CN106995684A - 纳米材料的应用 - Google Patents

纳米材料的应用 Download PDF

Info

Publication number
CN106995684A
CN106995684A CN201610053093.3A CN201610053093A CN106995684A CN 106995684 A CN106995684 A CN 106995684A CN 201610053093 A CN201610053093 A CN 201610053093A CN 106995684 A CN106995684 A CN 106995684A
Authority
CN
China
Prior art keywords
acid
self
nano material
cleaning
diverting acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610053093.3A
Other languages
English (en)
Inventor
黄静
王宝峰
蒋廷学
卫然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Original Assignee
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Research Institute of Petroleum Engineering filed Critical China Petroleum and Chemical Corp
Priority to CN201610053093.3A priority Critical patent/CN106995684A/zh
Publication of CN106995684A publication Critical patent/CN106995684A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/032Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/74Eroding chemicals, e.g. acids combined with additives added for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Detergent Compositions (AREA)

Abstract

本发明涉及纳米材料在清洁自转向酸中的应用,特别是用于在清洁自转向酸体系的制备中降低表面活性剂用量。所述应用包括将纳米材料分散于分散助剂中,形成混合液;将该混合液加入到清洁自转向酸中,其中所述清洁自转向酸为含有酸和表面活性剂的水溶液。本发明将纳米材料应用到清洁自转向酸中,有效降低了清洁自转向酸中表面活性剂的用量,且同时能保持流体的黏度,在降低成本和提高清洁自转向酸的综合性能方面具有潜在的应用价值。

Description

纳米材料的应用
技术领域
本发明涉及一种纳米材料的应用。
背景技术
清洁自转向酸是一种基于粘弹性表面活性剂的转向酸液体系(TheVisco-Elastic Surfactant based acid,简称VES),又叫清洁自转向酸液体系(ClearSelf-Diverting Acid,简称CDA或者SDA),它以粘弹性表面活性剂为酸液体系添加剂。因其对地层无伤害,有文献称其为“清洁转向酸”;又因其可以在井下地层(就地)随着酸化反应的进行自动增大粘度,起到转向酸化作用,而不需要交联剂,因此又被称作“自转向酸”,或者“就地转向酸液体系(In situ DivertingAcid)”。
清洁自转向酸中的主要成分之一的表面活性剂是导致清洁自转向酸抗温性能差的主要原因,加上清洁自转向酸本身具有很强的酸性,能与大多数物质反应,因此很难进一步提高其耐温性能,无法实现高温深层勘探开发压裂改造的需要。纳米材料由于其自身独特的性能,是一种性能非常优异的新材料,它在油气田的开发方面有广泛的用途,并且用途效果极其明显。例如在驱油、钻井、降压增注、封堵、稠油降粘、固井、油田管道防腐和油田污水处理等方面都得到了广泛研究和用途。目前纳米材料在清洁自转向酸方面的研究国内还没有报道。
发明内容
鉴于现有技术的状况,本发明的目的是利用纳米材料独特的小尺寸效应和表面效应,将其应用到清洁自转向酸中,制备新型纳米清洁自转向酸体系,可以降低清洁自转向酸中表面活性剂的用量,同时能够保持流体的粘弹性,有望大大降低清洁自转向酸的成本。
本发明提供的是纳米材料在清洁自转向酸体系中的应用。
根据本发明的优选实施方式,所述纳米材料用于在清洁自转向酸体系的制备中降低表面活性剂用量。
根据本发明的优选实施方式,所述应用包括:将纳米材料分散于分散助剂中,形成混合液;将该混合液加入到清洁自转向酸中,形成清洁自转向酸体系,其中所述清洁自转向酸为含有酸和表面活性剂的水溶液。
根据本发明的优选实施方式,所述纳米材料选自金属氧化物、金属氢氧化物和非金属氧化物中的至少一种,优选选自MgC2O4、Al(OH)3、γ-Al2O3、SiO2、TiO2和ZnO中的至少一种。根据本发明的优选实施方式,所述纳米材料的粒径为0.5-100nm,优选为0.5-50nm,更优选为0.5-30nm。所述纳米材料可以采用本领域公知的液相化学法合成或者商购获得。
根据本发明的优选实施方式,所述分散助剂为水溶性液态三元醇CnH2n-1(OH)3,其中3≦n≦6,优选丙三醇、丁三醇和戊三醇中的至少一种,更优选丙三醇和丁三醇中的至少一种。
根据本发明的优选实施方式,纳米材料的质量(以克计)与分散助剂的体积(以体积计)之比为1:1至1:50(g/mL),优选为1:2至1:40(g/mL),更优选为1:3至1:30(g/mL)。
根据本发明的优选实施方式,所述分散助剂与组所述清洁自转向酸的体积比为1:10至7:10(g/mL);纳米材料的质量(以克计)与所述清洁自转向酸的体积(以体积计)之比为0.1:40至8:40(g/mL)。
根据本发明的优选实施方式,所述表面活性剂选自市售FRK-VDA-L表面活性剂;所述酸为无机酸,优选为HCl。
根据本发明的优选实施方式,所述清洁自转向酸体系中,表面活性剂的质量百分含量小于10wt%,优选小于8wt%,更优选为小于5wt%。
本发明将纳米材料应用到清洁自转向酸体系中,有效降低了清洁自转向酸体系中表面活性剂的用量,且同时能保持流体的黏度,在降低成本和提高清洁自转向酸的综合性能方面具有潜在的应用价值。
附图说明
图1显示对比例1未使用纳米材料的清洁自转向酸在60℃和170s-1剪切速率下的黏度。
图2显示实施例1使用SiO2纳米材料的清洁自转向酸在60℃和170s-1剪切速率下的黏度。
图3显示实施例2使用TiO2纳米材料的清洁自转向酸在60℃和170s-1剪切速率下的黏度。
图4显示实施例3使用γ-Al2O3纳米材料的清洁自转向酸在60℃和170s-1剪切速率下的黏度。
说明:图中□表示黏度,△表示温度,○表示剪切速率,横坐标表示时间
具体实施方式
下面通过实施例并结合附图对本发明做进一步的说明。
FRK-VDA-L表面活性剂、助排剂、缓蚀剂、铁离子稳定剂均从北京佛瑞克技术发展有限公司购得;纳米材料SiO2、γ-Al2O3和纳米TiO2均采用本领域公知的液相合成法获得;其他材料若无特殊说明,均为普通商购获得。
对比例1
在流变仪样品杯中加满FRK-VDA-L型清洁自转向酸后,对样品加热。同时转子以剪切速率170s-1转动,控制升温速度为3℃/min±0.2℃/min至测试温度60℃±0.3℃,并且在整个试验过程中保持这个温度,评价新型清洁自转向酸体系的耐温耐剪切能力和高温下的流变性,所得的黏度曲线如图1所示。没有纳米材料的情况下,此浓度的清洁自转向酸的粘度在测试温度保持在60mPa·s左右。
FRK-VDA-L型清洁自转向酸主要由FRK-VDA-L表面活性剂、浓盐酸、缓蚀剂、铁稳剂和助排剂依一定的顺序混配均匀而成,组成如表1所示。
