CN107004336A - 无电极等离子体灯光学破坏 - Google Patents

无电极等离子体灯光学破坏 Download PDF

Info

Publication number
CN107004336A
CN107004336A CN201580063971.3A CN201580063971A CN107004336A CN 107004336 A CN107004336 A CN 107004336A CN 201580063971 A CN201580063971 A CN 201580063971A CN 107004336 A CN107004336 A CN 107004336A
Authority
CN
China
Prior art keywords
light
lamp
high intensity
plasma
lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580063971.3A
Other languages
English (en)
Inventor
洛伦·P·霍博伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wavien Inc
Original Assignee
Wavien Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavien Inc filed Critical Wavien Inc
Publication of CN107004336A publication Critical patent/CN107004336A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/0087Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a bright light, e.g. for dazzling or blinding purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B15/00Weapons not otherwise provided for, e.g. nunchakus, throwing knives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

一种用于通过用从无电极等离子体(EFS)灯发射的高强度非相干光束(HIILB)过度刺激目标视神经来干扰或约束一个或多个目标的活动的方法和装置。该方法的步骤包括从内设在装置中的EFS灯提供HIILB,并且在一个或多个目标面对装置时将光束引导到一个或多个目标。该装置包括:具有头部的外壳体,头部具有用于透射HIILB的窗口;面向窗口安装在头部中的光学系统;安装在光学系统的焦点处的一个或多个EFP灯,以朝向窗口准直光;用于驱动一个或多个灯的电路,其中电路具有能量源和用于操作的到能量源的等离子体灯感应耦合器。

