述连接器护罩焊接到所述外壳。
12.根据权利要求9所述的RF功率发生器,其中所述端口隔室包括定向耦合器,所述定向耦合器沿所述同轴线测量正向功率和反射功率。
13.根据权利要求12所述的RF功率发生器,进一步包括连接器护罩,所述连接器护罩定位在所述端口隔室内或者沿所述端口隔室定位,并且形成通向所述外部的所述通道,所述连接器护罩焊接到所述外壳并且电连接到所述定向耦合器的外导体。
14.根据权利要求9所述的RF功率发生器,其中所述内壁包括接地平台,所述接地平台能够移动以改变由所述接地平台部分限定的所述隔室的大小,所述RF放大系统包括连接到所述接地平台的功率管。
15.根据权利要求9所述的RF功率发生器,进一步包括导电框架,所述导电框架接合所述可移动检修板,所述导电框架包括沿其分布的多个柔性导电元件。
16.一种射频(RF)功率发生器,包括:
具有系统腔的外壳,所述外壳将所述系统腔与所述RF功率发生器的外部隔离;
RF放大系统,所述RF放大系统设置在所述系统腔内并且发射电磁辐射,同时产生用于向粒子加速器供能的电功率,所述外壳配置成减少泄漏到所述外部的所述电磁辐射;以及
定位在所述系统腔内的多个内壁,所述多个内壁形成功率隔室和端口隔室,所述电功率在所述功率隔室内产生,所述端口隔室中包括接收所述电功率的内导体;
其中外导体至少部分由至少一个所述内壁形成,所述RF功率发生器进一步包括相对于所述内导体定位在所述端口隔室内的拾波元件,其中所述内导体、所述外导体和所述拾波元件形成设置在所述外壳的所述系统腔内的定向耦合器,所述定向耦合器测量正向功率和反射功率。
17.根据权利要求16所述的RF功率发生器,进一步包括连接器护罩,所述连接器护罩定位在所述端口隔室内或者沿所述端口隔室定位,并且形成穿过所述外壳通向所述外部的通道,所述连接器护罩电连接到所述外导体。
18.根据权利要求17所述的RF功率发生器,其中所述连接器护罩焊接到所述外壳。
19.根据权利要求16所述的RF功率发生器,进一步包括至少一个介电安装垫片,所述介电安装垫片将所述内导体固定在所述端口隔室内的指定位置。
20.根据权利要求16所述的RF功率发生器,其中所述功率隔室和所述端口隔室共享至少一个所述内壁。
CN201580068991.XA 2014-12-18 2015-09-30 减少电磁辐射的射频功率发生器 Active CN107006114B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/575,958 US9456532B2 (en) 2014-12-18 2014-12-18 Radio-frequency power generator configured to reduce electromagnetic emissions
US14/575958 2014-12-18
PCT/US2015/053110 WO2016099621A1 (en) 2014-12-18 2015-09-30 Radio-frequency power generator configured to reduce electromagnetic emissions

Publications (2)

Publication Number Publication Date
CN107006114A true CN107006114A (zh) 2017-08-01
CN107006114B CN107006114B (zh) 2019-10-01

Family

ID=54330049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580068991.XA Active CN107006114B (zh) 2014-12-18 2015-09-30 减少电磁辐射的射频功率发生器

Country Status (7)