表1
备注:表面活性剂原液FRK-VDA-L有效浓度为25%;浓盐酸A.R有效浓度36%。
实施例1
将纳米SiO2分散于5ml丙三醇中,然后加入到40ml的FRK-VDA-L型清洁自转向酸中,通过加水将表面活性剂的含量调整为4.0wt%,形成新型的纳米清洁自转向酸体系。在流变仪样品杯中加满此种清洁自转向酸体系后,对样品加热。同时转子以剪切速率170s-1转动,控制升温速度为3℃/min±0.2℃/min至测试温度60℃±0.3℃,并且在整个试验过程中保持这个温度,评价新型清洁自转向酸体系的耐温耐剪切能力和高温下的流变性,所得的黏度曲线如图2所示。可以看到流体能够在60℃保持50mPa·s以上。
实施例2
将纳米TiO2分散于5ml丙三醇中,然后加入到40ml的FRK-VDA-L型清洁自转向酸中,通过加水将表面活性剂的含量调整为4.0wt%,形成新型的纳米清洁自转向酸体系。在流变仪样品杯中加满此种清洁自转向酸后,对样品加热。同时转子以剪切速率170s-1转动,控制升温速度为3℃/min±0.2℃/min至测试温度60℃±0.3℃,并且在整个试验过程中保持这个温度,评价新型清洁自转向酸体系的耐温耐剪切能力和高温下的流变性,所得的黏度曲线如图3所示。可以看到流体能够在60℃保持60mPa·s以上。
实施例3
将纳米γ-Al2O3分散于5ml丙三醇中,然后加入到40ml的FRK-VDA-L型清洁自转向酸中,通过加水将表面活性剂的含量调整为3.0wt%,形成新型的纳米清洁自转向酸体系。在流变仪样品杯中加满此种清洁自转向酸体系后,对样品加热。同时转子以剪切速率170s-1转动,控制升温速度为3℃/min±0.2℃/min至测试温度60℃±0.3℃,并且在整个试验过程中保持这个温度,评价新型清洁自转向酸体系的耐温耐剪切能力和高温下的流变性,所得的黏度曲线如图4所示。可以看到流体能够在60℃保持40-50mPa·s左右。
表2实施例1-3所用的纳米材料的粒径和BET比表面积
实施例1-3和对比例1的清洁自转向酸体系的耐温耐剪切能力和高温下的流变性测试结果表明加入纳米材料能有效降低清洁自转向酸中表面活性剂的用量,同时可以保持清洁自转向酸的黏度。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.纳米材料在清洁自转向酸体系中的应用。
2.根据权利要求1所述的应用,其特征在于,所述纳米材料用于在清洁自转向酸体系的制备中降低表面活性剂用量。
3.根据权利要求1或2所述的应用,其特征在于,其包括:将纳米材料分散于分散助剂中,形成混合液;将该混合液加入到清洁自转向酸中,形成所述清洁自转向酸体系,其中所述清洁自转向酸为含有酸和表面活性剂的水溶液。
4.根据权利要求1-3中任一项所述的应用,其特征在于,所述纳米材料选自金属氧化物、金属氢氧化物和非金属氧化物中的至少一种,优选选自MgC2O4、Al(OH)3、γ-Al2O3、SiO2、TiO2和ZnO中的至少一种。
5.根据权利要求1-4中任一项所述的应用,其特征在于,所述纳米材料的粒径为0.5-100nm,优选为0.5-50nm,更优选为0.5-30nm。
6.根据权利要求3-5中任一项所述的应用,其特征在于,所述分散助剂为水溶性液态三元醇CnH2n-1(OH)3,其中3≦n≦6,优选丙三醇、丁三醇和戊三醇中的至少一种,更优选丙三醇和丁三醇中的至少一种。
7.根据权利要求3-6中任一项所述的应用,其特征在于,纳米材料的质量与分散助剂的体积之比为1:1至1:50(g:mL),优选为1:2至1:40(g:mL),更优选为1:3至1:30(g:mL)。
8.根据权利要求3-7中任一项所述的应用,其特征在于,所述分散助剂与所述清洁自转向酸的体积之比为1:10至7:10;所述分散助剂与所述水溶液的体积比为1:10至7:10;纳米材料的质量与所述清洁自转向酸的体积之比为0.1:40至8:40(g:mL)。
9.根据权利要求3-8中任一项所述的应用,其特征在于,所述表面活性剂选自FRK-VDA-L表面活性剂;所述酸为无机酸,优选为HCl。
10.根据权利要求3-9中任一项所述的应用,其特征在于,所述清洁自转向酸体系中,表面活性剂的质量百分含量小于10wt%,优选为小于8wt%,更优选为小于5wt%。
CN201610053093.3A 2016-01-26 2016-01-26 纳米材料的应用 Pending CN106995684A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610053093.3A CN106995684A (zh) 2016-01-26 2016-01-26 纳米材料的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610053093.3A CN106995684A (zh) 2016-01-26 2016-01-26 纳米材料的应用