Description

无电极等离子体灯光学破坏
相关申请的交叉引用
本申请是2014年9月24日提交的专利申请号为14/495,748的部分继续申请。
关于联邦资助的研究或开发的声明
不适用
联合研究协议缔约方的名称
不适用
通过引用的方式结合光盘上提交的材料
不适用
技术领域
本发明一般涉及定向能量非相干无电极等离子体光源,其是一种用于暂时性人类和动物光学破坏和人身保护的非致命能量武器,特别涉及用于近距离和长距离交战的固定式、移动安装式、安装在船上的、安装在飞机上的、便携式和手持式探照灯、聚光灯和闪光灯,它们对人类和动物攻击者进行照亮、警告破坏、击退、抑制和光学破坏。
背景技术
近年来,已经证实了使用非致命的效应器武器和人身保护装置在处置执法、惩戒、安全人员和军事人员以及人身安全的敌对者中越来越有效。大多数对抗中保护人员的目标是用最少量的必要武力来控制局势。出于公共政策的原因,避免附带损害越来越重要。武力应对的等级逐渐上升,从观察事态开始,进而到视觉和口头警告,干扰,使用非致命武力,如果可能,避免使用致命武力。永久性伤害或死亡的可能性随着武力应对等级的增加而增加。因此,安全人员将希望有一个测量过的应对方式,其能够确保他们的人身安全,还能以可得到的最大限度减少敌对者和旁观者的伤害。
攻击者距执法人员的距离越远,执法人员必须作出反应和制定测量过的非致命应对措施以最小化对攻击者和执法人员的附带损害的时间越多。理想地,非致命效应器应该提供个人和组控制选项。
光定向能量武器的先期发展包括:
激光炫目器:
利用相干光的超亮光激光源声称可以控制安全人员和敌对者之间的对抗升级。激光炫目器通过使用绿激光暂时使受试者失明来工作,而不会有使人致命的风险。大多数针对军事用途建立的多数机型被设计成在白天的工作距离为300至500米,而据报道在夜晚的工作距离长达一公里。这些装置的示例描述于美国专利号5,685,636;6,007,218;和7,040,780。
激光光学破坏公司声称白天能在1,000-1,600英尺处操作,夜晚能够在3200英尺处操作。在40米处,200毫瓦激光器的强光束可以永久损伤眼睛。报纸上已经报道过军队使用非致命激光器造成一些永久性眼睛损伤。相干光激光器的主要缺点是它们产生的光有非常窄的单光谱,使得难以管理强度来避免永久性眼睛损伤。人眼不适应自然保护抵抗像激光的相干光的单波长输出,并且人眼高度易受激光束的伤害。
另一方面,人类很适应对在阳光的宽光谱中的非相干光安全地作出反应。这使得非相干光比激光束具有安全优势。
激光器技术的成本相对地比其它非致命手持灯技术要高。此外,激光器易受诸如特定波眼睛保护的防范措施的影响。相干单激光波长具有不覆盖对应于从白天到夜晚视杆细胞和视锥细胞之间的眼睛灵敏度的偏移的所有波长的附加缺点。此外,激光器受国际武器贸易条例(ITAR)的出口管制,出口受到高度限制。
LED/闪光灯和频闪灯:
2007年10月,“治安和安全新闻(Police&Security News)”报道了拉尔夫·马罗兹(Ralph Mroz)发表的题为“利用下一代频闪灯打击高强度犯罪(High-intensity crimefighting with next-generation strobe lights)”的文章:“最新技术是频闪灯……”频闪提供什么好处?以下是一些主张:1)导致方向障碍和失明;2)造成周边视力丧失:3)限制对你进行准确射击的能力;和4)引起恐惧和/或犹豫不决……。他们也将被频闪的非常明亮的白光致盲—我们都熟悉60或更多流明对嫌疑人眼的致盲作用。频闪在致盲的基础上增加了方向障碍的作用。这样的战术优势是显而易见的。
更新的设备是美国专利7,180,426,一种多色频闪LED装置,用于模拟结合频闪效果的全光谱光。它的有效范围在30英尺以下。
其它发光二极管(LED)和高强度放电(HID)装置的示例描述于美国专利号8,710,742;8,419,213;7,909,484;7,500,763;和6,190,022。
短弧光学破坏:
历史上,一些弧灯探照灯是足够明亮的,足以导致永久性或暂时性失明,并且它们被用来在第二次世界大战期间使轰炸机的全体乘员目眩。运河防卫灯(CDL)是英国在第二次世界大战大约1943时的“秘密武器”。它基于安装在坦克上的强大的碳弧探照灯的使用。一排坦克(4)将以高达1000码和以19度的角度瞄准战场,向前行驶,打开和关闭光闸以干扰敌人。它的目的是在夜间袭击时使用,这时光允许敌方位置被瞄准。光的第二用途是使敌军眩目和迷失方向,使他们更难准确地还击。
美国专利7,866,082教导了一种使一个或多个目标个体失能的方法,包括以下步骤:提供高强度非相干光束发射装置,其中该装置具体包括短弧灯;非致命的短弧灯发明的示例描述于美国专利号7,497,586;7,866,082;8,567,980;和8,721,105。
短弧灯输出的优点是:相比于LED或HID光源,其可以聚焦以在远得多的距离处操作。作为美国专利7,497,586和7,866,082的主题的方法和设备的缺点包括高功耗(15流明/瓦(lm/W)),能量到光的5%的转换率,投射光束中的伪影,例如由电极和阴极产生的阴影,并且聚焦效率非常易受制造公差和操作期间的热膨胀的影响,从而需要连续的焦距调节。
短弧灯和带电极的其它灯必须处理光束中心处的“黑洞”现象以及等离子体球形状畸变,其中“黑洞”现象由光束中的阴影、伪影(由光流中的电极、阴极端子和电线引起的)导致,等离子体球形状畸变是由电极和宽的制造公差引起。此外,由于电线和灯需要穿透短弧灯的反射器表面,因此反射器中设有后孔,该后孔可能会导致短弧灯的光损失。
对于便携式应用,由于短弧灯的能量消耗高,因而电池尺寸和重量成为设计缺点。
短弧灯的有效灯寿命限制在400-1000小时。此外,因为短弧灯的电极腐蚀,所以当灯外壳变黑时,可以预期到光谱输出会发生变化。唯一的解决方案是频繁地更换短弧灯。此外,短弧灯通常是大的,对于手持或移动装置大约为100cm乘以20cm,这使得它们的设计困难和麻烦。
闪光弹装置/抛射太阳装置:
眩晕手榴弹,也被称为闪光手榴弹或闪光弹,是一种非致命的爆炸装置,用于暂时迷惑敌人的感官。它被设计为产生致盲闪光和大于170分贝(dB)的强噪音“砰”,而不会造成永久性伤害。它在20世纪60年代首次开发。产生的闪光瞬间激活眼睛中的所有光感受器细胞,剥夺目标视力约五秒钟。
这类装置的示例描述于美国专利号8,161,883;8,113,689;7,191,708;和6,767,108。
这些类型的装置在封闭空间中使用。附带损害是一种高风险。这些装置的大声爆炸可能导致暂时性或永久性的听力丧失和失去平衡。虽然眩晕手榴弹被设计为非致命的,但已经报告了几起受伤事件。这些装置的缺点是它们可能使使用者以及旁观者失明,并且散布方法可能会引起火灾或爆炸危险。一些死亡和火灾归因于他们的使用。具体来说,在冲击时爆炸的磷手榴弹,产生大量噪音,明亮的白光,具有产生能够导致严重烧伤的高水平热量的缺点。
电-肌肉破坏:
据报道,从受伤到死亡,风险与电击和装备有橡胶子弹的枪支有关,如在报纸中报道的。使用非致命光避免了由于强电击装置造成的潜在的死亡风险。有批评者认为,这种类型的技术通过强加痛苦来获得服从,这违反了“1987年采用的联合国禁止酷刑和其它残忍、不人道或有辱人格的待遇或处罚公约(“酷刑公约”)”。
对于某些非致命武器来说,这个问题仍然是个令人关注的问题。“美国政府承认在特定情况下多种具体类型的滥用和虐待的继续指控,在刑事司法系统范围内存在值得关注的方面,以及充分实现“公约”的目的和目标的障碍。这些包括以下的指控和实例(在某些情况下甚至模式或惯例):-警察滥用,残暴使用和不必要或过度使用武力,包括不当使用如催泪瓦斯和化学(胡椒)喷雾器、电击枪或“眩晕枪”、眩晕带、警犬、手铐和腿部枷锁的装置和技术;……”禁止酷刑委员会出版的“禁止酷刑和其它残忍,不人道或有辱人格的待遇或处罚公约”,考虑缔约国根据公约”第十九条提交的报告(见第21页,第70段)。
因此,与现有方法相比,需要一种这样的装置,其显著降低永久性损伤的风险并增加干扰或限制一个或多个目标个体的活动的有效性。特别地,发射非致命的非相干光的装置及其使用方法(其中灯具有10,000-50,000小时的制造商额定灯寿命,相比而言短弧灯的制造商额定灯寿命为500-2,000小时)通过消除电极的存在以及消除短弧灯可能发生的腐蚀(导致灯外壳变黑)而发出更一致的光谱输出;降低生产和维护成本,因为增加的寿命预期使得不需要与短弧灯一样频繁地更换灯;与尺寸为100cm乘以20cm的短弧灯相比更小,大约3mm乘以10mm,由此能够实现构造紧凑且更结实的装置;以及产生不会损害目标的光能量,符合165个国际国家在1987年采用的联合国国际协议的宗旨。
发明内容
本发明是一种非致命的、低于致命的或次等致命的手持式、移动式或固定式光束,其使用来自无电极等离子体(EFP)光源的非相干可见白光来照亮、警告、以及暂时使之迷失方向、视觉上损害、使之眩目、光学地使之迷失方向、降低其认知能力、肌肉破坏、或以其它方式控制和限制一个或多个人,攻击者,作案者,入侵者或敌对者的行动,而不会造成永久性的伤害。
本发明的一个目的是提供基于强光的非致命的非损伤眼睛的安全装置,尤其是提供使用来自无电极光源(灯)的非相干光的非致命的、非损伤性的安全装置,通过由聚焦的明亮的可见光束产生的照亮引起视觉损害和方向障碍,以实现更大的操作距离,以及更少的能耗和更少的昼夜操作时的光学畸变。
本发明是一种非致命光定向能量武器和非致命效应器方法,其用于使用产生非相干可见光的装置对人类和动物进行观察、抑制、使之眩目、失能、光学破坏和控制,该装置由恒定或调制的EFP输出源或感应等离子体灯组成,其强度和焦距足以导致人或动物(目标)在被光束照射时发生暂时的光学破坏一段时间,而不会在所选择的交战距离处造成永久的身体伤害。
该方法利用无电极等离子体(EFP)灯,其是一种由电磁波激发的气体放电灯,将波集中在波导中,或电磁波直接激励位于波场内的填充灯泡中的发光等离子体。电磁波包括无线电(RF)以及用磁控管生成的HF能量(微波),用于为等离子体光源供能,或者它们可以是在位于由激光束激励的场内的填充灯泡中被激励的发光等离子体。
与其它非相干光源相比,无电极光源最显著优点在于将光引导到目标的光学配置具有额外的灵活性。设计人员不再需要围绕由在投射的光束路径中的电极和阴极电线引起的投影(黑洞)工作。这种EFP输出的光线几乎是完美的精确的光源,小到1到3mm,允许它根据应用需要进行聚焦和准直,而不需要围绕不需要的伪影进行设计。当使用EFP灯进行照亮和光学破坏时,每瓦输出的流明有四到十倍的提高,这允许更小的电池组和更轻的便携式设备。
该方法利用通常安装在透镜后面或反射器内的EFP灯,其可以结合镜子、透镜或组合和配置的光学系统,其中所生成的小的等离子体球最佳地位于透镜或反射器的焦点处,并且定位成对来自该灯的光进行准直使其通过窗口,并且引导光束以期望的释放角度朝向在近距离或远距离处的(多个)目标。用于光源或光学阵列或其组件的可调或固定的安装基座可以允许调节透镜、反射器和光学器件的位置,直到传送到目标的光束强度达到最佳光聚焦。该方法可以使用阵列中的一个或多个EFP装置来瞄准更远的距离处或更广的交战场中的攻击者。
本发明的设备在执法、军事、私人安全、现场急救员(first-responder)、海事和人身安全应用中得以使用。它们可以设计用于手持设计,安装在车辆和轮船上,固定式,船载和其它用途。该方法的示例性设备配置如图8至图11所示。
为了使说明简要,此处描述了本发明的某些方面、优点和新颖特征。应当理解,根据本发明的任何特定实施例不一定可以实现所有这些优点。因此,例如,本领域技术人员将认识到,本发明可以以实现本文教导的一个优点或一组优点的方式来实现或实施,而不一定实现本文教导或建议的其它优点。
附图说明
结合附图,从以下对本发明的优选实施例的详细描述中将更好地理解本发明,其中相同的附图标记表示相同的部分。
图1:人眼视杆细胞和视锥细胞对光的视网膜反应。
图2:填充有氩和金属卤化物的EFP灯的光谱输出。
图3:安装在谐振器中的EFP灯的图示图。
图4:EFP灯外壳。
图5:EFP灯启动顺序步骤1-3。
图6:典型EFP灯具的元件图。
图7:具有准直反射器的直列式EFP灯具。
图8:具有准直反射器和内部光学器件的直列式EFP灯具。
图9:安装在云台上的具有准直反射器和内部光学器件的EFP灯具。
图10:具有准直反射器和内部光学器件的直角EFP灯具。
图11:安装在云台上的八个EFP灯具的阵列。
图12:具有内置折射表面的抛物型反射器表面。
图13:透镜外侧上的折射器,其中准直透镜具有四种类型的表面。
图14:内置折射器,其中准直透镜有四种表面类型。
图15:菲涅尔透镜。
图16:(A)亮度通量破坏模式-无电极等离子灯和(B)亮度通量破坏模式-短弧灯。
图17:(A)氙短弧灯光谱和(B)EFP灯光谱。
具体实施方式
定义:除非另有定义,否则本文使用的所有术语具有与本发明所属领域技术人员通常理解的含义相同的含义。全文所披露的所有专利、专利申请和出版物通过引用整体并入。一个术语在本文中有多个定义的情况下,以本节为准。
本文所用的术语“无电极等离子体”(EFP)也指并且包括“无电极等离子体”、“无电极灯”、“感应光”和“无电极等离子体光”输出源、“气体放电灯”、“感应等离子体灯”和感应等离子体发光体,包括发光等离子体、高效等离子体、激光驱动等离子体发光体和无电极高强度放电(HID)灯,其中在灯外壳内部没有电极。
本文所用的术语“无线电波”和“射频”(RF)是指频率从300MHz到3,000GHz的电磁波,并且包括在300MHz和300GHz之间的微波。
本文所用的术语“电磁波”是指包括伽马射线、x射线、紫外光(UV)、可见光、红外光(IR)、微波和无线电波的电磁波。
本文所用的术语“光学破坏器或光学破坏”是指通过引起视觉损害、神经破坏、肌肉破坏、运动技能破坏、方向障碍、眩晕、恶心、暂时失明、夜盲、雪盲、闪光盲、刺眼、视觉效能下降、认知能力下降、失去平衡、心理物理效应、犹豫不决、视力丧失,周边视力丧失、精细和粗大运动技能的破坏(也被称为抑制、失能、眩晕和炫目),来限制目标的行动能力。
本文所用的术语“非致命”应适用于本领域和军事领域中的技术人员通常所定义和使用的术语的含义,并且包括术语“低于致命”和“次等致命”,正如执法部门,美国司法部和安全人员所使用的。
本文所用的术语“非相干光”是指不是由相干或单波长光源(例如激光或LED)产生的光。来自太阳和等离子体灯的普通光主要由许多不同波长的光波组成,并且被认为是与“相干光”相反的倾向于随机定相的非相干光,相干光中的波彼此同相,如通常在激光中发现的。
本文所用的术语“测距器”是用于估计、近似或确定从本发明的设备的等离子体源到目标的距离的任何装置。这种测量装置的示例包括电子测距仪、IR测距仪、激光测距器(LRF)、无线电波(RF)测距仪、雷达和声波测量装置。
本文所用的术语“用于确定光水平的装置”是指用于估计、近似或确定背景光水平的任何装置或用于确定目标处的光水平的装置。这种装置的一个例子是定向测光仪。
本文所用的术语“用于触发的手段”是指可用来从本发明的装置释放光束的任何方法。
本文所用的术语“刺眼”是指由于在人的视场中的明亮光源而导致的可见度状况降低的效果。这是暂时的效果,一旦光源熄灭,或远离受试者,这种效果就会消失。光源将发出在光谱的人类可见部分中的光,并且必须是连续的或闪烁的,以保持降低的可见度的刺眼效果。由刺眼引起的视力损害程度取决于光源相对于环境照明条件的亮度。缺点是攻击者仍然能够造成伤害,并且仍然可以看见。
本文涉及的术语“闪光失明”和“闪光盲”是暂时的失去或降低,以使在明亮的光源被关闭之后继续降低可见度。它在一个人的视野中看起来是一个斑点或余像,其干扰在某个或任何方向上视物的能力。这种损害的本质是使得人们难以看清物体,特别是小的对比度低的物体或者在远处的物体。视力损害的持续时间可以从几秒到几分钟。视力损害取决于初始曝光的亮度和人的视觉需要。闪光盲效果和刺眼效果之间的主要区别在于,在光源熄灭后闪光盲引起的视力损害保持一段短的时间,而由于刺眼效果导致的视力损害不能保持。
本文所涉及的术语“目标”和“攻击者”和“敌对者”是指来自本发明的装置和方法的光束意欲施加在其上的个人或动物的个体或群体。
本发明是一种用于抑制、眩晕、失能、光学破坏和控制人和动物的方法,该方法使用具有非相干可见光的装置,装置由恒定或调制的EFP光输出源和感应等离子体发光体组成,其强度和焦点足以导致人或动物(目标)在被光束照射时发生暂时的光学破坏一段时间,而不会在所选择的交战距离处造成永久的身体伤害。
本发明的设备将在执法、军事、私人安全、现场急救员以及海事和人身安全应用中得到应用。本发明的设备的实施例包括但不限于手持设计、安装在车辆和轮船上、静止或边缘固定、船载。非致命的应用将包括人群控制和反海盗行为和恐怖主义对抗措施。
该方法利用EFP灯,一种气体放电灯,其可由电磁波激励,该电磁波激励位于场中的灯泡中的发光等离子体,以激发用于控制人和动物的等离子体光源(图5)。
该方法可以利用安装在反射器内的EFP灯,结合反射器、镜子、透镜或其组合和配置的光学系统,使得生成的小的等离子体球最佳地位于光学系统的焦点并且定位成对来自灯的光进行准直使其通过窗口,并且引导光束朝向在近距离或远距离处(针对白天或夜晚操作)目标(图8、8、9和10)。
