CN106972648A - 基于虚拟电容的磁共振耦合式无线能量加密传输系统 - Google Patents

基于虚拟电容的磁共振耦合式无线能量加密传输系统 Download PDF

Info

Publication number
CN106972648A
CN106972648A CN201710333277.XA CN201710333277A CN106972648A CN 106972648 A CN106972648 A CN 106972648A CN 201710333277 A CN201710333277 A CN 201710333277A CN 106972648 A CN106972648 A CN 106972648A
Authority
CN
China
Prior art keywords
magnetic resonance
primary side
simulated capacitance
wireless energy
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710333277.XA
Other languages
English (en)
Inventor
张镇
庞宏亮
邓斌
魏熙乐
于海涛
刘晨
伊国胜
王江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710333277.XA priority Critical patent/CN106972648A/zh
Publication of CN106972648A publication Critical patent/CN106972648A/zh
Pending legal-status Critical Current

Links

Abstract

本发明提供一种基于虚拟电容的磁共振耦合式无线能量加密传输系统,该系统包括电源供电部分、磁共振耦合传输部分和接收负载装置部分,三个部分通过传输导线顺次相连。所述电源供电部分包括交流电源,AC/DC整流装置与DC/AC逆变装置;交流电源输出交流电到AC/DC整流装置的交流输入端,AC/DC整流装置的直流输出端输出直流电到DC/AC逆变装置的直流输入端,DC/AC逆变装置的交流输出端输出满足整定要求的交流电,并通过传输导线与磁共振耦合传输部分相连接。本发明效果是该系统利于电容装置的集成化,解决了传统电容阵列方式无线能量加密传输系统所需电容值难以精确调出和大型电容阵列占用空间较大等系列问题。

Description

基于虚拟电容的磁共振耦合式无线能量加密传输系统
技术领域
本发明涉及虚拟仪器技术,特别是一种基于虚拟电容的磁共振耦合式无线能量加密传输系统。
背景技术
随着便携式电子设备的普及、电力电子技术的不断发展与传输线圈拓扑性能的不断提升,无线能量传输技术已趋于成熟。磁共振耦合式无线能量传输,作为一种能量传输效率较高并且传输距离较远的传输方式,其利用若干具有相同谐振频率的电磁系统,配合工作在特定频率下的电感线圈相互耦合产生电磁谐振,最终将能量传递给负载。在磁共振耦合式无线能量传输系统中,需要原、副边传输系统通过改变电容值和电感值,同时进入相同频率下的谐振状态,而一旦谐振线圈缠绕完成,电感值随之固定不变,故,系统一般通过改变电容值来进入某一特定频率下的谐振状态。无线能量加密传输即通过通讯手段,将原边系统电路的发射频率仅传输给授权的副边接收系统,而非授权的副边接收系统因无法得知谐振频率,便无法调节电容值,进而无法使副边接收系统与原边发射系统电路处于相同谐振状态,导致能量无法传输到未授权的副边接收系统的负载。
在实际应用中,同一套无线能量传输系统,针对不同的频率值,在加密过程中需要进行多次对应电容值的调整,目前往往采用电容阵列的形式,但是电容阵列只是固定的几个电容值的排列组合,很难调整出精确符合电路谐振特性的电容值。特别是在无线能量加密传输系统中,需要不断更改充电频率进行能量加密频率,随之匹配不同数值的谐振电容连接在电路中,也就是需要电容值的连续不断变化,原有电容阵列的方法不仅无法精确得到所需电容值,而且多组电容形成的电容阵列使得整个系统体积较大,控制复杂,价格昂贵,能量传输效率也将受到很大的限制。为此,必须提出一种新的可连续调节的电容解决方案,使原、副边电路可以同时进入相同频率的谐振状态,即虚拟电容技术。
发明内容
为解决上述问题,本发明提出一种基于虚拟电容的磁共振耦合式无线能量加密传输系统,其目的是通过控制器调节谐振电路中电流、电压的相角关系,使之达到电流与电压同相位,电路呈阻性,进入谐振状态。在电感值固定且电路工作频率已知的情况下,LC串联谐振单元电路进入谐振状态,相当于虚拟构造出一个满足特定频率下电路谐振要求的电容。
为实现上述目的,本发明采用的技术方案是提供一种基于虚拟电容的磁共振耦合式无线能量加密传输系统,其中:该系统包括电源供电部分、磁共振耦合传输部分和接收负载装置部分,三个部分通过传输导线顺次相连。
所述电源供电部分包括交流电源,AC/DC整流装置与DC/AC逆变装置;交流电源输出交流电到AC/DC整流装置的交流输入端,AC/DC整流装置的直流输出端输出直流电到DC/AC逆变装置的直流输入端,DC/AC逆变装置的交流输出端输出满足整定要求的交流电,并通过传输导线与磁共振耦合传输部分相连接。
所述磁共振耦合传输部分包括原边虚拟电容、原边谐振线圈与原边传输阻抗和副边虚拟电容、副边谐振线圈与副边传输阻抗;原边中虚拟电容与原边谐振线圈和原边传输阻抗串联连接;所述原边虚拟电容包括一个直流电容、一个DC/AC单相全桥可控逆变电路、一个LC滤波器、一个SPWM发生控制器、两个电流检测模块、一个电压检测模块、三个相位检测模块;所述直流电容并联在DC/AC单相全桥可控逆变电路的直流输入端,作为直流电压源供电;DC/AC单相全桥可控逆变电路的交流输出端接电容电感滤波器,电容电感滤波器中的电容C与原边谐振线圈原边谐振电路,以下简称谐振电路;两个电流检测模块分别与电容C和谐振电路串联,检测模块的输出端与SPWM的控制器相连;所述电压检测模块与谐振电路并联,检测模块的输出端与SPWM的控制器相连;三个相位检测模块分别与两个电流检测模块和电压检测模块的输出端相连,检测模块输出端与SPWM的控制器相连。
所述接收负载装置部分包括有AC/DC整流装置、电容CL与负载电阻;所述磁共振耦合传输部分中副边谐振线圈输出交流电到AC/DC整流装置的交流输入端,AC/DC整流装置的直流输出端连接电容CL,负载电阻与电容CL并联,负载电阻即为实际应用中的接收器件。
本发明的效果是该传输系统对于需要频繁改变电容阵列的控制开关以组合出不同电容值,进而满足无线能量传输效率最大化所必须的谐振状态的原边、副边感应电路来说,首次提出虚拟电容概念,通过SPWM方式改变电流与电压的幅值与相位,实现原边、副边感应电路在特定频率下谐振,同时保证了最优谐振频率只能够被授权用户解密,应用光电加密技术,以LED闪烁频率作为加密媒介,以确保本系统在实现无线能量加密方面具备较强的市场竞争力。实验显示,同频率下无线能量传输系统在谐振状态下与非谐振状态相比,传输效率至少提升30%以上,现有电容阵列可调电容值多数在10个左右,本系统实际可调电容值在直流电源允许容量内可任意调节,做到针对每一个特定的加密频率,都可以精确调节出谐振电容值,提升线圈耦合传递效率至少20%以上,同时利于电容装置的集成化,解决了传统电容阵列方式无线能量加密传输系统所需电容值难以精确调出和大型电容阵列占用空间较大等系列问题。
附图说明
图1为本发明的基于虚拟电容的磁共振耦合式无线能量加密传输系统示意图;
图2为本发明的DC/AC单相全桥可控逆变电路图;
图3为本发明的虚拟电容谐振电路原理图;
图4为本发明的谐振电路电压与电流调节相量图;
图5为本发明的原理流程图。
图中:
1、原边虚拟电容模块 2、电源供电部分滤波电感
3、电源供电部分滤波电容 4、电容 5、原边谐振线圈
6、谐振电路总电压 7、流过电容电流 8、谐振电路总电流
9、逆变电路中电流 10、滤波电感 11、电路节点
具体实施方式
结合附图对本发明的基于虚拟电容的磁共振耦合式无线能量加密传输系统结构加以说明。
如图1所示的为基于虚拟电容的磁共振耦合式无线能量加密传输系统示意图,本发明的基于虚拟电容的磁共振耦合式无线能量加密传输系统结构由电源供电,磁共振耦合传输和接收负载装置三方面组成,交流电源输出交流电到AC/DC整流装置的交流输入端,AC/DC整流装置的直流输出端输出直流电,经由电感滤波后,流入DC/AC单相全桥可控逆变电路的直流输入端,直流电经过由控制单元控制的DC/AC单相全桥可控逆变电路后,变为交流电,流过电容电感滤波器,此电源供电部分的滤波电感L1 2与电源供电部分的滤波电容C13组成的无源滤波器还兼具无功功率补偿的功能,对主要次谐波构成低阻抗旁路。磁共振耦合部分原边电路的能量来源于电源供电部分的滤波电容C1 3两端,原边电路由原边虚拟电容Cp,原边谐振线圈Lp 5,与原边传输阻抗Rp串联组成,其中原边虚拟电容模块1部分便是本发明中的核心创新部分,具有可任意灵活改变电容值与谐振阻抗的功能。原边谐振线圈Lp5与副边谐振线圈Ls通过感应磁场传递交互能量;副边电路由副边虚拟电容Cs,副边谐振线圈Ls,与副边传输阻抗Rs串联组;磁共振耦合传输部分中副边谐振线圈Ls输出交流电到负载部分的AC/DC整流装置的交流输入端,AC/DC整流装置的直流输出端连接电容CL,负载电阻RL与电容CL并联,负载电阻RL即为实际应用中的接收器件的等效电阻。
图2为DC/AC单相全桥可控逆变电路图,图中可控开关皆为MOSFET场效应晶体管,具有开关损耗低,工作频率较高等优势。其中S1与S3同时工作,S2与S4同时工作,保证电路不会被短接。
图3为原边虚拟电容模块1与原边谐振线圈Lp 5组成的谐振电路控制原理示意图,在实际能量传输系统中,只有原、副边电路同时进入相同频率的谐振状态才可以保证能量通过感应磁场后,副边能够最大限度的获取。当电容C 4与原边谐振线圈Lp 5串联固定后,电容值与电感值随之固定下来,只能在某一个特定的频率下进入谐振状态,无法满足无线能量加密传输中频率的连续变化情况下,电路仍可以同时进入谐振状态。本系统所提出的虚拟电容便可以满足在不同频率下的电路谐振,具体方案如下:
由一个电流检测模块与电容C 4串联,检测流过电容的电流Ic 7有效值,电流检测模块的输出端与SPWM的控制器相连;电压检测模块与原边虚拟电容Cp和电感线圈Lp 5串联组成的谐振电路并联,检测谐振电路总电压U 6的有效值,电压检测模块的输出端与SPWM的控制器相连;相位检测模块与电流检测模块和电压检测模块的输出信号分别相连,检测谐振电路总电压U 6的相位与流过电容的电流Ic 7的相位,检测输出与SPWM的控制器相连。
SPWM控制器将谐振电路总电压U 6的相位与流过电容电流Ic 7的相位作差,得到相位角ɑ,若电路进入谐振状态,谐振电路的总阻抗即为电感线圈的电阻R,线圈电阻R可以在线圈缠绕之前测出,又已知谐振电路总电压U 6的有效值,进而根据欧姆定律,计算出谐振电路总电流I 8的有效值。SPWM控制器将谐振电路总电压U 6的相位设为初始相位,则谐振电路总电流I 8与谐振电路总电压U 6同相位,流过电容的电流Ic 7相位与谐振电路总电压U 6和谐振电路总电流I 8相差ɑ度,上述已知电流电压相量图如图4中实线所示。对电路节点11列写基尔霍夫电流方程即:
当谐振电路总电流I 8的相角和幅值和流过电容电流Ic 7的相角和幅值都确定的情况下,可以通过矢量关系图和余弦定理计算确定出逆变电路中电流Is 9的相角和幅值,即图4中虚线所示部分。SPWM发生控制器根据所需逆变电路中电流Is 9的相角和幅值调节单相全桥可控逆变电路的初相位与占空比,根据面积等效原理,通过逆变电路调制出理论计算出的逆变电路中电流Is 9,电路处于逆变工作状态时,大电容作为临时供能的直流电压源Vdc,滤波电感L 10在电路中起到滤波降噪作用。
在系统工作时,逆变电路中电流Is 9和流过电容的电流Ic 7合成为谐振电路总电流I 8,一个电流检测模块与谐振电路串联,检测谐振电路总电流I 8的有效值;相位检测模块与电流检测模块的输出信号相连,检测出谐振电路总电流I 8的相位,将检测得到的谐振电路总电流I 8的幅值和相位与通过欧姆定理计算得到的谐振电路总电流I 8的幅值和相位相比较,是否完全一致。若完全一致,则电路进入谐振状态,保持状态不变,否则,继续根据计算所得Is 9调节单相全桥可控逆变电路的占空比,直到满足谐振条件为止。
当电路的频率发生变化时,谐振电路系统总电压U 6幅值与相位将发生改变,与此同时,流过电容的电流Ic 7幅值与相位也将发生变化,再根据上述原理计算出逆变电路中电流Is 9的相角和幅值,即可以构造出满足电流与电压同相位的谐振特性的电路参数,电路进入谐振状态。
理论上虚拟电容的等效电容值可以由公式,
f:谐振电路工作频率
L:谐振线圈电感值
计算得出,谐振电路工作频率不断变化,虚拟电容产生的电容值也在不断变化。在图3中,除原边谐振线圈Lp 5外的部分即为本发明提出的虚拟电容原理示意图。
副边虚拟电容与原边虚拟电容1结构组成,工作方式和控制原理等完全相同。
图5所示为通过本发明基于虚拟电容的磁共振耦合式无线能量加密传输系统的原理流程图。

Claims (6)

1.一种基于虚拟电容的磁共振耦合式无线能量加密传输系统,其特征是:该系统包括电源供电部分、磁共振耦合传输部分和接收负载装置部分,三个部分通过传输导线顺次相连;
所述电源供电部分包括交流电源,AC/DC整流装置与DC/AC逆变装置;交流电源输出交流电到AC/DC整流装置的交流输入端,AC/DC整流装置的直流输出端输出直流电到DC/AC逆变装置的直流输入端,DC/AC逆变装置的交流输出端输出满足整定要求的交流电,并通过传输导线与磁共振耦合传输部分相连接;
所述磁共振耦合传输部分包括原边虚拟电容、原边谐振线圈与原边传输阻抗和副边虚拟电容、副边谐振线圈与副边传输阻抗;原边中虚拟电容与原边谐振线圈和原边传输阻抗串联连接;所述原边虚拟电容包括一个直流电容、一个DC/AC单相全桥可控逆变电路、一个LC滤波器、一个SPWM发生控制器、两个电流检测模块、一个电压检测模块、三个相位检测模块;所述直流电容并联在DC/AC单相全桥可控逆变电路的直流输入端,作为直流电压源供电;DC/AC单相全桥可控逆变电路的交流输出端接电容电感滤波器,电容电感滤波器中的电容C与原边谐振线圈原边谐振电路,以下简称谐振电路;两个电流检测模块分别与电容C和谐振电路串联,检测模块的输出端与SPWM的控制器相连;所述电压检测模块与谐振电路并联,检测模块的输出端与SPWM的控制器相连;三个相位检测模块分别与两个电流检测模块和电压检测模块的输出端相连,检测模块输出端与SPWM的控制器相连;
所述接收负载装置部分包括有AC/DC整流装置、电容CL与负载电阻;所述磁共振耦合传输部分中副边谐振线圈输出交流电到AC/DC整流装置的交流输入端,AC/DC整流装置的直流输出端连接电容CL,负载电阻与电容CL并联,负载电阻即为实际应用中的接收器件。
2.根据权利要求1所述基于虚拟电容的磁共振耦合式无线能量加密传输系统,其特征是:副边虚拟电容与原边虚拟电容组成结构完全一致。
3.根据权利要求1所述基于虚拟电容的磁共振耦合式无线能量加密传输系统,其特征是:在所述基于虚拟电容的磁共振耦合式无线能量加密传输系统工作时,原边谐振线圈与副边谐振线圈通过感应磁场进行能量交互。
4.根据权利要求1所述基于虚拟电容的磁共振耦合式无线能量加密传输系统,其特征是:所述SPWM发生控制器接收来自电流检测模块,电压检测模块,相位检测模块的信号进行处理,输出控制信号到虚拟电容中DC/AC单相全桥可控逆变电路,控制逆变电路输出电流的幅值与相位。
5.根据权利要求1所述基于虚拟电容的磁共振耦合式无线能量加密传输系统,其特征是:DC/AC单相全桥可控逆变电路中可控开关皆为MOSFET场效应晶体管。
6.根据权利要求1所述基于虚拟电容的磁共振耦合式无线能量加密传输系统,其特征是:所述电流检测模块所用探头为Tektronix TCPA400。
CN201710333277.XA 2017-05-12 2017-05-12 基于虚拟电容的磁共振耦合式无线能量加密传输系统 Pending CN106972648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710333277.XA CN106972648A (zh) 2017-05-12 2017-05-12 基于虚拟电容的磁共振耦合式无线能量加密传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710333277.XA CN106972648A (zh) 2017-05-12 2017-05-12 基于虚拟电容的磁共振耦合式无线能量加密传输系统

Publications (1)

Publication Number Publication Date
CN106972648A true CN106972648A (zh) 2017-07-21

Family

ID=59331344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710333277.XA Pending CN106972648A (zh) 2017-05-12 2017-05-12 基于虚拟电容的磁共振耦合式无线能量加密传输系统

Country Status (1)

Country Link
CN (1) CN106972648A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886719A (zh) * 2021-01-29 2021-06-01 国网江西省电力有限公司电力科学研究院 巡检机器人无线充电系统及其无源型连续阻抗调节方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199634A (zh) * 2013-03-01 2013-07-10 西安理工大学 磁耦合谐振式无线电能传输相控电容调谐装置
JP2013240189A (ja) * 2012-05-15 2013-11-28 Ihi Corp 送電装置と周波数変更方法
CN105207373A (zh) * 2015-09-09 2015-12-30 天津大学 基于光电加密的磁共振耦合式无线充电系统
DE102015221065A1 (de) * 2015-10-28 2017-05-04 Bayerische Motoren Werke Aktiengesellschaft Abgleichbarer Resonator für induktives Laden
CN106655527A (zh) * 2015-10-28 2017-05-10 三星电机株式会社 无线电力发送设备及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240189A (ja) * 2012-05-15 2013-11-28 Ihi Corp 送電装置と周波数変更方法
CN103199634A (zh) * 2013-03-01 2013-07-10 西安理工大学 磁耦合谐振式无线电能传输相控电容调谐装置
CN105207373A (zh) * 2015-09-09 2015-12-30 天津大学 基于光电加密的磁共振耦合式无线充电系统
DE102015221065A1 (de) * 2015-10-28 2017-05-04 Bayerische Motoren Werke Aktiengesellschaft Abgleichbarer Resonator für induktives Laden
CN106655527A (zh) * 2015-10-28 2017-05-10 三星电机株式会社 无线电力发送设备及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
辛文辉等: "磁共振式无线电能传输相控电容调谐新方法", 《电机与控制学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886719A (zh) * 2021-01-29 2021-06-01 国网江西省电力有限公司电力科学研究院 巡检机器人无线充电系统及其无源型连续阻抗调节方法

Similar Documents

Publication Publication Date Title
CN105393432B (zh) 无线电力传输系统以及送电装置
CN104065179B (zh) 供电装置、集成电路、电能发射端和阻抗匹配方法
CN106451800B (zh) 既能输出恒流也能输出恒压的感应式无线电能传输系统
KR102014126B1 (ko) 무선 전력 수신기 시스템
JP6103654B2 (ja) Ac側短絡機能を有する整流器回路、及び誘電子変換器における同期スイッチハーベスティング
CN110429720A (zh) 一种实现恒流恒压输出切换的感应式无线电能传输系统
CN110350673A (zh) 一种无线电能传输系统在最大效率跟踪下的阻抗匹配网络优化方法
CN106411291A (zh) 一种阶数大于1的大功率可调高频分数阶电容及其控制方法
CN204679548U (zh) 一种单线圈磁调制式剩余电流检测装置
CN109617250A (zh) 一种基于组合型拓扑的抗偏移无线电能传输系统
CN106849257A (zh) 磁耦合共振式无线充电系统的自动阻抗匹配装置及方法
CN104619548A (zh) 电路装置和操作电路装置的方法
US9620986B2 (en) Method and apparatus for wireless power transfer utilizing transmit coils driven by phase-shifted currents
CN106899212A (zh) 对称式lcc谐振网络的ecpt系统及其参数设计方法
CN104333149B (zh) 调谐电路、调谐方法和谐振型非接触供电装置
CN109245333A (zh) 一种可提高抗偏移能力的恒流输出无线电能传输系统
CN108173353A (zh) 基于f-f/t变拓扑网络的恒压-恒流型ecpt系统及参数设计方法
Liu et al. Analysis and utilization of the frequency splitting phenomenon in wireless power transfer systems
Rustemli et al. Measurement and simulation of power factor using pic16f877
CN105932677A (zh) 带有多级有源电力滤波器的谐波抑制系统
CN106972648A (zh) 基于虚拟电容的磁共振耦合式无线能量加密传输系统
Gao et al. An Economical DWPT System With Mutual Compensation of Segmented Power Supply Rails Based on LCL Topology
EP3201033B1 (en) Method of and control system for operating a circuit arrangement
CN106772128A (zh) 一种能耗型交流电子负载及其工作方法
CN105375780A (zh) 车载软开关逆变电源及其电压变换电路

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170721