CN1069775A - 铌钛铝系金属间化合物耐热高温材料 - Google Patents

铌钛铝系金属间化合物耐热高温材料 Download PDF

Info

Publication number
CN1069775A
CN1069775A CN 91111952 CN91111952A CN1069775A CN 1069775 A CN1069775 A CN 1069775A CN 91111952 CN91111952 CN 91111952 CN 91111952 A CN91111952 A CN 91111952A CN 1069775 A CN1069775 A CN 1069775A
Authority
CN
China
Prior art keywords
alloy
temperature
tial
base
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 91111952
Other languages
English (en)
Other versions
CN1023133C (zh
Inventor
陈国良
张卫军
孙祖庆
王沿东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN 91111952 priority Critical patent/CN1023133C/zh
Publication of CN1069775A publication Critical patent/CN1069775A/zh
Application granted granted Critical
Publication of CN1023133C publication Critical patent/CN1023133C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种Nb-Ti-Al系金属间化合物 耐热高温材料,其特征是化学成分为Al:28— 34wt%,Nb:16—40wt%,Y:0—0.8wt%,Ga:0— 5wt%,Mn:0—4wt%,Hf:0—10wt%。余量为Ti。 其优点在于该合金材料具有与TiAl基及Ti3Al基合 金相近的密度ρ=4.0—4.7g/cm3,并具有一定的室 温韧性;在1100℃抗氧化性较TiAl合金提高约一个 数量级、屈服强度约为350—530CMPa,800℃屈服 强度可达750MPa,即相应的高温比强度明显优于 TiAl基合金及Ni基高温合金。

Description

该发明涉及的是耐高温Nb-Ti-Al系合金,该合金具有明显优异的高温强度及高温抗氧化性、较低密度和一定的室温韧性,其极限使用温度明显高于现有Ni基高温合金。
高温材料应具有低密度、高温高强度及良好高温抗氧化等特征,目前已发展的高温结构用合金主要有:常规高温合金、Ti基合金、Nb基合金、TiAl基及Ti3Al基金属间化合物等。
常规高温合金主要有铁基、镍基、钴基高温合金,这类合金具有相对高的密度(8~9g/cm3),因而高温比强度较低,且极限使用温度不超过1100℃。
另一类高温结构材料为Ti基合金,该类合金具有较低密度约4.5g/cm3,但其较差的高温强度及高温抗氧化性限制其使用温度不超过650℃。
新型Nb基合金如Ti-36Nb-20Al-2Hf及Ti-30Nb-20Al-5Hf(at%)合金(EP0372322Al,专利号EP891217689)较Ni基高温合金具有较低密度(6~6.5g/cm3),较高室温及中温强度,但900℃以上其屈服强度急骤降低,1000℃时屈服强度仅有120~160MPa,且抗氧化性较差。
Ti-Al系合金即TiAl基及Ti3Al基金属间化合物高温材料有以下优点:
(1)较低密度,尤其是TiAl基合金密度为3.7g/cm3,约为Ni基高温合金的一半。
(2)良好的高温强度,如TiAl基合金直至800℃时屈服强度及弹性模量仍未降低,与室温时水平相当。
但Ti-Al系金属间化合物具有以下缺点:
(1)高温抗氧化性较差,TiAl基合金抗氧化性明显差于Ni基高温合金,特别是在900℃时TiAl基合金抗氧化能力急骤降低。
(2)室温韧性较差,目前报道的TiAl基合金室温韧性Klc=10~25MPa,合金化可改善TiAl基合金室温韧性,如US-№4294615(申请日期:13.10.1981)发明的Ti-(31~36)wt%Al-(0.1~4)wt%V合金具有良好的室温韧性,但该合金高温比强度较低。
(3)不具有明显优越的高温强度,如上所述,TiAl合金直至800℃屈服强度仍保持不降,但其屈服强度水平仍较低。如日本专利特开平1-298127所发明的TiAl基合金800℃时屈服强度均低于400MPa;欧洲专利EP-0363598A1所发明的Ti-Al-Nb-Si或Zr(Si或Zr二者必含其一)合金,在室温韧性、抗氧化性、高温强度等方面均较TiAl合金有所改善,但从所给性能参数看,专利所发明的合金较对比合金Ti-32.38%    Al-5.18%Nb(wt%)(特开平1-298127专利所发明合金)在抗氧化性、室温断裂韧性等方面均没有改善,只是合金高温强度水平有所提高,而且其强度水平也只是820℃100h最高蠕变断裂强度仅为350MPa,所以上述两专利所列举合金的性能水平亦不比现有Ni基高温合金优越,考虑到其较差的室温韧性,是难以取代现有高强Ni基高温合金的,特别是在使用温度超过820℃更是如此,即TiAl基合金极限使用温度较Ni基高温合金并不具优势。因此有必要进一步发展具有较优越性能的Ti-Al-Nb系金属间化合物材料。
本发明的目的是发展极限使用温度及强度优于TiAl基合金的新型耐高温材料,该类合金具有与TiAl基和Ti3Al基合金相近的密度,高温强度明显优于TiAl基及Ti3Al基合金,同时具有一定的室温韧性,本发明特别注重提高使用温度到950℃以上直至1100℃,要求所发明合金在该温度区间有比现有Ni基高温合金及TiAl基Ti3Al基合金更优的高温比强度,并且还有与Ni基高温合金相当的抗氧化性。
本发明的构成
化学成分为:
Al:28~34wt%
Nb:16~40wt%
Y:0~0.8wt%
Ga:0~5wt%
Mn:0~4wt%
Hf:0~10wt%
其优先选择范围为Nb:20~30wt%,Y:0.2~0.6wt%,Al:28~30wt%。其余为Ti及不可避免的杂质元素。
本发明所给出的性能较好的合金应处于上述成分范围内是因为:
鉴于Ti-Al相图中在Al含量处于26~36wt%之间合金处于Ti3Al+TiAl两相区,目前发展TiAl基合金都企图在这个Al含量范围内控制适当的Ti3Al及TiAl相的相对含量以得到优良的性能。本发明强调高的含Nb量(16~40wt%)是由于在高Nb范围内会形成新的有序金属间化合物TiAl超结构相及γ1相(NbTiAl3相),同时还可得到含高Al、Nb的α相及α2相,因此本发明并不强调以TiAl为基,而是具有多相复合组织,这种成分范围保证本合金比TiAl基及Ni基高温合金有更高的熔点及高温性能,同时保持较低密度(4.0~4.7g/cm3),高Nb合金能提高高温强度及使用温度,但对抗氧化性不利,加Y的目的在于改善抗氧化性,同时也有利于室温塑性,Ga、Mn、Hf作为提高合金高温强度及室温塑性的元素起到有利作用。
本发明的优点在于合金具有与TiAl基及Ti3Al基合金相近的密度ρ=4.0~4.7g/cm3,具有一定的室温韧性Klc可达17MPa m ,1100℃抗氧化性较TiAl合金提高约一个数量级,800℃屈服强度可达750MPa,1100℃屈服强度约为350~530MPa,即相应高温比强度明显优于TiAl基合金及Ni基高温合金,从高温强度及抗氧化能力看,该合金较TiAl基合金及Ni基高温合金具有更高的极限使用温度。
下面结合附图对本发明进一步说明
图1描述了TiAl系合金(Ti-48Al),Ti3Al基合金(Ti-25 Al-11Nb)及本发明合金(№1:Ti10Nb45Al(at%),№12:Ti18Nb48Al(at%))在0~1100℃不同温度下屈服强度值。其横坐标为摄氏温度,纵坐标为强度σ0.2单位为MPa,其中曲线1为本发明Ti18Nb48Al(at%),曲线2为本发明Ti10Nb45Al,曲线3为Ti3Al基合金,曲线4为TiAl系合金。
实施例:
属于本发明所涉及成分范围内合金(表1)及对比用合金经真空自耗感应炉熔炼后浇注为铸锭,并线切割加工成所要求性能试样进行密度、抗氧化性和力学性能测试,合金密度采用水中浮重法测量,抗氧化性能试样为10×10×1mm,用1100℃    100h等温静态氧化增重表征抗氧化性,表1及图1所给屈服强度及延伸率为压缩性能,试样尺寸12×φ6mm,应变速率
Figure 911119523_IMG1
=10-2/S,断裂韧性Klc试样为2.5×5×16mm矩形四点弯曲试样,本发明中№1及№12合金及用于对比的TiAl基及Ti3Al基合金0~1100℃屈服强度随温度变化曲线如图1,本发明合金具有明显优异的高温强度;表1所给对比合金为Ti-36wt%Al及Ti-32wt%Al-5wt%Nb合金。实施例中所给合金性能证明本发明所提Nb-Ti-Al系新型耐高温合金具有前述优异性能。
Figure 911119523_IMG2

Claims (2)