Country Link
US (1) US9456532B2 (zh)
EP (1) EP3235352B1 (zh)
JP (1) JP6560755B2 (zh)
CN (1) CN107006114B (zh)
CA (1) CA2970285C (zh)
RU (1) RU2698816C2 (zh)
WO (1) WO2016099621A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455674B2 (en) * 2014-12-18 2016-09-27 General Electric Company Tube amplifier assembly having a power tube and a capacitor assembly
WO2018106593A1 (en) 2016-12-05 2018-06-14 General Electric Company Coupling assembly and radiofrequency amplification system having the same
USD902140S1 (en) * 2018-08-11 2020-11-17 Elliquence RF generator for an electrosurgical instrument
USD887962S1 (en) * 2018-08-11 2020-06-23 Elliquence RF generator for an electrosurgical instrument
AU2018436512B2 (en) 2018-08-16 2022-06-02 Micro Motion, Inc. Electromagnetic interference resistant electronics enclosure
US11116116B1 (en) * 2018-12-14 2021-09-07 Smart Wires Inc. Interference limiting enclosure for power flow devices
RU2740207C1 (ru) * 2019-10-31 2021-01-12 Федеральное государственное автономное образовательное учреждение высшего образования "Российский университет транспорта" (ФГАОУ ВО РУТ (МИИТ), РУТ (МИИТ) Радиоизотопный источник переменного электрического тока
CN115579156B (zh) * 2022-11-24 2023-06-23 中国科学院合肥物质科学研究院 一种适用于金属陶瓷四极管的调试平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784911A (en) * 1970-09-21 1974-01-08 Karlskronavarnet Ab Directional coupler for measuring forward and reflected power comprising a bored metal block
EP0552598A2 (en) * 1992-01-21 1993-07-28 NPBI Nederlands Produktielaboratorium voor Bloedtransfusieapparatuur en Infusievloeistoffen B.V. Apparatus for sealing medical plastic tubing
JPH11307984A (ja) * 1998-04-24 1999-11-05 Mitsumi Electric Co Ltd 高周波モジュール
WO2012041540A1 (de) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Hf-kavität mit sender
CN203289761U (zh) * 2013-06-19 2013-11-13 中国人民解放军总参谋部工程兵科研三所 一种电磁屏蔽机箱
CN104094676A (zh) * 2011-06-21 2014-10-08 应用材料公司 等离子体腔室的传输线rf施加器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2551715A (en) 1945-10-16 1951-05-08 Rca Corp High-frequency amplifier
SE513192C2 (sv) 1998-09-29 2000-07-24 Gems Pet Systems Ab Förfarande och system för HF-styrning
US6617810B2 (en) * 2000-03-01 2003-09-09 L-3 Communications Corporation Multi-stage cavity cyclotron resonance accelerators
US7339366B2 (en) 2006-06-27 2008-03-04 Analog Devices, Inc. Directional coupler for a accurate power detection
US7982561B2 (en) 2008-09-05 2011-07-19 Harris Corporation Resonator system for an RF power amplifier output circuit
US8106370B2 (en) 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity
US8153997B2 (en) 2009-05-05 2012-04-10 General Electric Company Isotope production system and cyclotron
US8106570B2 (en) 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having reduced magnetic stray fields
US8169277B2 (en) 2010-02-19 2012-05-01 Harris Corporation Radio frequency directional coupler device and related methods
EP2410823B1 (fr) * 2010-07-22 2012-11-28 Ion Beam Applications Cyclotron apte à accélérer au moins deux types de particules
US8653762B2 (en) 2010-12-23 2014-02-18 General Electric Company Particle accelerators having electromechanical motors and methods of operating and manufacturing the same
RU118151U1 (ru) * 2011-12-07 2012-07-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Высокочастотная система резонансного ускорителя заряженных частиц

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784911A (en) * 1970-09-21 1974-01-08 Karlskronavarnet Ab Directional coupler for measuring forward and reflected power comprising a bored metal block
EP0552598A2 (en) * 1992-01-21 1993-07-28 NPBI Nederlands Produktielaboratorium voor Bloedtransfusieapparatuur en Infusievloeistoffen B.V. Apparatus for sealing medical plastic tubing
JPH11307984A (ja) * 1998-04-24 1999-11-05 Mitsumi Electric Co Ltd 高周波モジュール
WO2012041540A1 (de) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Hf-kavität mit sender
CN104094676A (zh) * 2011-06-21 2014-10-08 应用材料公司 等离子体腔室的传输线rf施加器
CN203289761U (zh) * 2013-06-19 2013-11-13 中国人民解放军总参谋部工程兵科研三所 一种电磁屏蔽机箱

Also Published As

Publication number Publication date
JP2018506815A (ja) 2018-03-08
EP3235352A1 (en) 2017-10-25
RU2017120122A3 (zh) 2019-03-18
WO2016099621A1 (en) 2016-06-23
CN107006114B (zh) 2019-10-01
EP3235352B1 (en) 2021-02-24
JP6560755B2 (ja) 2019-08-14
RU2017120122A (ru) 2019-01-23
CA2970285A1 (en) 2016-06-23
CA2970285C (en) 2019-10-15
RU2698816C2 (ru) 2019-08-30
US9456532B2 (en) 2016-09-27
US20160183416A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
CN107006114B (zh) 减少电磁辐射的射频功率发生器
KR101686690B1 (ko) 동위 원소 생성 시스템 및 사이클로트론
US9912308B2 (en) Tube amplifier assembly having a power tube and a capacitor assembly
JP6681900B2 (ja) 無線周波数電力発生器の同調可能な管増幅器システム
JP6722203B2 (ja) 同位体生成用の生成組立体および取り外し可能なターゲット組立体
US9859851B2 (en) Coupling assembly and radiofrequency amplification system having the same
US11017975B2 (en) Electromagnetic interference containment for accelerator systems
US9337786B1 (en) Multi-layer decoupling capacitor for a tube amplifier assembly
WO2018106593A1 (en) Coupling assembly and radiofrequency amplification system having the same
CA2584899A1 (en) Device for the endogenous production of radioisotopes, particularly for pet
US11456085B2 (en) Cyclotron facility for producing radioisotopes
Winklehner et al. IsoDAR@ Yemilab: Preliminary Design Report--Volume I: Cyclotron Driver
Lee et al. Investigation of Minimized Consumption Power about 10 MeV Cyclotron for Acceleration of Negative Hydrogen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant