CN106950194A - 气体传感器及用于检测二氧化硫气体浓度变化的方法 - Google Patents

气体传感器及用于检测二氧化硫气体浓度变化的方法 Download PDF

Info

Publication number
CN106950194A
CN106950194A CN201710158541.0A CN201710158541A CN106950194A CN 106950194 A CN106950194 A CN 106950194A CN 201710158541 A CN201710158541 A CN 201710158541A CN 106950194 A CN106950194 A CN 106950194A
Authority
CN
China
Prior art keywords
coupler
hollow
pulse light
core fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710158541.0A
Other languages
English (en)
Other versions
CN106950194B (zh
Inventor
李林军
杨玉强
杨曦凝
白云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Hanao Technology Co Ltd
Original Assignee
Harbin Hanao Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Hanao Technology Co Ltd filed Critical Harbin Hanao Technology Co Ltd
Priority to CN201710158541.0A priority Critical patent/CN106950194B/zh
Publication of CN106950194A publication Critical patent/CN106950194A/zh
Application granted granted Critical
Publication of CN106950194B publication Critical patent/CN106950194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供了一种气体传感器及用于检测二氧化硫气体浓度变化的方法。在气体传感器中,环形腔由第一耦合器、马赫曾徳干涉计、第二滤波器和第二耦合器构成,马赫曾徳干涉计由两个耦合器以及传感臂、参考臂构成。其中,传感臂由单模光纤、空芯光纤和环行器构成,空芯光纤的纤芯内充有待测的二氧化硫气体。二氧化硫吸收泵浦光后温度增加,导致马赫曾德干涉计传感臂的光程增大;二氧化硫的浓度越高,传感臂的光程变化越大。通过测量脉冲信号光的衰荡时间变化,能够得到二氧化硫气体浓度的变化。本发明将空芯光纤光热技术、马赫曾徳干涉技术与环形腔衰荡光谱技术相结合,提高了被测气体的探测灵敏度,降低了光源起伏对测量结果的影响。

Description

气体传感器及用于检测二氧化硫气体浓度变化的方法
技术领域
本发明涉及气体检测领域,尤其涉及一种气体传感器及用于检测二氧化硫气体浓度变化的方法。
背景技术
二氧化硫是配电设备中绝缘介质六氟化硫的主要分解物之一。通常采用空间光谱吸收法进行测量,为了提高灵敏度需要大体积气室,导致仪器体积庞大,难以实现在线检测。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
鉴于此,本发明提供了一种气体传感器及用于检测二氧化硫气体浓度变化的方法,以至少解决现有二氧化硫检测技术存在仪器体积庞大、难以实现在线检测的问题。
根据本发明的一个方面,提供了一种基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器,其特征在于,气体传感器包括环形腔、第一激光器、偏振器、电光调制器、第一隔离器、第二激光器、EDFA、第二隔离器、第一滤波器和探测器;其中,环形腔由第一耦合器、马赫曾德干涉计、第二滤波器和第二耦合器构成;马赫曾德干涉计包括第三耦合器、第四耦合器、传感臂和参考臂,传感臂由单模光纤、空芯光纤和环行器构成,而参考臂由单模光纤构成;其中,空芯光纤的纤芯内充有二氧化硫气体;第三耦合器和第四耦合器的分光比均为50:50;第二激光器的输出波长与二氧化硫的吸收谱峰重合;第二激光器发出的泵浦光经EDFA、第二隔离器、第一滤波器和环形器后进入空芯光纤,并与空芯光纤内的二氧化硫相互作用;第一激光器的输出波长与二氧化硫的吸收谱最低处重合;第一激光器发出的信号光经偏振器和电光调制器后变为脉冲信号光;从电光调制器输出的脉冲信号光经第一隔离器后由第一耦合器的1%输入端进入环形腔,经马赫曾德干涉计和第二滤波器后进入第二耦合器,从第二耦合器输出的脉冲信号光分为两部分:一部分脉冲信号光经第二耦合器的99%输出端和第一耦合器的99%输入端后在环形腔内完成一次循环,而另一部分脉冲信号光经第二耦合器的1%输出端输出后由探测器接收;其中,在马赫曾德干涉计中,从第一耦合器出射的脉冲信号光经过第三耦合器后分别从从第三耦合器的第一50%输出端和第二50%输出端输出,其中,从第三耦合器的第一50%输出端输出的脉冲信号光依次通过传感臂中的空芯光纤和环行器后进入第四耦合器的第一50%输入端,而从第三耦合器的第二50%输出端输出的脉冲信号光通过参考臂后进入第四耦合器的第二50%输入端,第四耦合器的输出端输出的脉冲信号光进入第二滤波器。
进一步地,脉冲信号光的脉宽和周期以及环形腔的长度被设置成:使脉冲信号光在环形腔内循环一周所需的时间tr在脉冲信号光的脉宽的2-10倍范围内、且在脉冲信号光的周期的1/50-1/20范围内。
进一步地,在传感臂120-3中:空芯光纤的一个端面以密封方式连接一段单模光纤的端面,而空芯光纤的另一个端面以密封方式连接另一段单模光纤的端面,空芯光纤的侧面开有两个孔,两个孔分别设置在靠近空芯光纤两端的位置。
进一步地,第一激光器和泵浦激光器均为DFB激光器。
根据本发明的另一方面,还提供了一种用于检测二氧化硫气体浓度变化的方法,该方法利用基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器实现,基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器包括环形腔、第一激光器、偏振器、电光调制器、第一隔离器、第二激光器、EDFA、第二隔离器、第一滤波器和探测器;其中,环形腔由第一耦合器、马赫曾德干涉计、第二滤波器和第二耦合器构成;马赫曾德干涉计包括第三耦合器、第四耦合器、传感臂和参考臂,传感臂由单模光纤、空芯光纤和环行器构成,而参考臂由单模光纤构成;其中,空芯光纤的纤芯内充有二氧化硫气体;第三耦合器和第四耦合器的分光比均为50:50;第二激光器的输出波长与二氧化硫的吸收谱峰重合;第二激光器发出的泵浦光经EDFA、第二隔离器、第一滤波器和环形器后进入空芯光纤,并与空芯光纤内的二氧化硫相互作用;第一激光器的输出波长与二氧化硫的吸收谱最低处重合;第一激光器发出的信号光经偏振器和电光调制器后变为脉冲信号光;从电光调制器输出的脉冲信号光经第一隔离器后由第一耦合器的1%输入端进入环形腔,经马赫曾德干涉计和第二滤波器后进入第二耦合器,从第二耦合器输出的脉冲信号光分为两部分:一部分脉冲信号光经第二耦合器的99%输出端和第一耦合器的99%输入端后在环形腔内完成一次循环,而另一部分脉冲信号光经第二耦合器的1%输出端输出后由探测器接收;其中,在马赫曾德干涉计中,从第一耦合器出射的脉冲信号光经过第三耦合器后分别从从第三耦合器的第一50%输出端和第二50%输出端输出,其中,从第三耦合器的第一50%输出端输出的脉冲信号光依次通过传感臂中的空芯光纤和环行器后进入第四耦合器的第一50%输入端,而从第三耦合器的第二50%输出端输出的脉冲信号光通过参考臂后进入第四耦合器的第二50%输入端,第四耦合器的输出端输出的脉冲信号光进入第二滤波器;用于检测二氧化硫气体浓度变化的方法包括:获得探测器10相邻两次接收到脉冲信号光之间的时间差,将该时间差作为脉冲信号光在环形腔1中传输一圈所用的时间tr;获得探测器10所接收的脉冲信号光的衰荡时间的变化量Δτ;根据下式计算空芯光纤内二氧化硫气体浓度的变化量ΔC:
其中,k为预设常数,α为二氧化硫对泵浦光的吸收系数,l为空芯光纤的长度,P为空芯光纤内泵浦光的平均功率。
进一步地,脉冲信号光的脉宽和周期以及环形腔的长度被设置成:使脉冲信号光在环形腔内循环一周所需的时间tr在脉冲信号光的脉宽的2-10倍范围内、且在脉冲信号光的周期的1/50-1/20范围内。
本发明的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器及用于检测二氧化硫气体浓度变化的方法,将空芯光纤光热技术、马赫曾徳干涉技术与环形腔衰荡光谱技术相结合,其中,环形腔由第一耦合器、马赫曾徳干涉计、第二滤波器和第二耦合器构成,其中的马赫曾徳干涉计由第三耦合器、第四耦合器、传感臂和参考臂构成。参考臂经由单模光纤构成,传感臂由单模光纤、空芯光纤和环行器构成,其中空芯光纤的纤芯内充有二氧化硫气体。泵浦激光机(即第二激光器)发出的泵浦光波长与二氧化硫的吸收谱峰重合,这样,泵浦光经EDFA放大器、第二隔离器、第一滤波器以及传感壁的环形器后进入空芯光纤,与空芯光纤内的二氧化硫相互作用。二氧化硫吸收泵浦光后温度增加,导致马赫曾德干涉计传感臂的光程增大;二氧化硫的浓度越高,传感臂的光程变化越大。
如上所述,通过将空芯光纤光热技术、马赫曾德干涉技术以及光纤环形腔衰荡光谱技术相结合,大大提高了被测气体的探测灵敏度,降低了光源起伏对测量结果的影响。其中,信号光经马赫曾德干涉计后产生干涉,干涉后信号光的光强随传感臂与参考臂光程差的变化而变化,当传感臂光程增大时信号光光强减弱,导致环形腔的损耗增大、衰荡时间减小。由于空芯光纤内二氧化硫浓度决定传感臂与参考臂光程差的变化,因此通过测量环形腔的衰荡时间即可获得二氧化硫的浓度。
相比于现有技术,本发明的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器及用于检测二氧化硫气体浓度变化的方法,采用空芯光纤作为气室,即实现了被测气体的长距离吸收和在线检测,又实现了气室的小型化。
此外,本发明的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器及用于检测二氧化硫气体浓度变化的方法,避免了基于法拉第效应电流传感器的双折射问题,解决了基于超磁致伸缩材料电流传感器磁滞回线的问题。本发明的双锥形导磁回路,使被测导线产生的磁场汇聚到传感头上,大大提高了传感头处电流到磁场的转化效率及电流测量灵敏度。
通过以下结合附图对本发明的最佳实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1是示意性地示出本发明的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器的一个示例的结构图;
图2是示出图1中的马赫曾德干涉计120的结构的示意图;
图3是示出光纤微腔传感头结构的一个示例的示意图;
图4是探测器接收到的脉冲光信号的衰荡时间示意图。
本领域技术人员应当理解,附图中的元件仅仅是为了简单和清楚起见而示出的,而且不一定是按比例绘制的。例如,附图中某些元件的尺寸可能相对于其他元件放大了,以便有助于提高对本发明实施例的理解。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的装置结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明的实施例提供了一种基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器,其特征在于,气体传感器包括环形腔、第一激光器、偏振器、电光调制器、第一隔离器、第二激光器、EDFA、第二隔离器、第一滤波器和探测器;其中,环形腔由第一耦合器、马赫曾德干涉计、第二滤波器和第二耦合器构成;马赫曾德干涉计包括第三耦合器、第四耦合器、传感臂和参考臂,传感臂由单模光纤、空芯光纤和环行器构成,而参考臂由单模光纤构成;其中,空芯光纤的纤芯内充有二氧化硫气体;第三耦合器和第四耦合器的分光比均为50:50;第二激光器的输出波长与二氧化硫的吸收谱峰重合;第二激光器发出的泵浦光经EDFA、第二隔离器、第一滤波器和环形器后进入空芯光纤,并与空芯光纤内的二氧化硫相互作用;第一激光器的输出波长与二氧化硫的吸收谱最低处重合;第一激光器发出的信号光经偏振器和电光调制器后变为脉冲信号光;从电光调制器输出的脉冲信号光经第一隔离器后由第一耦合器的1%输入端进入环形腔,经马赫曾德干涉计和第二滤波器后进入第二耦合器,从第二耦合器输出的脉冲信号光分为两部分:一部分脉冲信号光经第二耦合器的99%输出端和第一耦合器的99%输入端后在环形腔内完成一次循环,而另一部分脉冲信号光经第二耦合器的1%输出端输出后由探测器接收;其中,在马赫曾德干涉计中,从第一耦合器出射的脉冲信号光经过第三耦合器后分别从从第三耦合器的第一50%输出端和第二50%输出端输出,其中,从第三耦合器的第一50%输出端输出的脉冲信号光依次通过传感臂中的空芯光纤和环行器后进入第四耦合器的第一50%输入端,而从第三耦合器的第二50%输出端输出的脉冲信号光通过参考臂后进入第四耦合器的第二50%输入端,第四耦合器的输出端输出的脉冲信号光进入第二滤波器。
图1和图2给出了本发明的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器的一个示例的结构图。
如图1所示,在该示例中,基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器包括环形腔1、第一激光器2、偏振器3、电光调制器4、第一隔离器5、第二激光器6、EDFA7、第二隔离器8、第一滤波器9和探测器10。
其中,环形腔1由第一耦合器110、马赫曾德干涉计120、第二滤波器130和第二耦合器140构成。
如图2所示,马赫曾德干涉计120包括第三耦合器120-1、第四耦合器120-2、传感臂120-3和参考臂120-4,传感臂120-3由单模光纤、空芯光纤和环行器构成,而参考臂120-4由单模光纤构成;其中,空芯光纤的纤芯内充有二氧化硫气体。第三耦合器120-1和第四耦合器120-2的分光比例如均为50:50。
第二激光器6发出的泵浦光经EDFA7、第二隔离器8、第一滤波器9和环形器后进入空芯光纤,并与空芯光纤内的二氧化硫相互作用。第二激光器6作为泵浦激光器,可采用DFB激光器,其输出的泵浦光(如图1中所示的箭头p)的波长与二氧化硫的吸收谱峰重合,以使得泵浦光能够尽量多地被二氧化硫吸收(即使得二氧化硫对泵浦光的吸收率最大化)。二氧化硫吸收泵浦光后温度增加,导致马赫曾德干涉计120传感臂120-3的光程增大;其中,二氧化硫的浓度越高,传感臂120-3的光程变化越大(即,光程增大得越多)。
第一激光器2可采用DFB激光器,其输出的光作为信号光(即探测光,如图1中所示的箭头s)的输出波长与二氧化硫的吸收谱最低处重合,以使得信号光能够尽可能不被二氧化硫所吸收(即使得二氧化硫对信号光的吸收率最小化)。第一激光器2发出的信号光经偏振器3和电光调制器4后变为脉冲信号光,该脉冲信号光经第一隔离器5后由第一耦合器110的1%输入端进入环形腔1,经马赫曾德干涉计120和第二滤波器130后进入第二耦合器140,从第二耦合器140输出的脉冲信号光分为两部分:一部分脉冲信号光经第二耦合器140的99%输出端和第一耦合器110的99%输入端后在环形腔1内完成一次循环,而另一部分脉冲信号光经第二耦合器140的1%输出端由探测器10接收。
其中,上述“经第二耦合器140的99%输出端和第一耦合器110的99%输入端后在环形腔1内完成一次循环”的这部分脉冲信号光通过第一耦合器110的99%输入端后继续在环形腔1中进行下一次循环,依旧经马赫曾德干涉计120和第二滤波器130后进入第二耦合器140,从第二耦合器140输出后依旧分为两部分,即,被探测器10接收的部分(从第二耦合器140的1%输出端输出)和继续在环形腔1中进行下一次循环的部分(从第二耦合器140的99%输出端输出);依此类推,脉冲信号光在环形腔内多次循环衰减,同样使得探测器10接收的信号光为衰荡的脉冲信号。
在马赫曾德干涉计120中,从第一耦合器110出射的脉冲信号光经过第三耦合器120-1后分别从第三耦合器120-1的第一50%输出端和第二50%输出端输出,其中,从第三耦合器120-1的第一50%输出端输出的脉冲信号光依次通过传感臂120-3中的空芯光纤和环行器后进入第四耦合器120-2的第一50%输入端,而从第三耦合器120-1的第二50%输出端输出的脉冲信号光通过参考臂120-4后进入第四耦合器120-2的第二50%输入端,第四耦合器120-2的输出端输出的脉冲信号光进入第二滤波器130。
第二滤波器130可以过滤掉残余的泵浦光。
根据一个实现方式,通过控制脉冲信号光的脉宽和周期以及环形腔1的长度,使脉冲信号在环形衰荡腔(即环形腔1)内循环一周所需的时间tr在脉冲信号光的脉宽的2-10倍范围内、且在脉冲信号光的周期的1/50-1/20范围内。也就是说,将脉冲信号光的脉宽记为WS,将脉冲信号光的周期记为TS,则有:2WS≤tr≤10WS,且TS/50≤tr≤TS/20。
此外,根据一个实现方式,在传感臂120-3中,空芯光纤气室可以具有如图3所示的结构。如图3所示,空芯光纤的一个端面以密封方式连接一段单模光纤的端面,而空芯光纤的另一个端面以密封方式连接另一段单模光纤的端面,空芯光纤的侧面开有两个孔(如图3中的孔1和孔2),两个孔分别设置在靠近空芯光纤两端的位置。采用如图3所示的结构,实现了被测气体的长距离吸收和在线检测,又实现了气室的小型化。
此外,本发明的实施例还提供了一种用于检测二氧化硫气体浓度变化的方法,该方法利用基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器实现,基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器包括环形腔、第一激光器、偏振器、电光调制器、第一隔离器、第二激光器、EDFA、第二隔离器、第一滤波器和探测器;其中,环形腔由第一耦合器、马赫曾德干涉计、第二滤波器和第二耦合器构成;马赫曾德干涉计包括第三耦合器、第四耦合器、传感臂和参考臂,传感臂由单模光纤、空芯光纤和环行器构成,而参考臂由单模光纤构成;其中,空芯光纤的纤芯内充有二氧化硫气体;第三耦合器和第四耦合器的分光比均为50:50;第二激光器的输出波长与二氧化硫的吸收谱峰重合;第二激光器发出的泵浦光经EDFA、第二隔离器、第一滤波器和环形器后进入空芯光纤,并与空芯光纤内的二氧化硫相互作用;第一激光器的输出波长与二氧化硫的吸收谱最低处重合;第一激光器发出的信号光经偏振器和电光调制器后变为脉冲信号光;从电光调制器输出的脉冲信号光经第一隔离器后由第一耦合器的1%输入端进入环形腔,经马赫曾德干涉计和第二滤波器后进入第二耦合器,从第二耦合器输出的脉冲信号光分为两部分:一部分脉冲信号光经第二耦合器的99%输出端和第一耦合器的99%输入端后在环形腔内完成一次循环,而另一部分脉冲信号光经第二耦合器的1%输出端输出后由探测器接收;其中,在马赫曾德干涉计中,从第一耦合器出射的脉冲信号光经过第三耦合器后分别从从第三耦合器的第一50%输出端和第二50%输出端输出,其中,从第三耦合器的第一50%输出端输出的脉冲信号光依次通过传感臂中的空芯光纤和环行器后进入第四耦合器的第一50%输入端,而从第三耦合器的第二50%输出端输出的脉冲信号光通过参考臂后进入第四耦合器的第二50%输入端,第四耦合器的输出端输出的脉冲信号光进入第二滤波器;用于检测二氧化硫气体浓度变化的方法包括:获得探测器10相邻两次接收到脉冲信号光之间的时间差,将该时间差作为脉冲信号光在环形腔1中传输一圈所用的时间tr;获得探测器10所接收的脉冲信号光的衰荡时间的变化量Δτ;根据公式一来计算空芯光纤内二氧化硫气体浓度的变化量ΔC。
公式一:
其中,在公式一中,k为预设常数,可根据经验值来设定;α为二氧化硫对泵浦光的吸收系数,l为空芯光纤的长度(例如可以在0.01m-10m范围内取值),P为空芯光纤内泵浦光的平均功率。
下面描述本发明的用于检测二氧化硫气体浓度变化的方法的一个示例。本发明的用于检测二氧化硫气体浓度变化的方法可利用上文结合图1-3所描述的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器来执行,一些相同的描述这里将省略。
如上文所述,打开第一激光器2和第二激光器6,使得二者开始工作,其中,第一激光器2输出的光作为信号光,而第二激光器6输出的光作为泵浦光。