1、一种Nb-Ti-Al系金属间化合物耐热高温材料,其特征在于化学成分为:
Al:28-34wt%,Nb:16-40wt%,Y:0-0.8wt%,Ga:0-5wt%,Mn:0-4Wt%,Hf:0-10wt%,余量为Ti。
2、根据权利要求1所述的Nb-Ti-Al系金属间化合物耐热高温材料,其特征在于优先选择范围为Nb:20-30wt%,Y:0.2-0.6wt%,Al:28-30wt%。
CN 91111952 1991-12-31 1991-12-31 铌钛铝系金属间化合物耐热高温材料 Expired - Fee Related CN1023133C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 91111952 CN1023133C (zh) 1991-12-31 1991-12-31 铌钛铝系金属间化合物耐热高温材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 91111952 CN1023133C (zh) 1991-12-31 1991-12-31 铌钛铝系金属间化合物耐热高温材料

Publications (2)

Publication Number Publication Date
CN1069775A true CN1069775A (zh) 1993-03-10
CN1023133C CN1023133C (zh) 1993-12-15

Family

ID=4910937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 91111952 Expired - Fee Related CN1023133C (zh) 1991-12-31 1991-12-31 铌钛铝系金属间化合物耐热高温材料

Country Status (1)

Country Link
CN (1) CN1023133C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145967A3 (de) * 2007-12-13 2010-04-21 Gkss-Forschungszentrum Geesthacht Gmbh Titanaluminidlegierungen
CN107699738A (zh) * 2017-09-29 2018-02-16 成都露思特新材料科技有限公司 一种细晶TiAl合金及其制备方法、航空发动机、汽车

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145967A3 (de) * 2007-12-13 2010-04-21 Gkss-Forschungszentrum Geesthacht Gmbh Titanaluminidlegierungen
EP2423341A1 (de) * 2007-12-13 2012-02-29 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Titanaluminidlegierungen
CN101457314B (zh) * 2007-12-13 2013-07-24 Gkss-盖斯特哈赫特研究中心有限责任公司 钛铝化物合金
CN107699738A (zh) * 2017-09-29 2018-02-16 成都露思特新材料科技有限公司 一种细晶TiAl合金及其制备方法、航空发动机、汽车

Also Published As

Publication number Publication date
CN1023133C (zh) 1993-12-15

Similar Documents

Publication Publication Date Title
CA1171695A (en) Platinum group metal-containing alloy
CA2016007C (en) Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation
US4879092A (en) Titanium aluminum alloys modified by chromium and niobium and method of preparation
US5286443A (en) High temperature alloy for machine components based on boron doped TiAl
JP2543982B2 (ja) マンガンとニオブで改良されたチタン―アルミニウム合金
US4772342A (en) Wrought Al/Cu/Mg-type aluminum alloy of high strength in the temperature range between 0 and 250 degrees C.
US4386976A (en) Dispersion-strengthened nickel-base alloy
JP2635804B2 (ja) 炭素、クロムおよびニオブで改変されたγ‐チタン‐アルミニウム合金
CA2012234C (en) Gamma titanium alloys modified by chromium and silicon and method of preparation
US4836983A (en) Silicon-modified titanium aluminum alloys and method of preparation
GB2266096A (en) Method of producing titanium aluminium alloys modified by chromium and niobium
JP3229339B2 (ja) 添加された鉄アルミニドFe3Alをベースにした中間温度領域で使用する部材に対する耐酸化性で耐腐食性の合金
US4857268A (en) Method of making vanadium-modified titanium aluminum alloys
US5167732A (en) Nickel aluminide base single crystal alloys
Ralison et al. Oxidation of orthorhombic Ti2AlNb alloys at 800° C in air
US5066457A (en) Rapid solidification route aluminium alloys containing lithium
EP0379798B1 (en) Titanium base alloy for superplastic forming
JPH0578769A (ja) 金属間化合物基耐熱合金
US5304344A (en) Gamma titanium aluminum alloys modified by chromium and tungsten and method of preparation
CN1069775A (zh) 铌钛铝系金属间化合物耐热高温材料
Eskin The Effect of Alloying Additives on Structure and Properties of Cast Al-Cu-Si-Msg Alloys
EP0476043A4 (en) Improved nickel aluminide alloy for high temperature structural use
Jang et al. The effect of niobium additions on the fracture of Ni–19Si-based alloys
US5271884A (en) Manganese and tantalum-modified titanium alumina alloys
EP0327556B1 (en) Rapid solidification route aluminium alloys containing lithium

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee