CN106951899A - 基于图像识别的异常检测方法 - Google Patents

基于图像识别的异常检测方法 Download PDF

Info

Publication number
CN106951899A
CN106951899A CN201710192706.6A CN201710192706A CN106951899A CN 106951899 A CN106951899 A CN 106951899A CN 201710192706 A CN201710192706 A CN 201710192706A CN 106951899 A CN106951899 A CN 106951899A
Authority
CN
China
Prior art keywords
sample
classification
picture
identification
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710192706.6A
Other languages
English (en)
Inventor
李刚毅
于湄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN106951899A publication Critical patent/CN106951899A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour

Abstract

公开了基于图像识别的异常检测方法,包括:对包含被检测目标的图片进行正规化处理,获取灰度化图像;利用训练好的目标识别模型进行抠图,从灰度化图像中抠取被检测目标图像;利用训练好的二元分类模型对被检测目标图像进行二元分类,确定被检测目标图像的可信度分值;若被检测目标图像的可信度分值不高于预设的异常阈值,判定被检测目标图像为异常目标。通过将包含被检测目标的图片转化成灰度化图像,可以在不减少图片特征信息的基础上有效降低图片包含的特征维度;通过将被检测目标图像从灰度化图像中抠取出来,能够有效减少非检测目标图像信息带来的干扰。本发明基于形状进行异常检测,能够自动识别异常目标,异常检测的效率和准确性高。

Description

基于图像识别的异常检测方法
技术领域
本发明涉及图像识别技术领域,尤其涉及基于图像识别的异常检测方法。
背景技术
以下对本发明的相关技术背景进行说明,但这些说明并不一定构成本发明的现有技术。
随着照相和视频监控系统在工业中的广泛应用,对于所采集的图片和影像进行高效和准且的分类处理,并在图片和影像中发现异常因素的需求越来越大。长期以来普遍利用人工对所采集的图片和影像进行异常识别,这样做成本高,识别效果受人为因素(例如经验、疲劳程度等)的影响大。因此,需要一种有效的自动处理手段对图片和影像中的异常因素进行识别。
发明内容
本发明的目的在于提出一种基于图像识别的异常检测方法,能够自动实现对任意被检测目标的异常检测。
本发明基于图像识别的异常检测方法,包括:
S1、对包含被检测目标的图片进行正规化处理,获取灰度化图像;
S2、利用训练好的目标识别模型进行抠图,从所述灰度化图像中抠取被检测目标图像;
S3、利用训练好的二元分类模型对所述被检测目标图像进行二元分类,确定所述被检测目标图像的可信度分值;若所述被检测目标图像的可信度分值不高于预设的异常阈值,判定所述被检测目标图像为异常目标。
优选地,按照如下步骤训练目标识别模型:
获取用于模型训练的灰度化识别样本图片;
从均一化处理后的所述灰度化识别样本图片中抠取识别正样本,并对抠取的识别正样本和预设的识别负样本的尺寸进行均一化处理;
基于预设的识别负样本和抠取的识别正样本,采用级联分类训练算法进行训练,得到目标识别模型;
其中,识别正样本是指以被检测目标的标识部位为主体的局部图片,识别正样本不包含存在异常的样本图片;识别负样本是指不包含被检测目标的图片;抠图时,被检测目标充满90%以上被抠取图像区域。
优选地,按照如下步骤从所述灰度化识别样本图片中抠取识别正样本:
检测识别正样本在所述灰度化识别样本图片中的位置;
如果被检测目标在所述灰度化识别样本图片中所处部位随机,采用手工抠图;如果被检测目标在所述灰度化识别样本图片中所处部位固定,利用遮罩技术划定特定的图片或影像区域进行自动抠图。
优选地,得到目标识别模型之后进一步包括:
利用所述目标识别模型从所述灰度化识别样本图片中抠取识别正样本,并对抠取的识别正样本和预设的识别负样本的尺寸进行均一化处理;
利用预设的识别负样本和抠取的识别正样本训练所述目标识别模型。
优选地,按照如下步骤训练二元分类模型:
获取用于模型训练的灰度化分类样本图片,包括:分类正样本和分类负样本;
提取每个分类样本图片的样本特征,采用主成分分析法对样本特征进行分析,获取特征向量和特征值;
对特征向量进行聚类,聚类完成后通过二元分类算法对分类样本图片进行分类,得到二元分类模型;
其中,分类正样本是指以被检测目标的标识部位为主体的局部图片,分类正样本不包含存在异常的样本图片;分类负样本是指不包含被检测目标的图片;聚类的数量小于特征向量的数量。
优选地,获取用于模型训练的灰度化分类样本图片之后进一步包括:对分类样本图片的尺寸进行均一化处理。
优选地,提取每个分类样本图片的样本特征之后进一步包括:
对每个分类样本图片的样本特征数量进行均一化处理,具体地:针对任意一个分类样本图片,
如果提取的样本特征数量少于预定义的特征数量,则用零值或单位值填充,使该分类样本图片的样本特征数量达到预定义的特征数量;
如果提取的样本特征数量多于预定义的特征数量N,则选择预定义的特征数量个样本特征。
优选地,按照如下方法选择预定义的特征数量个样本特征:
对于分类负样本,随机选择预定义的特征数量个样本特征;
对于分类负样本,或特征数量接近预定义的特征数量的分类正样本,选择最前或最后的预定义数量个样本特征;
对于分类正样本,通过主成分分析法将样本特征按重要性降序排列,选择最重要的预定义的特征数量个样本特征。
优选地,采用主成分分析法对每个分类正样本的样本特征进行分析,选择代表性超过80%的样本特征数量的均值或最小值作为预定义的特征数量。
优选地,所述被检测目标图像的长宽像素尺寸与训练二元分类模型所使用的分类正样本的长宽像素尺寸相等。
优选地,步骤S1包括:
对包含被检测目标的图片或影像格式进行转换,得到具有统一格式的彩色图片;对于影像,将其转换为图片帧后再进行格式转换;
对彩色图片进行灰度化处理,得到灰度化图像。
优选地,得到灰度化图像之后进一步包括:采用直方图均衡化方法对灰度化图像进行处理。
从本发明的技术方案可以看出,本发明的应用场景主要是基于形状而不是基于色彩的差异进行异常检测;通过将包含被检测目标的图片转化成灰度化图像,可以在不减少图片特征信息的基础上有效降低图片包含的特征维度;通过将被检测目标图像从灰度化图像中抠取出来,能够有效减少非检测目标图像信息所带来的干扰,提高本发明异常检测算法的速度和准确性;通过利用训练好的二元分类模型对被检测目标图像进行二元分类,能够自动识别异常目标,提高本发明异常检测的效率和准确性。
附图说明
通过以下参照附图而提供的具体实施方式部分,本发明的特征和优点将变得更加容易理解,在附图中:
图1是示出本发明基于图像识别的异常检测方法的流程示意图。
具体实施方式
下面参照附图对本发明的示例性实施方式进行详细描述。对示例性实施方式的描述仅仅是出于示范目的,而绝不是对本发明及其应用或用法的限制。
由于用于拍摄的相机和摄像机通常固定在特定的位置,以一定的角度面对被检测物体(例如车辆,设备,行人,等等),所以图片或影像的内容相对固定。但是由于受到每个被检测的实例都存在个体上的差异,拍照的时间不同所带来的曝光差异,一幅图片或影像中可能存在多个被检查点,以及异常部位通常所占图片或影像画面比例较小等因素的影响,大大提高了自动识别技术复杂度。为了解决上述问题,本发明提供了一种基于形状差异进行异常检测的方法。
由于本发明的应用场景主要是基于形状而不是基于色彩的差异进行异常检测,因此本发明在步骤S1中首先对包含被检测目标的图片进行正规化处理,获取灰度化图像,参见图1,图中每个包含RGB或Greyscale的方格表示一个像素。将包含被检测目标的图片转化成灰度化图像,可以在不减少图片特征信息的基础上有效降低图片包含的特征维度,保留有助于异常检测的信息和特征,从而降低异常检测的算法复杂程度和计算量。
实际使用过程中多采用相机或摄像机获取包含被检测目标的图像信息,相机获取的大多是图片格式,摄像机获取的多是视频影像。为了便于分析处理不同格式的被检测目标图像信息,步骤S1可以进一步包括:
对包含被检测目标的图片或影像格式进行转换,得到具有统一格式的彩色图片;对于影像,将其转换为图片帧后再进行格式转换;
对彩色图片进行灰度化处理,得到灰度化图像。
为了使灰度化图像中的特征信息更加明显,得到灰度化图像之后可以进一步包括:采用直方图均衡化(histogram equalization)方法对灰度化图像进行处理,对灰度化图像对比度进行调整,从而使灰度化图像的特征更加明显,改善灰度化图像的质量。
灰度化图像中往往既包含被检测目标,也包含非检测目标,被检测目标通常只占整个灰度化图像的一部分。为了尽量减少非检测目标图像信息所带来的干扰,提高异常检测算法的速度和准确性,本发明步骤S2中利用训练好的目标识别模型进行抠图,从灰度化图像中抠取被检测目标图像。例如,利用人工智能技术从灰度化图像中自动检测需要检测的关键部位,如车辆标识、部件、人脸等,并利用抠图技术提取关键部位的图片或影像信息。
级联分类训练(Cascade Classifier Training)算法适合于在图片或影响中找到与被被检测目标相匹配的区域,但并不能有效的衡量被检测目标是否存在异常,因此本发明步骤S3中利用训练好的二元分类模型对被检测目标图像进行二元分类,确定被检测目标图像的可信度分值;若被检测目标图像的可信度分值不高于预设的异常阈值,判定被检测目标图像为异常目标。
本领域技术人员可以根据实际需要选择合适的目标分类模型进行抠取,在一些实施例中,按照如下步骤训练目标识别模型:
获取用于模型训练的灰度化识别样本图片;
从正规化处理后的所述灰度化识别样本图片中抠取识别正样本,并对抠取的识别正样本和预设的识别负样本的尺寸进行均一化处理;
基于预设的识别负样本和抠取的识别正样本,采用级联分类训练(CascadeClassifier Training)算法进行训练,得到目标识别模型;
识别正样本是指以被检测目标的标识部位为主体的局部图片,识别正样本不包含存在异常的样本图片;识别负样本是指不包含被检测目标的图片。由于被检测目标通常只占整个灰度化图像的一部分,因此通过从灰度化识别样本图片中抠取被检测目标的图像获取目标识别的识别正样本可以有效减少非检测目标图像信息所带来的干扰,提升识别正样本的质量。为了进一步提升识别正样本的质量,抠图时,被检测目标充满90%以上被抠取图像区域。抠取图像时,应尽量保证被抠取部分的长宽比一致,以提高特征提取的相似度。
抠取识别正样本的方法可以根据实际情况进行选择,在一些实施例中,可以根据识别正样本在灰度化识别样本图片中的位置选择合适的抠图方法,具体地:
检测识别正样本在灰度化识别样本图片中的位置;
如果被检测目标在灰度化识别样本图片中所处部位随机,采用手工抠图;如果被检测目标在灰度化识别样本图片中所处部位固定,利用遮罩技术划定特定的图片或影像区域进行自动抠图。
上述实施例中,被检测目标在灰度化识别样本图片中所处部位固定并不限于被检测目标在灰度化识别样本图片中所处部位完全一致。当异常检测的精确性要求不高时,可以适当降低对被检测目标位置的要求,例如当被检测目标在灰度化识别样本图片中所处部位不超过预设的位置范围时,认定被检测目标在灰度化识别样本图片中所处部位固定。
为了提高目标识别模型的准确性,得到目标识别模型之后可以进一步包括:
利用目标识别模型从灰度化识别样本图片中抠取识别正样本,并对抠取的识别正样本和预设的识别负样本的尺寸进行均一化处理;
利用预设的识别负样本和抠取的识别正样本训练该目标识别模型。
优选地,可以按照如下步骤训练二元分类模型:
获取用于模型训练的灰度化分类样本图片,并对分类样本图片的尺寸进行均一化处理,以保证特征提取的相似度;
提取每个分类样本图片的样本特征,采用主成分分析法对样本特征进行分析,获取特征向量和特征值;
对特征向量进行聚类,聚类完成后通过二元分类算法对分类样本图片进行分类,得到二元分类模型;
其中,分类样本图片包括:分类正样本和分类负样本;分类正样本是指以被检测目标的标识部位为主体的局部图片,分类正样本不包含存在异常的样本图片;分类负样本是指不包含被检测目标的图片;聚类的数量小于特征向量的数量。对于分类样本图片,可以采用前面用于级联分类的识别正样本,也可以采用上述优选实施例中抠取识别正样本的方法检测和抠取用于模型训练的分类正样本。
在样本特征提取完成后,由于样本特征顺序的随机性,因此需要对特征进行聚类,以便于后续的分类模型训练。聚类的算法包括但不限于:K-Means聚类算法。在采用聚类算法时,聚类的数量k值应小于等于样本特征的数量。聚类完成后,通过传统的二元分类算法对样本图片进行分类。二元分类算法包括但不限于:逻辑回归算法(LogisticRegression),支持向量机算法(SVM)等。
分类正负样本都应采用灰度图片,或在训练分类模型之前转换为灰度图片。本发明采用常见的特征提取算法来提取样本特征。常用的特征提取算法包括但不限于:SIFT(Scale-invariant feature transform,恒比特征变换),SURF(Speed Up RobustFeature,加速鲁棒特征),FAST(Features from Accelerated Segment Test,特征分割检测特征),BRIEF(Binary Robust Independent Elementary Features,二分鲁棒独立特征),或ORB(Oriented FAST and Rotated BRIEF,定向FAST和旋转BRIEF)等。
为了保证从每个分类样本图片所提取的样本特征数量完全一致,提取每个分类样本图片的样本特征之后可以进一步包括:
对每个分类样本图片的样本特征数量进行均一化处理,具体地:针对任意一个分类样本图片,
如果提取的样本特征数量少于预定义的特征数量,则用零值或单位值填充,使该分类样本图片的样本特征数量达到预定义的特征数量,例如,当分类负样本的样本特征数量少于预定义的特征数量,用零值或单位值填充;如果提取的样本特征数量多于预定义的特征数量N,则选择预定义的特征数量个样本特征。进一步优选地,可以按照如下方法选择预定义的特征数量个样本特征:
对于分类负样本,随机选择预定义的特征数量个样本特征;
对于分类负样本,或特征数量等于或接近预定义的特征数量的分类正样本,选择最前或最后的预定义数量个样本特征;
对于分类正样本,通过主成分分析法将样本特征按重要性降序排列,选择最重要的预定义的特征数量个样本特征。
对于预定义的样本特征数量,可以采用主成分分析法对每个分类正样本的样本特征进行分析,选择代表性超过80%的样本特征数量的均值或最小值作为预定义的特征数量。
为了便于将被检测目标图像与分类正样本进行比较分析,可以使被检测目标图像的长宽像素尺寸与训练二元分类模型所使用的分类正样本的长宽像素尺寸相等。
在二元分类模型训练完成后,利用训练好的二元分类模型对被检测目标图像进行二元分类,确定被检测目标图像的可信度分值;若被检测目标图像的可信度分值不高于预设的异常阈值,判定被检测目标图像为异常目标。异常阈值的取值可以根据实际使用情况进行设定,为了确定二元分类模型的分类效果和异常阈值的取值,还可以对训练好的二元分类模型进行异常检测测试。
异常检测测试的正样本是训练二元分类算法的分类正样本,异常检测测试的负样本是不包含在二元分类算法的分类正样本集中的、包含带有异常的被检测目标的样本。二元分类模型对每一个二元分类的分类都计算出一个可信度分值:如果分类为A和B。P(A)是分类结果为A的可信度分值,P(B)是分类结果为B的可信度分值,P为分类的最终可信度,那么:
P(A)+P(B)=1 P=Max(P(A),P(B))
假设A为正样本,则在测试结果中,正测试用例的分类结果应当为A,负测试用例的分类结果可以为A或者为B。若找到一个可信度分值P(A’),使得召回率(recall rate)(即低于P(A’)的负测试样本的数量对所有负测试样本总数比率)大于等于预定义的百分比(例如99.99%),则P(A’)即使异常检测所需要设定的异常阈值的取值。
虽然参照示例性实施方式对本发明进行了描述,但是应当理解,本发明并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对所述示例性实施方式做出各种改变。