Publications (1)

Publication Number Publication Date
CN106995684A true CN106995684A (zh) 2017-08-01

Family

ID=59428478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610053093.3A Pending CN106995684A (zh) 2016-01-26 2016-01-26 纳米材料的应用

Country Status (1)

Country Link
CN (1) CN106995684A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644151A (zh) * 2008-07-25 2010-02-10 贝克休斯公司 用于井下地层处理的多功能纳米颗粒
CN101735787A (zh) * 2009-12-22 2010-06-16 上海大学 一种基于纳米材料的水基油田增注剂及其制备方法
CN103387827A (zh) * 2012-05-09 2013-11-13 中国石油化工股份有限公司 纳米材料缔合清洁压裂液体系及其在油气田中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644151A (zh) * 2008-07-25 2010-02-10 贝克休斯公司 用于井下地层处理的多功能纳米颗粒
CN101735787A (zh) * 2009-12-22 2010-06-16 上海大学 一种基于纳米材料的水基油田增注剂及其制备方法
CN103387827A (zh) * 2012-05-09 2013-11-13 中国石油化工股份有限公司 纳米材料缔合清洁压裂液体系及其在油气田中的应用

Similar Documents

Publication Publication Date Title
Ali et al. Potential application of low-salinity polymeric-nanofluid in carbonate oil reservoirs: IFT reduction, wettability alteration, rheology and emulsification characteristics
Kumar et al. Impact of anionic surfactant on stability, viscoelastic moduli, and oil recovery of silica nanofluid in saline environment
US11254857B2 (en) Stabilized nanoparticle compositions comprising ions
Al-Muntasheri et al. Nanoparticle-enhanced hydraulic-fracturing fluids: A review
Franco et al. Field Applications of nanotechnology in the oil and gas industry: Recent advances and perspectives
Li et al. Review on enhanced oil recovery by nanofluids
Gomari et al. New insights into application of nanoparticles for water-based enhanced oil recovery in carbonate reservoirs
US20180362834A1 (en) Compositions And Methods For Treating Subterranean Formations
Betancur et al. Development of composite materials based on the interaction between nanoparticles and surfactants for application in chemical enhanced oil recovery
MX2014009562A (es) Nuevos fluidos de perforacion que contienen nanoparticulas para atenuar la perdida de fluido.
NO20150532A1 (en) Emulsified acid with hydrophobic nanoparticulate for well stimulation
He et al. Minimizing surfactant adsorption using polyelectrolyte based sacrificial agent: a way to optimize surfactant performance in unconventional formations
JP2020532627A (ja) 増強された高温架橋破砕流体
Nasr et al. Effect of carbon-based and metal-based nanoparticles on enhanced oil recovery: A review
Giraldo Janus nanoparticles for enhanced oil recovery EOR: reduction of interfacial tension
Shahrabadi et al. Experimental investigation of the adsorption process of the surfactant-nanoparticle combination onto the carbonate reservoir rock surface in the enhanced oil recovery (EOR) process
Manshad et al. Green synthesise of CuO@ Fe3O4@ Xantan nanocomposites and its application in enhanced oil recovery by considering IFT and wettability behaviours
Kumar et al. Comparative effectiveness of thermal stability and rheological properties of nanofluid of SiO2–TiO2 nanocomposites for oil field applications
Kazemzadeh et al. Optimization of Fe3O4/Chitosan nanocomposite concentration on the formation and stability of W/O emulsion
US20140305651A1 (en) Hydraulic Fracturing Composition
Sidaoui et al. Viscoelastic properties of novel emulsified acid using waste oil: effect of emulsifier concentration, mixing speed and temperature
López et al. Cardanol/SiO2 nanocomposites for inhibition of formation damage by asphaltene precipitation/deposition in light crude oil reservoirs. part ii: nanocomposite evaluation and coreflooding test
CA2780680A1 (en) Compositions and methods to stabilize acid-in-oil emulsions
Mohyaldinn et al. Stability, Rheological Behavior, and pH Responsiveness of CTAB/HCl Acidic Emulsion: Experimental Investigation
Maleki et al. Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170801

RJ01 Rejection of invention patent application after publication