该方法允许使用者将逐渐增强的“一系列武力”应用于;1)照亮目标和周边区域以观察并确定行为;2)通过从装置发出非破坏光束并照亮目标以引起它们的注意来警告(多个)目标,作为控制、警告和联系技术,3)增强光束并调制光束输出以扰乱并阻止目标,作为低水平的服从技术,以及4)以连续或可变强度增强传送到目标的光束输出,以便以0.1至12流明/平方厘米光学地破坏(多个)目标。
本发明的一个方面是通过过度刺激一个或多个目标个体的视神经来干扰或约束的他们的活动的方法。该方法包括以下步骤:提供从容纳在装置内的无电极等离子体灯发射的高强度非相干光束,并且当一个或多个目标个体面对或偏对于装置时将高强度非相干光束引导到他/她/他们。
在本发明的这个方面的一个实施例中,无电极等离子体灯产生在200nm至1,500nm范围内的高强度非相干光束,并且具有直径小于或等于5mm的等离子体源。优选地,高强度非相干光束频率为约300nm至约900nm,约380nm至约780nm或约510nm至约560nm。无电极等离子体灯可以选自由无电极发光等离子体灯、无电极高效等离子体灯、无电极高强度放电灯、无电极激光驱动等离子体灯和无电极感应等离子体灯组成的组。高强度非相干光束以约0.1至约12流明/平方厘米,优选约0.5至约12流明/平方厘米传送至一个或多个目标个体。等离子体源等于或小于5mm,并且由等离子体产生,该等离子体通过从由激光、X射线辐射、γ射线辐射、微波辐射和射频波组成的组中选择的电磁波激发。无电极灯填充有选自由氙、氩、氪、氢、金属卤化物、钠、汞和硫组成的组中的气体。
在另一个实施例中,高强度非相干光束的输出强度以随机周期或固定周期调整。当调整为以随机周期或固定周期传输时,周期输出强度可以每秒增加和减小15次以内。
在另一个实施例中,该方法还包括对高强度非相干光束进行过滤以降低或去除低于约440nm的频率的步骤。此外,该方法还可以包括确定到一个或多个目标的距离并调整高强度非相干光束以在一个或多个目标的位置处实现所需的流明/平方厘米的步骤。在该实施例中,确定一个或多个目标处的环境光,并且调整高强度非相干光束以实现在一个或多个目标的位置处所需的流明/平方厘米。
在另一其它实施例中,无电极等离子体灯填充有具有降低的UV光发射的气体、挥发性金属或金属盐。
在其它实施例中,一个或多个目标个体是一个或多个哺乳动物、爬行动物或鸟类。优选地,一个或多个哺乳动物是一个或多个人。
本发明的另一方面是通过过度刺激视神经来干扰或约束一个或多个目标个体的活动的装置。该装置包括:具有头部的外壳体,头部具有用于透射光束的窗口;光学系统,面向窗口安装在头部中;一个或多个无电极灯,用于发射高强度非相干光束,安装在光学系统的焦点处以将光朝向窗口准直;以及用于驱动一个或多个无电极灯的电路装置。电路装置具有能量源,用于操作的到(多个)能量源的(多个)等离子体灯感应耦合器以及控件。
设备
内部EFP灯或感应发光体是一种气体放电灯,其中生成光所需的电力经由电场或磁场从灯外壳之外传递到内部的气体,这与典型的气体放电灯相反,典型的气体放电灯使用通过导体连接至电源的内部电极,该导体穿过灯外壳。消除内部电极有三个优点。
在过去,技术的可靠性受到用于生成微波的磁控管的限制。磁控管技术经改善后提供了更长的寿命。可以使用固态RF生成装置,延长使用寿命。现在使用固态芯片来生成RF比使用磁控管更昂贵,因此适用于高价值的市场定位。由固态RF驱动器生成的RF信号被引导到围绕灯泡的电场中。电场中的高度集中的能量将灯泡的内容物蒸发到灯泡中心处的等离子体状态。受控等离子体生成非常紧凑的明亮光源,其可以很容易地聚焦。
本发明的EFP光源和发生器可以集成到壳体和/或安装件中并且与适用于应用的DC电池或直接的AC源耦合。
在手持装置的一个实施例中,市售280W EFP光源和本发明的发生器可以集成到壳体和安装件中并与适用于特定应用的DC电池或直接的AC源耦合。EFP发生器配置有抛物型反射器以提供经准直的发散光束,该发散光束以1度或更小的夹角发散(见图7)。在本实施例中,本发明的装置由EFP驱动器、等离子体灯,以及相关联的光学部件、目标测距子系统和电池、功率转换和控制电子系统、以及反射器组成。在该实施例中,该装置在目标处产生1.4至10流明/平方厘米,在白天提供长达150英尺,夜间500英尺的“光学破坏”,警告能力高达1英里。
如图11所示,安装在云台上的八个1000W EFP灯的阵列具有高度准直的光学系统,晚上能在1英里或更远距离处,白天能在0.5英里或更远处产生光学破坏。该配置照亮并警告眼视界内的攻击者。
在优选实施例中,该装置由135W Topanga APL250-4000RF固态驱动器RF驱动器、同轴连接器电缆、Topanga APL 250-4000SF谐振器,以及APL250-4000等离子体灯泡、嵌入陶瓷谐振器的石英灯、和相关联的微控制器接口的组装体组成,并且由能够供应至少10安培的锂离子24伏充电电池供电(见图18)。RF同轴电缆离开RF驱动器,并且围绕透镜支撑件成螺旋形,透镜支撑件保持光学透镜就位于等离子体点光源的焦点处。由本领域普通技术人员设计的光学透镜(图13)包围等离子体光源的面,收集并准直光,并且被设计成使光线通常以0.5度的角度发散。电池定位成与谐振器和RF驱动器相邻,所有这些都被容纳在附接到谐振器的壳体中。如本领域普通技术人员也可以理解的,散热器附接到谐振器,提供对流冷却以驱散热量积聚并保持谐振器的最佳操作温度。此外,散热器附接到RF驱动器,提供对流冷却以驱散热积聚并维持驱动器的最佳操作温度。并且,光的光谱由灯外壳内的填充化学物质调整,以提供在380-780nm的光谱范围内的像太阳光一样的源输出。UV滤光器安装在光学器件前方的输出光束上方,以限制低于440nm的85%或以上的UV放射物,以满足眼睛安全。所有的光学器件都涂有抗反射涂层,以减少光传输损失。在手动模式下,光束输出可以设置为50%或100%。当切换到自动模式时,微控制器被编程为以随机模式从20%直到100%或以上改变光水平输出,导致每秒1到7次光束调制,从而避免癫痫事件。
图6是包括电源的基本示例装置,电源为AC电源到DC电源或DC电池。电源或电池为驱动器供电。示例性驱动器是固态RF放大器。该市售驱动器具有包围EFP灯的谐振器。市售的示例性RF放大器由微控制器控制以管理光输出强度。灯外壳包含气体,并且可以包含低沸点金属或金属卤化物。由RF生成的高度集中的电场使气体离子化并蒸发灯中的金属或卤化物—产生从单个点发射光的等离子体状态。
图3描绘了位于RF谐振器或微波磁控管中心的EFP灯。灯可以水平或竖直放置。
图4示出了可以使用的不同的EFP灯外壳配置。可以使用其它设计。
图5描绘了EFP灯启动顺序。步骤1描绘了首先对波驱动放大发生器施加电力,步骤2描绘了波能被施加到谐振器或磁控管,步骤3描绘了激发灯填充物以生成等离子体和光。
图7描绘了直列式(inline)EFP灯具,其具有驱动器和具有准直抛物型反射器的光源。虽然采用这种反射器配置由于仅使用反射器而造成有小部分光没有被捕获到并且由于发散而损失,但是大多数光以近似平行的光线被引导出前窗,并且在优选实施例中光分散小于1度。相对于短弧灯设计这是种改进,短弧灯设计在反射器的后部具有孔并且在该方向上也损失光。
进一步改进的配置图8是EFP灯具的直列式布局,该EFP灯具具有准直反射器和内部光学器件,内部光学器件可用于捕获几乎所有图7光学配置中可能损失的杂散光。这种布局使它成为看起来像便携式“手电筒”的手持式配置。
图9示出了安装在用于跟踪和瞄准攻击者的云台和滚转装置上的本发明的实施例。它们可以自动或手动瞄准目标,并结合自动跟踪技术来跟踪预期目标。
图10是具有准直反射器和内部光学器件的EFP灯具的直角布局。这种布局使它成为像便携式“灯笼”的手持式配置。
图11示出了作为如图11所示的单个光源或多个光源装置的EFP灯具,用于针对更远的目标提供更大的部署射程,以及如人群控制可能需要的更宽广的交战场。
图12是抛物型反射器表面的示例,其具有用于准直光源的内置折射表面和最小杂散光损失。
图13是透镜外侧上的示例性折射器,其中准直透镜具有用于准直光源的四种类型的表面和最小杂散光损失。
图14是内侧上的示例性折射器,其中准直透镜具有用于准直光源的四种表面类型和最小杂散光损失。
图15是单独的或与如图7示出的抛物型反射器组合的示例性菲涅耳透镜,适于其中考虑重量或成本的准直。
操作
当哺乳动物在暴露于高光水平的爆发时对哺乳动物光学破坏的确切机制不止是发生暂时的视力丧失。视神经构成经由颅神经和脊神经进入或离开中枢神经系统的神经数量的约40%,并传输行进到视觉皮质的大部分神经信息。视觉系统还提供用于平衡和肌肉控制的输入。
本发明传送具有足够光子含量的亮度,当光子含量被施加于目标的眼睛时,其在眼睛视网膜视杆细胞和视锥细胞中饱和,产生涌动通过视神经的化学诱导电信号。假设一部分光光学破坏反应可能是皮质下的,并且经由绕过外侧膝状体、视辐射和视觉皮质并且直接进入上丘的路径进行控制。然后,该路径经由启动运动反应的顶盖延髓和顶盖脊髓路径中继到几个脑干和脊髓核。通过所有可用路径的神经元中发起的涌动可以根据系统级感知过载解释光学破坏。
为了对人类应用最有效,所传送的最佳光谱频率范围需要覆盖眼睛内的所有视杆细胞和视锥细胞感受器频率(参见图1),用于完全视紫红质饱和与通过充满神经系统的神经元的电化学反应。对于人类光学破坏,选择以500nm到560nm的范围为中心的频率(参见图1)将在驱动电化学视紫红质反应方面最有效。对于其它动物,考虑到不同的动物光学器件,向蓝色/UV范围或红色/IR范围的偏移可能更有效。
对于夜间使用,最初需要较低的光强度,但是一旦该装置被使用,并且由于目标的瞳孔再膨胀不是瞬时的,则随后在目标上使用可能需要更多的光束强度,该强度可以增加到通常在日光条件下需要的水平。
为了应对眼睛安全考虑,本发明的优选实施例将配备有蓝色/UV滤光器,减少在该波长范围内的曝光。在确定本方法的装置的实施例设计中的最大曝光时,设计人员考虑参考“Guidelines on Limits of Exposure to Incoherent Visible and InfraredRadiation(暴露于非相干可见和红外辐射的限制指南)”Health Phys.(健康物理)105(1):74-96;2013年,国际非电离辐射防护委员会中的非相干光曝光风险研究,其同样是“Guidelines on Limits of Exposure to Broad-Band Incoherent Optical Radiation(0.38to 3μm)(暴露于宽带非相干光学辐射(0.38至3μm)限制指南)”(Health Physics(健康物理)73(3):539-554;1997年,国际非电离辐射防护委员会)参考的风险研究。本领域技术人员将认识到,本发明可以以实现本文教导的一个优点或一组优点的方式来实施或实现,而不一定实现包括本文教导或建议的安全考虑的其它优点。
众所周知,响应于闪光或频闪光源会发生生理上的方向障碍。据报道,这是由于眼睛尝试响应光水平或颜色的快速变化引起的。对于开/关的闪光,响应于到达眼睛的对比光强度,眼睛的瞳孔不断收缩和放松。不同的颜色和强度可以产生相同的效果。缺点是可能导致癫痫痉挛,以及已经被报道的永久性神经损伤。国家癫痫学会指出,“二百人中有一人左右有癫痫症,而这些人中只有3-5%的人因闪光而引起癫痫发作”。建议在实施例中通过将光强度循环率频率限制为小于每秒12来来解决该问题。
方法和装置操作的元素
通常观察到高强度光的光学破坏效应在1秒内发生。只要光束被施加于目标,被照亮的目标就被观察到暂时失去视物的能力和失去对粗大和精细运动技能的控制,因此目标被光学破坏。光学破坏可以采取下面观察到的反应中的一种或多种形式:视觉损害,光学破坏,神经破坏,运动技能破坏,方向障碍,眩晕,恶心,暂时失明,夜盲,降低认知能力,失去平衡,心理物理效应,视力丧失,周边视力丧失,精细和粗大运动技能破坏(也可以被描述为抑制,失能,击晕,击退和炫目)。
光学器件选择
在用于手持装置的本发明的优选实施例中,灯组件被提供,其包括:外壳体,外壳体带有用于被使用者抓握的手柄,壳体具有用于透射光束的窗口;壳体内的抛物型反射器,其面向窗口,窗口容纳光学器件系统;EFP灯,其经由调节器安装在抛物型反射器的焦点处;以及光学系统,用于将光束从初始直径准直,以0.5度(半角)发散到目标。
在光学上,EFP灯更加有效地在目标处提供均匀的光束,而不需要处理由光束中的阴极或阳极端子、电极、电线产生的光束投影中的伪像,即阴影,以及由电极引起的等离子体球变形。不同于电弧灯和其它含电极的灯技术,其中电极随着热量膨胀和收缩,并且影响等离子体球相对于光学器件的焦点的位置,而EFP灯不受影响。使用EFP灯,等离子体球根据灯几何形状和生成的激励磁场保持在适当的位置。EFP灯的一些例子如下:
各种光学配置可以基于应用要求和交战距离而实施于设备中,从用于近距离光学破坏交战的在灯之后除了UV滤光器之外就没有光学器件的装置,到用于长距离光学破坏交战的反射器、折射器、透镜、抗反射(AR)涂层和UV滤光器的组合,以准直光并将指定的亮度传送到目标。光管理光学系统可以单独地或组合包括:
a)等离子体源光后反射器,聚焦返回等离子体球的中心;
b)抛物型反射器表面,以准直光源;
c)菲涅尔透镜;
d)具有内置的折射表面的抛物型反射器表面,使得几乎没有来自源的光可以直接穿过灯,而不被反射器反射或被中心折射器折射;
e)在透镜外侧上的折射器,其中准直透镜具有四种类型的表面。第一表面具有非球面轮廓,并且被设计成以更小的锥角准直从EFP发射的光。第二表面是抛物面,EFP在焦点处,第二表面以大的锥角聚集和准直来自EFP的光。第三表面是EFP附近的球形段,设计成通过使光线垂直入射该表面而传入透镜。第四个是梯形表面,其最小化透镜重量,从抛物面反射的光线通过其离开而不改变方向;
f)在内侧上的折射器,其中准直透镜具有四种表面类型。第一表面是梯形平面;第二个是轴向非球面折射器;第三个是非球面反射器;第四个是将光线传送到反射器的圆柱面;
g)玻璃窗;
h)低于440nm的紫外线(UV)滤光器;
i)抗反射表面涂层;
j)光导管、光管、光纤或光波导;
k)用于泛光照明的球粒透镜或漫射器;和/或
l)红外透镜,其用于夜间监视阻挡可见光;
由于在光行进中没有电极干扰,因此光学设计人员能够使用包括菲涅尔透镜在内的几乎任何光学配置(见图12)。
由于使用透镜的传输比使用反射器的反射的效率更高,因此配有适当透镜系统的灯具可传送更好的光输出比。替代的透镜可以简单地更换,以采用相同的基本设备适应改变后的照明性能任务。
如果远程夜间监视只需要IR照明输出,则可以在光学系统中添加使用窗前方带有IR滤光器的夜视观察仪,以切除低于800nm的可见光。
如果用于近场板区域视觉照明的设备的使用需要漫射泛光,则可以向光学系统添加漫射器或球粒透镜。
如本领域技术人员将理解的,光学系统设计和光传输效率可以根据配置、光学器件质量、反射和折射损失以及包括尺寸、重量和成本的期望的设计参数而变化。
灯选择
EFP灯是一种通过射频或微波激励的气体放电灯,射频或微波激励在灯泡中的发光等离子体。灯可以被建造成具有不同的形状并竖直定位,像图4中的中间的图和右边的图,或者它们可以水平放置,使用诸如图4中的右边的图或左边的图如图5所示的外壳。除上述制造商外,定制等离子灯制造商包括KYOCERA(京瓷)国际有限公司(加利福尼亚州圣地亚哥)和Rayotek科技有限公司(加利福尼亚州圣地亚哥)。
在图5中,反射器可以安装在灯的后侧,以将光重定向到前窗,并将光聚焦返回穿过等离子体球中心(再循环光)。激励频率和灯泡填充物可以包括气体,挥发性金属和金属卤化物,它们被选择以产生针对给定应用的期望的光波长范围。对于人类光学破坏,该范围为400nm至780nm,以约510-560nm为中心(见图2)。这些灯具有随着老化的最小光谱变化,并且具有10,000或更多小时的预期寿命。
基于针对人(参见图1)或动物的期望的光谱输出、发光效率、显色性以及影响设计和性能的其它灯性质来选择灯泡填充物。
在设备设计规范包括在可见和红外发射范围二者内的光学破坏和照明的应用中,如在军事或执法中为联合使用设备所要求的,可以选择氙灯填充物。在本实施例中,由于超过50%的输入能量将用于生成红外光,所以随着光学破坏范围的相应减小,可见光的量将自然地变少。
在一个实施例中,该装置包括EFP,其具有位于反射器或光学器件的焦点处的等离子体球(接近理想的精确点光源);激励等离子体光源的电磁波RF发生器;以及用于维持所需的最佳灯温度的冷却和散热机构。
测距仪和光度计可调节的灯强度控制
传输到等离子体光源的电磁波能量的量调节灯功率输出。优选实施例结合安全控制件和相关联的光学算法,考虑目标处的环境光,其指示可能的瞳孔大小、照明亮度、警告和光学破坏,并且考虑安全性来管理光水平输出。
在优选实施例中,等离子体激发器的功率控制水平被调制以增加或减少总亮度以在小于1秒的持续时间内光学地破坏更多目标个体之一。
市售的基于IR的测距仪和光度计可以与装置的等离子体发生器的电功率控件进行接口,以调节传送到目标的光的量,从而提高其安全性。
配件
安装点,例如皮卡汀(Picatinny)轨道和1/4-20三角架安装件可以添加到设备中,以便轻松连接到记录摄像机。其它配件包括云台,用于昼夜瞄准的激光指示器,用于夜间瞄准的IR(红外)/远IR(远红外)/热观察仪,手柄和/或支撑带。
电池
当靠电池电源操作时,安装在壳体或电池上的低电池电量计指示器是优选的。该实施例可以将电池容纳在设备壳体内,附接到壳体,或者用带夹在外部安装或连接到车辆的电池。
热管理
设备可以使用传导和对流冷却技术来实现期望的灯操作温度和压力。稳定的灯外壳温度是可取的,其由选择的灯填充化学物所确定,以实现最佳的光输出特性。在一个实施例中,氩气和卤汞填充的石英灯在约800℃的温度下操作。替代的灯填充化学物可能需要蓝宝石灯以获得更好的耐腐蚀性和更高的操作温度。
等离子体灯外壳和内容物被预热以提高气体温度并蒸发灯填充材料,以使用来自由传导、对流、平流、辐射和感应加热组成的组的热源缩短灯和等离子体生成启动时间。为了预热灯气体并使金属或金属卤化物沸腾,一个优选实施例在充分施加所需的等离子体激发能量水平之前,以低功率待激发模式使用IR激光二极管或RF或初级谐振的微波能量。
壳体配置
在图7、8、9、10和11中示出示例配置。用于手持式、安装在车辆上的,安装在船上的和固定安装式的最佳配置,以及阵列和运动控制装置(例如,云台)的使用可根据设计要求而有所不同。由于本发明可以利用任何尺寸的灯,并且可以从一个扩展到无限大小的阵列中多个,因此100,000W及以上的规模是可能的。本领域技术人员将认识到,本发明可以以实现本文教导的一个优点或一组优点的方式实施或实现,而不一定实现本文可教导或建议的其它优点。
EFP灯的优点
1.延长灯的寿命
EFP灯的寿命被延长了,从短弧灯的500到1000小时,到优选实施例中的EFP灯的10,000小时以上。通常,内部电极由于腐蚀和灯外壳内侧上的不希望的金属沉积物而成为灯寿命的限制因素,它降低了光输出,改变了焦点,并导致等离子体球的大小增加,随着包含电极的灯的老化,这些全成为传送到目标的光的量的阻碍。此外,随着电极磨损,光源球不再能够被视为点源,因为其尺寸增长,强度减小并且较不集中,从而不利地影响来自光学器件的投射光的量。这在EFP灯装置的使用寿命内大大降低了该装置的装置维护成本。
2.更灵活的灯化学物
由于与电极或密封件的化学相互作用被消除,因此EFP灯提供在选择灯填充化学物上的灵活性。这允许这种方法的装置的设计人员有机会调整光谱输出以针对特定目标(即人,狗,猫,鳄鱼等)优化性能。更具体地说,灯外壳可以由诸如蓝宝石的各种抗化学材料构成,以允许更容易改变的各种气体、挥发性金属或金属卤化物化学物,为不同的应用和双用途(例如,如IR照明)提供期望的光谱输出。
EFP灯效率极高并且产生60至150流明/瓦或更多,传送与短弧灯相同的光学破坏能力,将所需功率D的量(电池尺寸)减少4至10倍。此外,与短弧灯相比,EFP灯源具有更高的流明密度(来自一个装置的光量)数量级。
3.抗冲击伤害
EFP灯因其尺寸和质量较小而更能抵抗G力,因此允许设计人员能够设计更紧凑的壳体和光学系统。小的源还允许灯具利用超过90%的可用光,而典型的HID配件则利用55%的可用光。
4.更高的输出效率
由于效率和寿命与LED相当,因此EFP灯具可以设计成具有来自小的等离子体球的更好的光集中,并且因此对于照明和光学破坏比LED和HID EFP发光体具有更好的准直和聚焦能力,是一种在将光投影到目标方面超过短弧灯技术的技术,灯寿命显著增加至与LED相当。EFP发光体是一种固态高强度光源,为非致命的光学破坏带来高效的照明解决方案。与在目标处的其它照亮技术相比,它节能、持久、全光谱并且更亮。
5.降低的成本
与其它技术相比,用于低功耗和短距离装置的成本相对较低。特别地,EFP源提供更低的寿命成本,节省能源和维护,从而获得巨大的投资回报并降低总拥有成本。
6.优秀的光学系统准直能力
EFP灯在光束路径中没有阴影或伪影(即,消除“黑洞”),如图16(A)和(B)所示。
图16(A)描绘了EFP灯的光图案,示出紧密的等离子体球,即在投影方向上发出全部光的光点。图16(B)描绘了典型的短弧灯,其发出的光图案在灯的长度方向上具有黑洞或阴影。
与短弧灯不同(图16(B)),EFP灯在等离子体源和目标之间没有光学障碍。EFP灯产生几乎完美的点光源。这为设计人员提供了使用反射器和光学透镜对光束进行准直和成形的能力,因为光束路径中没有阴极或阳极电线阴影、灯阴影,无电极、电线或伪影,这对于短弧灯是不实际的。本领域技术人员将了解消除“黑洞”的设计意义。
EFP球光源的更小的、更紧凑和更加球面的特性显著提高了光学系统的准直设计能力,创造出更长距离、更高强度的光束。
7.紧凑
小尺寸的EFP灯有利于更紧凑的装置,并允许将光学器件定位成更靠近等离子体球源,见表1。
表1
短弧灯泡 EFP灯泡
75W=90mm×13mm 135W=20mm×10mm直径
300W=175mm×25mm 235W=20mm×10mm直径
500W=234mm×29mm 470W=20mm×10mm直径
8.更好的光源位置
六个短弧灯中有五个被制造带有足够偏离轴线的电极,导致在使用反射器时可用于准直的光的损失,或者它们需要精细的定位调节以将电极定位到期望的焦点。使用EFP灯,由于微波磁控管或RF谐振器的定心物理性质,等离子体球自动居中。
9.高效的光输出
可以观察到,对于150W氙短弧灯所使用的相同的功率,EFP灯将生成3到4倍的光,参见表2。或者,对于相同的发光输出,EFP灯的功耗大约是短弧灯的1/3。除了节能,对于便携式电池应用,这种显著降低的功耗相当于小的电池容量需求,减小的电池尺寸和更轻的重量,是军事和执法装置的关键设计因数。
表2
短弧灯 EFP灯
150W=2,700lm 135W=10,500lm
235W=21,000lm
500W=16,000lm 470W=44,000lm
由于EFP灯的能量转换是75流明/瓦,或结合其它光学优点更佳,因此使用相同尺寸和重量的设备能够实现更大的光学破坏距离,与使用短弧灯的装置相比,相同的功耗和设备封装尺寸能够实现多达十倍的更远距离的目标光学破坏能力。
10.优秀的调节比
EFP灯输出可以被削减到额定输出的20%,而短弧灯只能被调低到其额定输出的50%。这使使用者和设计人员在使用EFP灯时操作更加灵活。
11.最佳光谱输出
人眼的光谱范围约为380-750nm。从上面的光谱图(图17)可以看出,氙短弧灯产生大量的在红外范围内的能量,这对于过度刺激视神经是无用的。因此,图17中的优选金属卤化物EFP灯更加有效,浪费更少的能量。
12.最小化热管理
选择适当的金属卤化物气体填充的EFP灯不会生成大量的红外能量,因此与短弧灯相比,需驱散的热量少得多,从而最小化热管理冷却要求。与短弧灯所需的强制空气冷却相比,EFP灯设计的热管理散热可以通过简单的对流翅片散热器来实现。
13.易于管理的电磁干扰(EMI)
短弧灯在点火时从来自点火器的电弧灯电极和横跨电极的初始火花生成电磁波。短弧灯需要全面的屏蔽,屏蔽将在光束的方向上发出不想要的EMI。通过使用微处理器将频率扩展到一个范围以减少EMI并符合EMI规定,EFP灯的EMI更容易控制。
14.调制(调光方式)光输出
艾森伯格教导使用电子脉冲来暂时增加来自短弧灯的光输出。这种增加到电极的电流具有增加电极磨损(即侵蚀)的缺点,大大降低灯寿命,并且增加在灯外壳内侧上的金属沉积的可能性,金属沉积会遮蔽生成的光强度和光质量。由RF驱动的EFP灯没有这个问题,因为没有电极被腐蚀,并且不需要脉冲来实现光束强度的调制。
用途
RF操作模式:
1)将装置连接到电池,而不是外部电源
2)EFP灯启动顺序步骤:
a.断开/接通加热开关;
b.通过向RF波驱动放大发生器施加电力来启动“加热模式”RF;
c.选择白天或夜晚操作(手动选择,如果需要,根据光度计和距离确定,以确定光束强度);
d.将初始波能施加到RF谐振器;以及
e.增加RF波能量以激发灯泡填充物以生成等离子体光源。
3)调制RF波,以增加或减少等离子体光源强度,实现所寻求的光学破坏(预编程或基于计算的目标距离和光水平)。
4)将装置瞄准目标的眼睛。
5)根据需要监控电池电量计。
虽然已经根据某些实施例和示例描述了前述发明,但是通过本文的公开内容,其它实施例对于本领域普通技术人员来说将是显而易见的。此外,所描述的实施例仅仅是作为示例提出的,并不意图限制本发明的范围。实际上,在不脱离本发明精神的情况下,本文描述的新颖方法和系统可以以各种其它形式实现。因此,鉴于本文的公开内容,其它组合、省略、替换和修改对于本领域技术人员来说将是显而易见的。因此,本发明非意图受到示例或优选实施例的限制。所附权利要求书提供了示例性权利要求并且其等同物意在涵盖落入本发明的范围和精神内的形式或修改。

Claims (20)

1.一种用于通过过度刺激一个或多个目标个体的视神经来干扰或约束所述目标个体的活动的方法,所述方法包括以下步骤:
提供高强度非相干光束,所述高强度非相关光束发射自内设于装置中的无电极等离子体灯;以及
当所述目标个体面对或偏对所述装置时,将所述高强度非相干光束引导到所述一个或多个目标个体,从而过度刺激所述目标个体的视神经并干扰或约束所述目标个体的活动。
2.根据权利要求1所述的方法,其中所述无电极等离子体灯产生在200nm至1,500nm范围内的高强度非相干光束。
3.根据权利要求1所述的方法,其中,所述无电极等离子体灯选自由无电极发光等离子体灯、无电极高效等离子体灯、无电极高强度放电灯、无电极激光驱动等离子体灯和无电极感应等离子灯组成的组。
4.根据权利要求1所述的方法,其中所述高强度非相干光束是由直径小于或等于5mm的等离子体源产生的。
5.根据权利要求1所述的方法,其中所述高强度非相干光束以约0.1至约12流明/平方厘米传送到所述一个或多个目标个体。
6.根据权利要求1所述的方法,其中所述高强度非相干光束以约0.5至约12流明/平方厘米传送到所述一个或多个目标个体。
7.根据权利要求1所述的方法,其中所述高强度非相干光束频率为约380nm至约780nm。
8.根据权利要求1所述的方法,其中所述高强度非相干光束频率为约510nm至约560nm。
9.根据权利要求1所述的方法,其中所述高强度非相干光束频率为约300nm至约900nm。
10.根据权利要求1所述的方法,其中所述高强度非相干光束是由通过电磁波激发的等离子体产生的,所述电池波选自由激光、x射线辐射、γ射线辐射、微波辐射和射频波组成的组。
11.根据权利要求1所述的方法,其中所述无电极灯填充有选自由氙、氩、氪、氢、金属卤化物、钠、汞和硫组成的组的气体。
12.根据权利要求1所述的方法,其中所述高强度非相干光束的输出强度以随机周期或固定周期调整。
13.根据权利要求12所述的方法,其中所述输出强度每秒增加或减少小于15次。
14.根据权利要求1所述的方法,还包括对所述高强度非相干光束进行过滤以减少或去除低于约440nm的频率的步骤。
15.根据权利要求1所述的方法,其中所述无电极等离子体灯填充有具有减少的UV光发射的气体、挥发性金属或金属盐。
16.根据权利要求1所述的方法,还包括确定到所述一个或多个目标的距离并调整所述高强度非相干光束以在所述一个或多个目标处实现每平方厘米所需流明的步骤。
17.根据权利要求1所述的方法,还包括确定所述一个或多个目标处的环境光,并且调整所述高强度非相干光束以在所述一个或多个目标处实现每平方厘米所需流明的步骤。
18.根据权利要求1的方法,其中所述一个或多个目标个体是一个或多个哺乳动物、爬行动物、鸟或鱼。
19.根据权利要求18的方法,其中所述一个或多个哺乳动物是一个或多个人。
20.一种用于通过过度刺激一个或多个目标个体的视神经来干扰或约束所述目标个体的活动的装置,所述装置包括:
外壳体,所述外壳体具有头部,所述头部具有用于透射光束的窗口;
光学系统,所述光学系统面向所述窗口安装在所述头部中;
一个或多个无电极灯,所述一个或多个无电极灯用于发射高强度非相干光束,安装在所述光学系统的焦点处,以朝向所述窗口准直光;
用于驱动一个或多个无电极灯的电路装置;
其中所述电路具有能量源,用于操作的到所述能量源的等离子体灯感应耦合器和控件。
CN201580063971.3A 2014-09-24 2015-09-15 无电极等离子体灯光学破坏 Pending CN107004336A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201414495748A 2014-09-24 2014-09-24
US14/495,748 2014-09-24
PCT/US2015/050083 WO2016048708A1 (en) 2014-09-24 2015-09-15 Electrode-free plasma lamp optical disruption

Publications (1)

Publication Number Publication Date
CN107004336A true CN107004336A (zh) 2017-08-01

Family

ID=55581815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580063971.3A Pending CN107004336A (zh) 2014-09-24 2015-09-15 无电极等离子体灯光学破坏

Country Status (5)

Country Link
JP (1) JP2018503043A (zh)
KR (1) KR20170058433A (zh)
CN (1) CN107004336A (zh)
CA (1) CA2958430A1 (zh)
WO (1) WO2016048708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637796A (zh) * 2020-06-05 2020-09-08 济南晶众光电科技有限公司 一种大范围强光脉冲眩目器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018008662A1 (de) 2018-11-02 2020-05-07 Diehl Stiftung & Co. Kg Verfahren zum Betreiben eines elektronischen Blendkörpers und elektronischer Blendkörper
KR102139670B1 (ko) * 2020-03-04 2020-07-30 국방과학연구소 레이저 대즐링 효과도 측정 장치 및 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072342A (en) * 1990-02-16 1991-12-10 Minovitch Michael Andrew Light gun
US6476557B1 (en) * 1997-05-21 2002-11-05 Fusion Lighting, Inc. Non-rotating electrodeless lamp containing molecular fill
CN1510715A (zh) * 2002-12-24 2004-07-07 Lg电子株式会社 无电极灯装置的灯泡
US20050243324A1 (en) * 2004-03-24 2005-11-03 General Dynamics Advanced Information Systems, Inc. Entangled photon spectroscopy for stand-off detection and characterization
US20080002395A1 (en) * 2006-06-30 2008-01-03 Todd Eisenberg Incapacitating high intensity incoherent light beam
US20080216699A1 (en) * 2007-03-08 2008-09-11 Nanohmics, Inc. Non-lethal projectile for disorienting adversaries
CN101439931A (zh) * 2007-11-21 2009-05-27 肖特股份公司 用于具有外置接点或内置接点的发光体的不含碱金属的铝硼硅酸盐玻璃
US20100134008A1 (en) * 2008-06-25 2010-06-03 Topanga Technologies, Inc. Electrodeless lamps with grounded coupling elements and improved bulb assemblies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767108B1 (en) * 2002-12-10 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Non-lethal flash grenade
US7220957B2 (en) * 2004-01-05 2007-05-22 Er2S, Inc. High intensity photic stimulation system with protection of users
US8567980B2 (en) * 2006-06-30 2013-10-29 Todd Eisenberg Incapacitating high intensity incoherent light beam
US8629616B2 (en) * 2011-01-11 2014-01-14 Topanga Technologies, Inc. Arc tube device and stem structure for electrodeless plasma lamp

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072342A (en) * 1990-02-16 1991-12-10 Minovitch Michael Andrew Light gun
US6476557B1 (en) * 1997-05-21 2002-11-05 Fusion Lighting, Inc. Non-rotating electrodeless lamp containing molecular fill
CN1510715A (zh) * 2002-12-24 2004-07-07 Lg电子株式会社 无电极灯装置的灯泡
US20050243324A1 (en) * 2004-03-24 2005-11-03 General Dynamics Advanced Information Systems, Inc. Entangled photon spectroscopy for stand-off detection and characterization
US20080002395A1 (en) * 2006-06-30 2008-01-03 Todd Eisenberg Incapacitating high intensity incoherent light beam
US20080216699A1 (en) * 2007-03-08 2008-09-11 Nanohmics, Inc. Non-lethal projectile for disorienting adversaries
CN101439931A (zh) * 2007-11-21 2009-05-27 肖特股份公司 用于具有外置接点或内置接点的发光体的不含碱金属的铝硼硅酸盐玻璃
US20100134008A1 (en) * 2008-06-25 2010-06-03 Topanga Technologies, Inc. Electrodeless lamps with grounded coupling elements and improved bulb assemblies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637796A (zh) * 2020-06-05 2020-09-08 济南晶众光电科技有限公司 一种大范围强光脉冲眩目器

Also Published As

Publication number Publication date
CA2958430A1 (en) 2016-03-31
JP2018503043A (ja) 2018-02-01
WO2016048708A1 (en) 2016-03-31
KR20170058433A (ko) 2017-05-26

Similar Documents

Publication Publication Date Title
US7866082B2 (en) Incapacitating high intensity incoherent light beam
US6190022B1 (en) Enhanced non-lethal visual security device
EP0846240B1 (en) Eye safe laser security device
US7232240B2 (en) Extended source laser illuminator
US8419213B1 (en) LED-based incapacitating apparatus and method
US20060234191A1 (en) Auto-aiming dazzler
US7794102B2 (en) LED dazzler
US8721105B2 (en) Incapacitating high intensity incoherent light beam
US9857149B2 (en) Light-based incapacitating apparatus and method
US20180252506A1 (en) Electrode-Free Plasma Lamp Optical Disruption
US8051761B1 (en) System and methods for broad area visual obscuration
CN107004336A (zh) 无电极等离子体灯光学破坏
RU2562385C1 (ru) Способ обеспечения орнитологической безопасности аэропорта и устройство для его осуществления
Toet et al. Optical countermeasures against CLOS weapon systems
GB2573827A (en) Laser Shield Device
JP2022069695A (ja) 眼の破壊もしくは中断および視覚無能力化のための高照度ルミネセンス光
CN2709912Y (zh) 非杀伤性激光眩目器
CN204188067U (zh) 多功能激光一体化电警棍
WO2011130649A1 (en) Dazer laser blur - laser/aerosol weapon
Richardson Evaluation and design of non-lethal laser dazzlers utilizing microcontrollers
RU92713U1 (ru) Инфракрасный прожектор для легкобронированной военной техники
RU2327943C2 (ru) Лазерная система засветки и целеуказания
WO2017189136A1 (en) Scanning illuminator and optical incapacitation method and apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170801

WD01 Invention patent application deemed withdrawn after publication