CN106972077A - 一种双波段探测器的制作方法 - Google Patents

一种双波段探测器的制作方法 Download PDF

Info

Publication number
CN106972077A
CN106972077A CN201710185061.3A CN201710185061A CN106972077A CN 106972077 A CN106972077 A CN 106972077A CN 201710185061 A CN201710185061 A CN 201710185061A CN 106972077 A CN106972077 A CN 106972077A
Authority
CN
China
Prior art keywords
layer
infrared
type gan
ultraviolet
gan layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710185061.3A
Other languages
English (en)
Inventor
张清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710185061.3A priority Critical patent/CN106972077A/zh
Publication of CN106972077A publication Critical patent/CN106972077A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种双面红外/紫外双波段探测器制作方法,通过红外探测区以及紫外探测区的结构和位置的设置,紫外探测区域在正面入射光探测时使用正面入光p-i-n结构,在背面入射光探测时使用背面入光p-i-n结构,红外探测区域分别使用衬底正面和背面的探测结构进行探测,使制作的双面红外/紫外双波段探测器,能够对于正面/背面入射的红外/紫外光都能够进行探测,并且红外和紫外光探测区域互不干扰,从而实现了双面探测的功能。

Description

一种双波段探测器的制作方法
技术领域
本发明涉及半导体器件的技术领域,尤其是涉及一种双面红外/紫外双波段探测器。
背景技术
紫外光是指波长范围为10 nm-400 nm的电磁辐射,其光谱在可见光中紫光的外侧。紫外探测技术可广泛的用于导弹制导系统、紫外通信技术、生物医药分析、臭氧监测、紫外树脂固化、燃烧工程、太阳照度监测、公安侦察等非常广泛的领域。随着科技的发展,紫外探测技术在军事和民用方面均得到的广泛的应用。
红外光是指波长范围在700nm~1mm的电磁辐射,对应的光子能量范围1.24meV~1.7eV。任何温度高于绝对零度的物体都在不停地发射红外辐射,物体的温度越高所发射的红外辐射波长越短,反之温度越低发射的红外辐射波长越长。红外探测技术在气象预报、地貌学、环境监测、遥感资源调查、煤矿井下测温和测气中及隐蔽火源探测、消防和石化报警以及医疗和森林火灾预报中的都得到了广泛的应用。
紫外光在近地面空气中衰减较快,有效的探测距离在500 m左右,红外光可对目标实行远距离识别和追踪,然而空气中该波段背景辐射强度较大。如果能够同时获取紫外和红外两个波段的信息,就能够实现远距离和近距离的监控,就能够提高对目标的识别追踪效果,减小背景辐射的影响,降低虚警率,在火灾监测、室内外消防和安全监控等领域有重要的应用前景。更进一步,通过单个器件实现这种双色探测,两者共用一个光学系统,可以减小设备的成本和体积,扩展其应用范围。
现有技术中,红外/紫外双色探测器通过半导体微细加工工艺将红外探测部分以及紫外探测部分集成在单个芯片上,形成红外/紫外双色探测器。但是,现有的红外/紫外双色探测器都都进能够用于单面入射光的检测,而无法实现双面入射光的检测。
发明内容
本发明提供了一种双面红外/紫外双波段探测器的制作方法,其制备的双面红外/紫外双波段探测器能够实现对于双面入射光都进行检测。
作为本发明的一个方面,提供了一种双面红外/紫外双波段探测器制作方法,包括如下步骤:(1)通过MOCVD法在衬底上表面生长N型GaN层;(2)通过MOCVD法在N型GaN层上第一区域上依次生长i型GaN层以及P型GaN层;(3)通过溶胶-凝胶法在N型GaN层上第二区域上依次生长SiO2钝化层,多孔SiO2隔热层,红外热吸收层以及PZT薄膜层;(5)通过MOCVD法在衬底下表面对应第二区域的位置生长GaN缓冲层;(6)通过溶胶-凝胶法在GaN缓冲层外依次生长SiO2钝化层,多孔SiO2隔热层,红外热吸收层以及PZT薄膜层;(7)通过IPC刻蚀得到N型GaN层左侧台面,以及第一区域与第二区域之间的间隔;(8)通过电子束蒸发在N型GaN层左侧台面上下沉积In/ Au合金,在P型GaN层沉积Ni/Au合金;(9)通过IPC刻蚀得到上部以及下部红外热吸收层左侧台面;(10)通过电子束蒸发在上部以及下部红外热吸收层左侧台面沉积下电极;(11)通过电子束蒸发在上部以及下部PZT薄膜层沉积上电极。
优选的,所述步骤(7)中还包括对于P型GaN层中间进行减薄的步骤;所述步骤(8)中在P型GaN层两侧沉积Ni/Au合金。
优选的,还包括通过电子束蒸发在第一区域与第二区域之间的间隔沉积红外阻挡层的步骤;以及通过电子束蒸发在红外阻挡层的衬底镜像背面设置红外阻挡层的步骤。
附图说明
图1是本发明实施例的双面红外/紫外双波段探测器的结构示意图。
图2是本发明优选实施例的双面红外/紫外双波段探测器的结构示意图。
图3是本发明进一步优选实施例的双面红外/紫外双波段探测器的结构示意图。
图4是本发明实施例的双面红外/紫外双波段探测器制作步骤流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。而且,应当理解,在此描述的各种各样的实施例的特征不互斥,并且能在各种各样的组合和换变过程中存在。
本发明一个实施例的双面红外/紫外双波段探测器,参见图1,包括衬底10,N型GaN层20,i型GaN层30,P型GaN层40,SiO2钝化层50,多孔SiO2隔热层60,红外热吸收层70,PZT薄膜层80,GaN缓冲层90,SiO2钝化层150,多孔SiO2隔热层160,红外热吸收层170,PZT薄膜层180。
衬底10用于生长外延材料,其可以是蓝宝石(Al2O3)衬底,碳化硅(SiC)衬底,氮化铝(AlN)衬底。衬底10上生长N型GaN层20,可以通过HVPE、MOCVD方法或者MBE方法在衬底10上生长50nm~600nm的N型GaN层20。
N型GaN层20上划分第一区域21和第二区域22。第一区域21用于紫外光探测,第一区域21上制作i型GaN层30,i型GaN30的厚度为100nm~300nm。第一区域21的一侧制作In/Au 电极211。i型GaN层30上生长P型GaN层40,P型GaN层40的厚度为100nm~300nm,优选设置为200nm。P型GaN层40上制作Ni/Au电极401。
紫外探测区域在正面入射光探测时使用正面入光p-i-n结构,在背面入射光探测时使用背面入光p-i-n结构。正面入射的紫外光从P型GaN层40入射,在i型GaN层30中被吸收,产生的电子-空穴对被n区和p区的内建电场分开,产生电信号输出。背面入射的紫外光从衬底10入射,在i型GaN层30中被吸收,产生的电子-空穴对被n区和p区的内建电场分开,产生电信号输出。
第二区域22用于红外光探测,第二区域22上制作SiO2钝化层50,SiO2钝化层50上制作多孔SiO2隔热层60。SiO2钝化层50以及多孔SiO2隔热层60的厚度为100nm~200nm。多孔SiO2隔热层60上制作红外热吸收层70,红外热吸收层70可以设置为LaNiO3、SrRuO3,RuO2层,红外热吸收层70的厚度为100nm~200nm。
红外热吸收层70上制作PZT薄膜层80以及下电极71,PZT薄膜层80为红外光探测层,其将热信号转化为电信号,PZT薄膜层80厚度为200nm~300nm。下电极71为Au电极。PZT薄膜层80上制作上电极81,上电极81为Pt电极。
衬底10下表面对应于第二区域22的位置制作GaN缓冲层90,GaN缓冲层90的厚度为100nm~200nm,GaN缓冲层90外制作SiO2钝化层150,SiO2钝化层150外制作多孔SiO2隔热层160。SiO2钝化层150以及多孔SiO2隔热层160的厚度为100nm~200nm。多孔SiO2隔热层160外制作红外热吸收层170,红外热吸收层170可以设置为LaNiO3、SrRuO3,RuO2层,红外热吸收层170的厚度为100nm~200nm。
红外热吸收层170上制作PZT薄膜层180以及下电极171,PZT薄膜层180为红外光探测层,其将热信号转化为电信号,PZT薄膜层180厚度为200nm~300nm。下电极171为Au电极。PZT薄膜层180上制作上电极181,上电极181为Pt电极。
红外探测区域在正面光入射时,通过PZT薄膜层80产生热释电信号,热释电信号通过红外热吸收层70和上电极81输出。红外探测其余在背面光入射时,通过PZT薄膜层180产生热释电信号,热释电信号通过红外热吸收层170和上电极181输出。
通过本发明上述实施例中红外探测区以及紫外探测区的结构和位置的设置,紫外探测区域在正面入射光探测时使用正面入光p-i-n结构,在背面入射光探测时使用背面入光p-i-n结构,红外探测区域分别使用衬底正面和背面的探测结构进行探测,使本发明的双面红外/紫外双波段探测器,能够对于正面/背面入射的红外/紫外光都能够进行探测,并且红外和紫外光探测区域互不干扰,从而实现了双面探测的功能。
本发明优选实施例参见图2,与第一实施例不同之处在于,为了避免紫外探测区域在正面入射时P型GaN结构对于紫外光的损失,P型GaN层40设置为“”型结构,中间部位为入射窗口,进行减薄,两侧制作Ni/Au电极401。
进一步优选的实施例,参见图3,由于紫外探测区对于红外光并不能完全吸收,从紫外探测区域侧向入射的红外光,部分可能穿过紫外探测区,照射到红外探测区域的红外探测层PZT薄膜层80或者PZT薄膜层180上。为了避免该部分红外光的影响,如图3所示,在第一区域21和第二区域22之间设置间隔,在所述间隔设置红外阻挡层23。红外阻挡层23高度高于红外热吸收层70的高度,红外阻挡层23可以是金属膜,通过电子束蒸发生长在间隔中,将透射过紫外探测区的红外光进行阻挡。同时,在红外阻挡层23的衬底10镜像背面设置相同的红外阻挡层123,其高度高于红外热吸收层170的高度。
本发明实施例的双面红外/紫外双波段探测器的制作过程,参见图4,包括如下步骤:(1)通过MOCVD法在衬底10上表面生长N型GaN层20;(2)通过MOCVD法在N型GaN层20上第一区域21上依次生长i型GaN层30以及P型GaN层40;(3)通过溶胶-凝胶法在N型GaN层20上第二区域22上依次生长SiO2钝化层50,多孔SiO2隔热层60,红外热吸收层70以及PZT薄膜层80;(5)通过MOCVD法在衬底10下表面对应第二区域22的位置生长GaN缓冲层90;(6)通过溶胶-凝胶法在GaN缓冲层90外依次生长SiO2钝化层150,多孔SiO2隔热层160,红外热吸收层170以及PZT薄膜层180;(7)通过IPC刻蚀得到N型GaN层20左侧台面,以及第一区域21与第二区域22之间的间隔;(8)通过电子束蒸发在N型GaN层20左侧台面上下沉积In/ Au合金201,在P型GaN层沉积Ni/Au合金401;(9)通过IPC刻蚀得到红外热吸收层70以及170左侧台面;(10)通过电子束蒸发在红外热吸收层70以及170左侧台面沉积下电极71,171;(11)通过电子束蒸发在PZT薄膜层80和180上沉积上电极81,181。
优选的,所述步骤(7)中还包括对于P型GaN层40中间进行减薄的步骤;所述步骤(8)中在P型GaN层40两侧沉积Ni/Au合金401。
优选的,还包括通过电子束蒸发在第一区域21与第二区域22之间的间隔沉积红外阻挡层23的步骤;以及通过电子束蒸发在红外阻挡层23的衬底10镜像背面设置红外阻挡层123的步骤。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。本发明中描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (1)

1.一种双面红外/紫外双波段探测器制作方法,包括如下步骤:(1)通过MOCVD法在衬底上表面生长N型GaN层;(2)通过MOCVD法在N型GaN层上第一区域上依次生长i型GaN层以及P型GaN层;(3)通过溶胶-凝胶法在N型GaN层上第二区域上依次生长SiO2钝化层,多孔SO2隔热层,红外热吸收层以及PZT薄膜层;(5)通过MOCVD法在衬底下表面对应第二区域的位置生长GaN缓冲层;(6)通过溶胶-凝胶法在GaN缓冲层外依次生长SiO2钝化层,多孔SO2隔热层,红外热吸收层以及PZT薄膜层;(7)通过IPC刻蚀得到N型GaN层左侧台面,以及第一区域与第二区域之间的间隔;(8)通过电子束蒸发在N型GaN层左侧台面上下沉积In/ Au合金,在P型GaN层沉积Ni/Au合金;(9)通过IPC刻蚀得到上部以及下部红外热吸收层左侧台面;(10)通过电子束蒸发在上部以及下部红外热吸收层左侧台面沉积下电极;(11)通过电子束蒸发在上部以及下部PZT薄膜层沉积上电极。
CN201710185061.3A 2017-03-25 2017-03-25 一种双波段探测器的制作方法 Pending CN106972077A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710185061.3A CN106972077A (zh) 2017-03-25 2017-03-25 一种双波段探测器的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710185061.3A CN106972077A (zh) 2017-03-25 2017-03-25 一种双波段探测器的制作方法

Publications (1)

Publication Number Publication Date
CN106972077A true CN106972077A (zh) 2017-07-21

Family

ID=59330167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710185061.3A Pending CN106972077A (zh) 2017-03-25 2017-03-25 一种双波段探测器的制作方法

Country Status (1)

Country Link
CN (1) CN106972077A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470793A (zh) * 2018-02-26 2018-08-31 厦门大学 紫外-红外双波段集成p-i-n型光电探测器
CN110797429A (zh) * 2019-11-08 2020-02-14 中国科学院长春光学精密机械与物理研究所 应力调控氮化镓基红外-紫外双色光探测器及制备方法
CN110989027A (zh) * 2019-12-02 2020-04-10 安瑞创新半导体(深圳)有限公司 一种用于紫外红外双色探测的紫外光电探测器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075647A (zh) * 2007-06-04 2007-11-21 中国科学院上海技术物理研究所 AlGaN/PZT紫外/红外双波段探测器
CN101211958A (zh) * 2007-12-21 2008-07-02 中国科学院上海技术物理研究所 铝镓氮-锆钛酸铅焦平面探测器
CN101572278A (zh) * 2009-06-05 2009-11-04 哈尔滨工业大学 光导型双色紫外红外探测器及其制备方法
US20160172396A1 (en) * 2013-08-02 2016-06-16 Sharp Kabushiki Kaisha Semiconductor device for radiation detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075647A (zh) * 2007-06-04 2007-11-21 中国科学院上海技术物理研究所 AlGaN/PZT紫外/红外双波段探测器
CN101211958A (zh) * 2007-12-21 2008-07-02 中国科学院上海技术物理研究所 铝镓氮-锆钛酸铅焦平面探测器
CN101572278A (zh) * 2009-06-05 2009-11-04 哈尔滨工业大学 光导型双色紫外红外探测器及其制备方法
US20160172396A1 (en) * 2013-08-02 2016-06-16 Sharp Kabushiki Kaisha Semiconductor device for radiation detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470793A (zh) * 2018-02-26 2018-08-31 厦门大学 紫外-红外双波段集成p-i-n型光电探测器
CN108470793B (zh) * 2018-02-26 2023-12-08 厦门大学 紫外-红外双波段集成p-i-n型光电探测器
CN110797429A (zh) * 2019-11-08 2020-02-14 中国科学院长春光学精密机械与物理研究所 应力调控氮化镓基红外-紫外双色光探测器及制备方法
CN110797429B (zh) * 2019-11-08 2021-02-02 中国科学院长春光学精密机械与物理研究所 应力调控氮化镓基红外-紫外双色光探测器及制备方法
CN110989027A (zh) * 2019-12-02 2020-04-10 安瑞创新半导体(深圳)有限公司 一种用于紫外红外双色探测的紫外光电探测器

Similar Documents

Publication Publication Date Title
US10290795B2 (en) Packaging method and semiconductor device
CN106972077A (zh) 一种双波段探测器的制作方法
JP5512583B2 (ja) 量子型赤外線センサ
CN101419996B (zh) 红外—紫外多色探测器及其制备方法
CN105280748B (zh) 双色探测器
CN107359221B (zh) 一种基于soi-量子点异质结的红外探测器制备方法
CN110335908B (zh) 异质结分波段探测器及其制备方法与应用
CN103646986A (zh) 一种AlGaN基双色日盲紫外探测器及制作方法
CN102509728A (zh) 一种非制冷红外探测器的设计及制备方法
CN105977335A (zh) 短波光学热探测器及其焦平面阵列器件
CN103346197A (zh) 一种高响应度的AlGaN基量子阱红外探测器及其制备方法
CN107101728A (zh) 一种非制冷双色偏振红外探测器及其制造方法
CN102237432B (zh) 一种太赫兹或红外频段灵敏光子探测器
CN105810704B (zh) 一种广谱成像探测芯片
CN103390630B (zh) 基于有机p-n结的红外探测器件及其制作方法与使用该器件的红外图像探测器
CN106601837A (zh) 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN107910385A (zh) 一种铟镓砷红外探测器制备方法
CN106898674A (zh) 一种双波段探测器
CN110416333A (zh) 一种紫外光电探测器及其制备方法
CN111564504A (zh) 一种日盲紫外探测器及其制备方法
CN108630769A (zh) 一种nBn型InAlSb红外探测器材料及其制备方法,红外探测器
CN108346713A (zh) 可见-短波红外探测器及其制备方法
CN109256436A (zh) 一种石墨烯红外探测单元及其制备方法
Dobrzański et al. Micromachined silicon bolometers as detectors of soft X-ray, ultraviolet, visible and infrared radiation
CN106684203A (zh) 一种镓氮雪崩光电二极管组件及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170721

WD01 Invention patent application deemed withdrawn after publication