Claims (10)

1.基于图像识别的异常检测方法,其特征在于包括:
S1、对包含被检测目标的图片进行正规化处理,获取灰度化图像;
S2、利用训练好的目标识别模型进行抠图,从所述灰度化图像中抠取被检测目标图像;
S3、利用训练好的二元分类模型对所述被检测目标图像进行二元分类,确定所述被检测目标图像的可信度分值;若所述被检测目标图像的可信度分值不高于预设的异常阈值,判定所述被检测目标图像为异常目标。
2.如权利要求1所述的方法,其特征在于,按照如下步骤训练目标识别模型:
获取用于模型训练的灰度化识别样本图片;
从均一化处理后的所述灰度化识别样本图片中抠取识别正样本,并对抠取的识别正样本和预设的识别负样本的尺寸进行均一化处理;
基于预设的识别负样本和抠取的识别正样本,采用级联分类训练算法进行训练,得到目标识别模型;
其中,识别正样本是指以被检测目标的标识部位为主体的局部图片,识别正样本不包含存在异常的样本图片;识别负样本是指不包含被检测目标的图片;抠图时,被检测目标充满90%以上被抠取图像区域。
3.如权利要求2所述的方法,其特征在于,按照如下步骤从所述灰度化识别样本图片中抠取识别正样本:
检测识别正样本在所述灰度化识别样本图片中的位置;
如果被检测目标在所述灰度化识别样本图片中所处部位随机,采用手工抠图;如果被检测目标在所述灰度化识别样本图片中所处部位固定,利用遮罩技术划定特定的图片或影像区域进行自动抠图。
4.如权利要求3所述的方法,其特征在于,得到目标识别模型之后进一步包括:
利用所述目标识别模型从所述灰度化识别样本图片中抠取识别正样本,并对抠取的识别正样本和预设的识别负样本的尺寸进行均一化处理;
利用预设的识别负样本和抠取的识别正样本训练所述目标识别模型。
5.如权利要求1所述的方法,其特征在于,按照如下步骤训练二元分类模型:
获取用于模型训练的灰度化分类样本图片,并对所述分类样本图片的尺寸进行均一化处理;
提取每个分类样本图片的样本特征,采用主成分分析法对样本特征进行分析,获取特征向量和特征值;
对特征向量进行聚类,聚类完成后通过二元分类算法对分类样本图片进行分类,得到二元分类模型;
其中,所述分类样本图片包括:分类正样本和分类负样本;分类正样本是指以被检测目标的标识部位为主体的局部图片,分类正样本不包含存在异常的样本图片;分类负样本是指不包含被检测目标的图片;聚类的数量小于特征向量的数量。
6.如权利要求5所述的方法,其特征在于,提取每个分类样本图片的样本特征之后进一步包括:
对每个分类样本图片的样本特征数量进行均一化处理,具体地:针对任意一个分类样本图片,
如果提取的样本特征数量少于预定义的特征数量,则用零值或单位值向量填充,使该分类样本图片的样本特征数量达到预定义的特征数量;
如果提取的样本特征数量多于预定义的特征数量N,则选择预定义的特征数量个样本特征。
7.如权利要求6所述的方法,其特征在于,按照如下方法选择预定义的特征数量个样本特征:
对于分类负样本,随机选择预定义的特征数量个样本特征;
对于分类负样本,或特征数量接近预定义的特征数量的分类正样本,选择最前或最后的预定义数量个样本特征;
对于分类正样本,通过主成分分析法将样本特征按重要性降序排列,选择最重要的预定义的特征数量个样本特征。
8.如权利要求6或7所述的方法,其特征在于,采用主成分分析法对每个分类正样本的样本特征进行分析,选择代表性超过80%的样本特征数量的均值或最小值作为预定义的特征数量。
9.如权利要求5所述的方法,其特征在于,所述被检测目标图像的长宽像素尺寸与训练二元分类模型所使用的分类正样本的长宽像素尺寸相等。
10.如权利要求1所述的方法,其特征在于,步骤S1包括:
对包含被检测目标的图片或影像格式进行转换,得到具有统一格式的彩色图片;对于影像,将其转换为图片帧后再进行格式转换;
对彩色图片进行灰度化处理,得到灰度化图像。
CN201710192706.6A 2017-02-24 2017-03-28 基于图像识别的异常检测方法 Pending CN106951899A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710104529 2017-02-24
CN2017101045291 2017-02-24

Publications (1)

Publication Number Publication Date
CN106951899A true CN106951899A (zh) 2017-07-14

Family

ID=59473908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710192706.6A Pending CN106951899A (zh) 2017-02-24 2017-03-28 基于图像识别的异常检测方法

Country Status (1)

Country Link
CN (1) CN106951899A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657259A (zh) * 2017-09-30 2018-02-02 平安科技(深圳)有限公司 图像篡改检测方法、电子装置及可读存储介质
CN108376407A (zh) * 2018-02-05 2018-08-07 李刚毅 热区对象聚集检测方法和系统
CN108388845A (zh) * 2018-02-05 2018-08-10 李刚毅 对象检测方法和系统
CN109330626A (zh) * 2018-11-16 2019-02-15 中聚科技股份有限公司 一种自适应调节超声探头位置的装置及方法
CN110738225A (zh) * 2018-07-19 2020-01-31 杭州海康威视数字技术股份有限公司 图像识别方法及装置
CN110991405A (zh) * 2019-12-19 2020-04-10 中国水利水电科学研究院 一种非侵入式泵站控制系统液压执行机构异常分析的方法
CN111461209A (zh) * 2020-03-30 2020-07-28 深圳市凯立德科技股份有限公司 一种模型训练装置和方法
WO2020168515A1 (zh) * 2019-02-21 2020-08-27 深圳市大疆创新科技有限公司 一种图像处理方法、装置、图像拍摄和处理系统及载体
CN111753857A (zh) * 2019-03-26 2020-10-09 北京地平线机器人技术研发有限公司 一种应用于目标物的自动分类的模型训练方法、装置及电子设备
CN111815623A (zh) * 2020-07-28 2020-10-23 南方电网数字电网研究院有限公司 输电线路开口销缺失识别方法
CN112100071A (zh) * 2020-09-16 2020-12-18 腾讯科技(深圳)有限公司 测试用例生成方法、装置、计算机设备和存储介质
CN112508947A (zh) * 2020-12-29 2021-03-16 苏州光格科技股份有限公司 一种电缆隧道异常检测方法
CN112686322A (zh) * 2020-12-31 2021-04-20 柳州柳新汽车冲压件有限公司 零件差异识别方法、装置、设备及存储介质
CN113204455A (zh) * 2021-05-06 2021-08-03 广州朗国电子科技有限公司 一种自动检测用户界面显示异常的方法、设备、存储介质
CN113552123A (zh) * 2020-04-17 2021-10-26 华为技术有限公司 视觉检测方法和视觉检测装置
CN117636079A (zh) * 2024-01-25 2024-03-01 宁德时代新能源科技股份有限公司 图像分类方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799875A (zh) * 2010-02-10 2010-08-11 华中科技大学 一种目标检测方法
CN101853389A (zh) * 2009-04-01 2010-10-06 索尼株式会社 多类目标的检测装置及检测方法
CN103400157A (zh) * 2013-07-23 2013-11-20 青岛海信网络科技股份有限公司 一种基于视频分析的道路行人及非机动车检测方法
CN104751198A (zh) * 2013-12-27 2015-07-01 华为技术有限公司 图像中的目标物的识别方法及装置
CN105488811A (zh) * 2015-11-23 2016-04-13 华中科技大学 一种基于深度梯度的目标跟踪方法与系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853389A (zh) * 2009-04-01 2010-10-06 索尼株式会社 多类目标的检测装置及检测方法
CN101799875A (zh) * 2010-02-10 2010-08-11 华中科技大学 一种目标检测方法
CN103400157A (zh) * 2013-07-23 2013-11-20 青岛海信网络科技股份有限公司 一种基于视频分析的道路行人及非机动车检测方法
CN104751198A (zh) * 2013-12-27 2015-07-01 华为技术有限公司 图像中的目标物的识别方法及装置
CN105488811A (zh) * 2015-11-23 2016-04-13 华中科技大学 一种基于深度梯度的目标跟踪方法与系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
孟祥怡: "《运动目标的跟踪与识别算法研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
常向阳: "《基于PCA和BP_Adaboost强分类器的人脸识别研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
程战员: "《面向智能视频监控的多人脸识别算法研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
赵春晖 等: "《视频图像运动目标分析》", 30 June 2011, 北京:国防工业出版社 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657259A (zh) * 2017-09-30 2018-02-02 平安科技(深圳)有限公司 图像篡改检测方法、电子装置及可读存储介质
CN108376407A (zh) * 2018-02-05 2018-08-07 李刚毅 热区对象聚集检测方法和系统
CN108388845A (zh) * 2018-02-05 2018-08-10 李刚毅 对象检测方法和系统
CN110738225A (zh) * 2018-07-19 2020-01-31 杭州海康威视数字技术股份有限公司 图像识别方法及装置
CN109330626A (zh) * 2018-11-16 2019-02-15 中聚科技股份有限公司 一种自适应调节超声探头位置的装置及方法
WO2020168515A1 (zh) * 2019-02-21 2020-08-27 深圳市大疆创新科技有限公司 一种图像处理方法、装置、图像拍摄和处理系统及载体
CN111753857A (zh) * 2019-03-26 2020-10-09 北京地平线机器人技术研发有限公司 一种应用于目标物的自动分类的模型训练方法、装置及电子设备
CN110991405A (zh) * 2019-12-19 2020-04-10 中国水利水电科学研究院 一种非侵入式泵站控制系统液压执行机构异常分析的方法
CN110991405B (zh) * 2019-12-19 2023-11-17 中国水利水电科学研究院 一种非侵入式泵站控制系统液压执行机构异常分析的方法
CN111461209A (zh) * 2020-03-30 2020-07-28 深圳市凯立德科技股份有限公司 一种模型训练装置和方法
CN111461209B (zh) * 2020-03-30 2024-04-09 深圳市凯立德科技股份有限公司 一种模型训练装置和方法
CN113552123A (zh) * 2020-04-17 2021-10-26 华为技术有限公司 视觉检测方法和视觉检测装置
CN111815623A (zh) * 2020-07-28 2020-10-23 南方电网数字电网研究院有限公司 输电线路开口销缺失识别方法
CN111815623B (zh) * 2020-07-28 2024-02-23 南方电网数字电网研究院有限公司 输电线路开口销缺失识别方法
CN112100071A (zh) * 2020-09-16 2020-12-18 腾讯科技(深圳)有限公司 测试用例生成方法、装置、计算机设备和存储介质
CN112508947A (zh) * 2020-12-29 2021-03-16 苏州光格科技股份有限公司 一种电缆隧道异常检测方法
CN112686322A (zh) * 2020-12-31 2021-04-20 柳州柳新汽车冲压件有限公司 零件差异识别方法、装置、设备及存储介质
CN113204455A (zh) * 2021-05-06 2021-08-03 广州朗国电子科技有限公司 一种自动检测用户界面显示异常的方法、设备、存储介质
CN117636079A (zh) * 2024-01-25 2024-03-01 宁德时代新能源科技股份有限公司 图像分类方法、装置及电子设备

Similar Documents

Publication Publication Date Title
CN106951899A (zh) 基于图像识别的异常检测方法
CN110348319B (zh) 一种基于人脸深度信息和边缘图像融合的人脸防伪方法
CN106846316B (zh) 一种gis内部典型缺陷图像自动识别方法
CN107545239B (zh) 一种基于车牌识别与车辆特征匹配的套牌检测方法
CN110929756B (zh) 基于深度学习的钢材尺寸和数量的识别方法、智能设备和存储介质
CN107316036B (zh) 一种基于级联分类器的害虫识别方法
CN109002851B (zh) 一种基于图像多特征融合的水果分类方法及应用
CN105404884B (zh) 图像分析方法
CN107273832B (zh) 基于积分通道特征与卷积神经网络的车牌识别方法及系统
CN107610114A (zh) 基于支持向量机的光学卫星遥感影像云雪雾检测方法
CN110414538A (zh) 缺陷分类方法、缺陷分类训练方法及其装置
US7643674B2 (en) Classification methods, classifier determination methods, classifiers, classifier determination devices, and articles of manufacture
US8655060B2 (en) Night-scene light source detecting device and night-scene light source detecting method
CN104318225A (zh) 车牌检测方法及装置
CN108009567B (zh) 一种结合图像颜色及hog和svm的粪便性状的自动辨别方法
WO2021258634A1 (zh) 一种图像审计识别方法、装置及存储介质
CN111382766A (zh) 一种基于Faster R-CNN的设备故障检测方法
CN108073940B (zh) 一种非结构化环境中的3d目标实例物体检测的方法
CN105320970A (zh) 一种马铃薯病害诊断装置、诊断系统及诊断方法
CN111950566A (zh) 一种旋转不变的hog红外图像电力设备识别方法
CN112528939A (zh) 一种人脸图像的质量评价方法及装置
Gurrala et al. A new segmentation method for plant disease diagnosis
CN111178359A (zh) 车牌号码识别方法、装置和设备及计算机存储介质
CN110188693B (zh) 改进的复杂环境车辆特征提取和停车判别方法
CN108154116A (zh) 一种图像识别方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170714