第二激光器6的输出波长与二氧化硫的吸收谱峰重合,泵浦光在经过EDFA 7、第二隔离器8、第一滤波器9和环形器后进入空芯光纤,并与空芯光纤内的二氧化硫相互作用,使得部分泵浦光被二氧化硫吸收。
第一激光器2的输出波长与二氧化硫的吸收谱最低处重合,信号光在经过偏振器3和电光调制器4后变为脉冲信号光。
从电光调制器4输出的脉冲信号光经第一隔离器5后由第一耦合器110的1%输入端进入环形腔1,经马赫曾德干涉计120和第二滤波器130后进入第二耦合器140,从第二耦合器140输出的脉冲信号光分为两部分:一部分脉冲信号光经第二耦合器140的99%输出端和第一耦合器110的99%输入端后在环形腔1内完成一次循环,而另一部分脉冲信号光经第二耦合器140的1%输出端输出后由探测器10接收。
其中,在马赫曾德干涉计120中,从第一耦合器110出射的脉冲信号光经过第三耦合器120-1后分别从从第三耦合器120-1的第一50%输出端和第二50%输出端输出,其中,从第三耦合器120-1的第一50%输出端输出的脉冲信号光依次通过传感臂120-3中的空芯光纤和环行器后进入第四耦合器120-2的第一50%输入端,而从第三耦合器120-1的第二50%输出端输出的脉冲信号光通过参考臂120-4后进入第四耦合器120-2的第二50%输入端,第四耦合器120-2的输出端输出的脉冲信号光进入第二滤波器130。
利用以上气体传感器,可以测得探测器10每次接收到的脉冲信号光的脉冲能量,并可以得到探测器10每次接收到脉冲信号光时的接收时间。
获得探测器10相邻两次接收到脉冲信号光之间的时间差,将该时间差作为脉冲信号光在环形腔1中传输一圈所用的时间tr。例如,探测器10首次接收到脉冲信号光时的接收时间为t1,而第二次接收到脉冲信号光时的接收时间为t2,则可以将t2-t1作为tr的值。
获得探测器10所接收的脉冲信号光的衰荡时间的变化量Δτ。图4是探测器接收到的脉冲光信号的衰荡时间示意图,其中,图4中tr为脉冲信号光在环形腔1中传输一圈所用的时间。
如图4所示,将探测器10首次接收到的脉冲信号光的脉冲能量作为初始脉冲能量E0,探测器10接收到的脉冲信号光的脉冲能量从初始脉冲能量E0衰减到E0的1/e时所需的时间即为衰荡时间。这样,测得当前衰荡时间后,利用当前衰荡时间与参考衰荡时间之差,即可作为上述“探测器10所接收的脉冲信号光的衰荡时间的变化量Δτ”。
举例来说,在已知二氧化硫气体浓度的情况下,测得探测器10所接收的脉冲信号光的衰荡时间τ1,作为参考衰荡时间,并将该条件下的二氧化硫气体浓度作为参考浓度;在未知二氧化硫气体浓度的情况下,测得探测器10所接收的脉冲信号光的衰荡时间τ2,作为上述“当前衰荡时间”,则此时得到的探测器10所接收的脉冲信号光的衰荡时间的变化量Δτ=τ2-τ1。其中,上述参考浓度例如可以为0(即空芯光纤内未充入二氧化硫),也可以为非零值。
这样,根据公式一即可计算空芯光纤内二氧化硫气体浓度的变化量ΔC。
例如,已知二氧化硫气体浓度条件下的参考浓度为C1,而计算所得空芯光纤内二氧化硫气体浓度的变化量ΔC,则可以得到当前空芯光纤内二氧化硫气体浓度为C1+ΔC。
根据一个方式,脉冲信号光的脉宽和周期以及环形腔1的长度被设置成:使脉冲信号光在环形腔1内循环一周所需的时间tr在脉冲信号光的脉宽的2-10倍范围内、且在脉冲信号光的周期的1/50-1/20范围内。
尽管根据有限数量的实施例描述了本发明,但是受益于上面的描述,本技术领域内的技术人员明白,在由此描述的本发明的范围内,可以设想其它实施例。此外,应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。

Claims (6)

1.基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器,其特征在于,所述气体传感器包括环形腔(1)、第一激光器(2)、偏振器(3)、电光调制器(4)、第一隔离器(5)、第二激光器(6)、EDFA(7)、第二隔离器(8)、第一滤波器(9)和探测器(10);
其中,环形腔(1)由第一耦合器(110)、马赫曾德干涉计(120)、第二滤波器(130)和第二耦合器(140)构成;
所述马赫曾德干涉计(120)包括第三耦合器(120-1)、第四耦合器(120-2)、传感臂(120-3)和参考臂(120-4),所述传感臂(120-3)由单模光纤、空芯光纤和环行器构成,而所述参考臂(120-4)由单模光纤构成;其中,所述空芯光纤的纤芯内充有二氧化硫气体;所述第三耦合器(120-1)和所述第四耦合器(120-2)的分光比均为50:50;
所述第二激光器(6)的输出波长与二氧化硫的吸收谱峰重合;所述第二激光器(6)发出的泵浦光经所述EDFA(7)、所述第二隔离器(8)、所述第一滤波器(9)和所述环形器后进入所述空芯光纤,并与所述空芯光纤内的二氧化硫相互作用;
所述第一激光器(2)的输出波长与二氧化硫的吸收谱最低处重合;所述第一激光器(2)发出的信号光经所述偏振器(3)和所述电光调制器(4)后变为脉冲信号光;从所述电光调制器(4)输出的脉冲信号光经所述第一隔离器(5)后由所述第一耦合器(110)的1%输入端进入所述环形腔(1),经所述马赫曾德干涉计(120)和所述第二滤波器(130)后进入所述第二耦合器(140),从所述第二耦合器(140)输出的脉冲信号光分为两部分:一部分脉冲信号光经所述第二耦合器(140)的99%输出端和所述第一耦合器(110)的99%输入端后在所述环形腔(1)内完成一次循环,而另一部分脉冲信号光经所述第二耦合器(140)的1%输出端输出后由所述探测器(10)接收;
其中,在所述马赫曾德干涉计(120)中,从所述第一耦合器(110)出射的脉冲信号光经过所述第三耦合器(120-1)后分别从从所述第三耦合器(120-1)的第一50%输出端和第二50%输出端输出,其中,从所述第三耦合器(120-1)的第一50%输出端输出的脉冲信号光依次通过所述传感臂(120-3)中的空芯光纤和环行器后进入所述第四耦合器(120-2)的第一50%输入端,而从所述第三耦合器(120-1)的第二50%输出端输出的脉冲信号光通过所述参考臂(120-4)后进入所述第四耦合器(120-2)的第二50%输入端,所述第四耦合器(120-2)的输出端输出的脉冲信号光进入所述第二滤波器(130)。
2.根据权利要求1所述的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器,其特征在于,所述脉冲信号光的脉宽和周期以及所述环形腔(1)的长度被设置成:使所述脉冲信号光在所述环形腔(1)内循环一周所需的时间tr在所述脉冲信号光的脉宽的2-10倍范围内、且在所述脉冲信号光的周期的1/50-1/20范围内。
3.根据权利要求1或2所述的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器,其特征在于,在所述传感臂(120-3)中:
所述空芯光纤的一个端面以密封方式连接一段单模光纤的端面,而所述空芯光纤的另一个端面以密封方式连接另一段单模光纤的端面,所述空芯光纤的侧面开有两个孔,所述两个孔分别设置在靠近所述空芯光纤两端的位置。
4.根据权利要求1或2所述的基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器,其特征在于,所述第一激光器(2)和所述泵浦激光器(6)均为DFB激光器。
5.用于检测二氧化硫气体浓度变化的方法,其特征在于,该方法利用基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器实现,所述基于空芯光纤光热效应和光纤环形衰荡腔的气体传感器包括环形腔(1)、第一激光器(2)、偏振器(3)、电光调制器(4)、第一隔离器(5)、第二激光器(6)、EDFA(7)、第二隔离器(8)、第一滤波器(9)和探测器(10);其中,环形腔(1)由第一耦合器(110)、马赫曾德干涉计(120)、第二滤波器(130)和第二耦合器(140)构成;所述马赫曾德干涉计(120)包括第三耦合器(120-1)、第四耦合器(120-2)、传感臂(120-3)和参考臂(120-4),所述传感臂(120-3)由单模光纤、空芯光纤和环行器构成,而所述参考臂(120-4)由单模光纤构成;其中,所述空芯光纤的纤芯内充有二氧化硫气体;所述第三耦合器(120-1)和所述第四耦合器(120-2)的分光比均为50:50;所述第二激光器(6)的输出波长与二氧化硫的吸收谱峰重合;所述第二激光器(6)发出的泵浦光经所述EDFA(7)、所述第二隔离器(8)、所述第一滤波器(9)和所述环形器后进入所述空芯光纤,并与所述空芯光纤内的二氧化硫相互作用;所述第一激光器(2)的输出波长与二氧化硫的吸收谱最低处重合;所述第一激光器(2)发出的信号光经所述偏振器(3)和所述电光调制器(4)后变为脉冲信号光;从所述电光调制器(4)输出的脉冲信号光经所述第一隔离器(5)后由所述第一耦合器(110)的1%输入端进入所述环形腔(1),经所述马赫曾德干涉计(120)和所述第二滤波器(130)后进入所述第二耦合器(140),从所述第二耦合器(140)输出的脉冲信号光分为两部分:一部分脉冲信号光经所述第二耦合器(140)的99%输出端和所述第一耦合器(110)的99%输入端后在所述环形腔(1)内完成一次循环,而另一部分脉冲信号光经所述第二耦合器(140)的1%输出端输出后由所述探测器(10)接收;其中,在所述马赫曾德干涉计(120)中,从所述第一耦合器(110)出射的脉冲信号光经过所述第三耦合器(120-1)后分别从从所述第三耦合器(120-1)的第一50%输出端和第二50%输出端输出,其中,从所述第三耦合器(120-1)的第一50%输出端输出的脉冲信号光依次通过所述传感臂(120-3)中的空芯光纤和环行器后进入所述第四耦合器(120-2)的第一50%输入端,而从所述第三耦合器(120-1)的第二50%输出端输出的脉冲信号光通过所述参考臂(120-4)后进入所述第四耦合器(120-2)的第二50%输入端,所述第四耦合器(120-2)的输出端输出的脉冲信号光进入所述第二滤波器(130);
所述用于检测二氧化硫气体浓度变化的方法包括:
获得所述探测器(10)相邻两次接收到脉冲信号光之间的时间差,将该时间差作为脉冲信号光在所述环形腔(1)中传输一圈所用的时间tr
获得所述探测器(10)所接收的脉冲信号光的衰荡时间的变化量Δτ;
根据下式计算所述空芯光纤内二氧化硫气体浓度的变化量ΔC:
Δ τ = - 2.3 t r log 10 ( k 2 α 2 P 2 l 2 ΔC 2 4 ) ,
其中,k为预设常数,α为二氧化硫对泵浦光的吸收系数,l为空芯光纤的长度,P为空芯光纤内泵浦光的平均功率。
6.根据权利要求5所述的用于检测二氧化硫气体浓度变化的方法,其特征在于,脉冲信号光的脉宽和周期以及环形腔1的长度被设置成:使脉冲信号光在环形腔1内循环一周所需的时间tr在脉冲信号光的脉宽的2-10倍范围内、且在脉冲信号光的周期的1/50-1/20范围内。
CN201710158541.0A 2017-03-17 2017-03-17 气体传感器及用于检测二氧化硫气体浓度变化的方法 Active CN106950194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710158541.0A CN106950194B (zh) 2017-03-17 2017-03-17 气体传感器及用于检测二氧化硫气体浓度变化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710158541.0A CN106950194B (zh) 2017-03-17 2017-03-17 气体传感器及用于检测二氧化硫气体浓度变化的方法

Publications (2)

Publication Number Publication Date
CN106950194A true CN106950194A (zh) 2017-07-14
CN106950194B CN106950194B (zh) 2018-06-12

Family

ID=59472640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710158541.0A Active CN106950194B (zh) 2017-03-17 2017-03-17 气体传感器及用于检测二氧化硫气体浓度变化的方法

Country Status (1)

Country Link
CN (1) CN106950194B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817221A (zh) * 2017-12-07 2018-03-20 哈尔滨理工大学 基于光热光谱技术和Sagnac干涉的气体传感器
CN109084930A (zh) * 2018-10-29 2018-12-25 深圳大学 一种空芯光子带隙光纤干涉仪传感器、制作装置和方法
CN109781637A (zh) * 2019-01-17 2019-05-21 哈尔滨理工大学 基于光纤双腔结构增敏及光热技术的气体传感器
CN110849838A (zh) * 2019-11-27 2020-02-28 西安交通大学 基于硅基集成空芯光波导的多组分气体检测方法及装置
CN113702302A (zh) * 2021-08-28 2021-11-26 武汉东泓华芯科技有限公司 一种基于光腔衰荡光谱技术的气体检测装置及方法
CN114813601A (zh) * 2022-05-19 2022-07-29 华北电力大学 一种用于锂离子电池内部易燃气体原位检测的光纤检测系统
CN115266640A (zh) * 2022-08-05 2022-11-01 东北大学 一种基于空芯光纤微腔的自参考气体吸收光谱检测装置及方法
CN115372269A (zh) * 2022-10-24 2022-11-22 哈尔滨翰奥科技有限公司 基于圆偏振激光测量气体折射率及浓度的方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020101592A1 (en) * 2001-02-01 2002-08-01 Zare Richard N. Pulse-by-pulse cavity ring-down spectroscopy
WO2007034681A1 (ja) * 2005-09-07 2007-03-29 National University Corporation Nagoya University 分光方法及び分光装置
JP4486433B2 (ja) * 2004-07-29 2010-06-23 浜松ホトニクス株式会社 吸収計測装置
CN102116738A (zh) * 2010-11-30 2011-07-06 华中科技大学 基于光纤环形衰荡腔的甲烷气体传感装置
WO2011096323A1 (ja) * 2010-02-04 2011-08-11 学校法人近畿大学 キャビティリングダウン分光装置、吸光分析装置及びキャビティリングダウン分光方法
CN102183308A (zh) * 2010-12-31 2011-09-14 中国科学院光电技术研究所 一种可调谐激光器波长变化量的测量方法
CN102494703A (zh) * 2011-11-29 2012-06-13 武汉理工大学 光纤衰荡环时分复用传感系统
CN103154684A (zh) * 2010-08-20 2013-06-12 新南创新有限公司 用于分析时间衰减信号的光学信号处理方法和装置
CN103335967A (zh) * 2013-06-24 2013-10-02 南昌航空大学 基于布里渊慢光效应的光纤环形腔衰荡光谱装置
CN103364370A (zh) * 2013-07-03 2013-10-23 哈尔滨工程大学 基于环形腔衰落的环形芯光纤传感器
CN103424375A (zh) * 2013-09-02 2013-12-04 山东大学 一种基于差分吸收技术的多通道多点位气体检测系统
CN103472002A (zh) * 2013-09-27 2013-12-25 山东大学 一种光纤激光器腔内光声光谱气体检测系统
CN103487402A (zh) * 2013-10-14 2014-01-01 北京信息科技大学 带有饱和吸收光纤的环形腔内腔光纤激光器气体检测系统
CN103674891A (zh) * 2013-12-02 2014-03-26 中国科学院安徽光学精密机械研究所 基于双腔式腔衰荡技术的大气no3自由基浓度测量系统
JP2014055929A (ja) * 2012-08-10 2014-03-27 Tatsuta Electric Wire & Cable Co Ltd キャビティリングダウン分光装置
CN203519485U (zh) * 2013-09-27 2014-04-02 山东大学 一种光纤激光器腔内光声光谱气体检测系统
WO2014059345A1 (en) * 2012-10-12 2014-04-17 Lehmann Kevin K Mercury vapor trace detection using pre-excitation cavity ring down spectroscopy
US20150131094A1 (en) * 2013-11-13 2015-05-14 King Abdullah University Of Science And Technology Cavity ring-down spectroscopic system and method
CN105352914A (zh) * 2015-12-07 2016-02-24 济南大学 一种基于双波长光纤环形腔的气体浓度检测系统及其方法
CN105424605A (zh) * 2015-11-18 2016-03-23 安徽大学 基于低相干光纤微分干涉非接触测振的光声光谱测量装置及方法
CN105866069A (zh) * 2016-04-20 2016-08-17 北京信息科技大学 一种基于可调谐光纤激光器的气体成分测试系统
CN106091973A (zh) * 2016-07-05 2016-11-09 哈尔滨理工大学 基于环形腔衰荡光谱技术应变传感器及应变检测方法
CN205909795U (zh) * 2016-07-05 2017-01-25 哈尔滨理工大学 基于环形腔衰荡光谱技术应变传感器

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020101592A1 (en) * 2001-02-01 2002-08-01 Zare Richard N. Pulse-by-pulse cavity ring-down spectroscopy
JP4486433B2 (ja) * 2004-07-29 2010-06-23 浜松ホトニクス株式会社 吸収計測装置
WO2007034681A1 (ja) * 2005-09-07 2007-03-29 National University Corporation Nagoya University 分光方法及び分光装置
WO2011096323A1 (ja) * 2010-02-04 2011-08-11 学校法人近畿大学 キャビティリングダウン分光装置、吸光分析装置及びキャビティリングダウン分光方法
CN103154684A (zh) * 2010-08-20 2013-06-12 新南创新有限公司 用于分析时间衰减信号的光学信号处理方法和装置
CN102116738A (zh) * 2010-11-30 2011-07-06 华中科技大学 基于光纤环形衰荡腔的甲烷气体传感装置
CN102183308A (zh) * 2010-12-31 2011-09-14 中国科学院光电技术研究所 一种可调谐激光器波长变化量的测量方法
CN102494703A (zh) * 2011-11-29 2012-06-13 武汉理工大学 光纤衰荡环时分复用传感系统
JP2014055929A (ja) * 2012-08-10 2014-03-27 Tatsuta Electric Wire & Cable Co Ltd キャビティリングダウン分光装置
WO2014059345A1 (en) * 2012-10-12 2014-04-17 Lehmann Kevin K Mercury vapor trace detection using pre-excitation cavity ring down spectroscopy
CN103335967A (zh) * 2013-06-24 2013-10-02 南昌航空大学 基于布里渊慢光效应的光纤环形腔衰荡光谱装置
CN103364370A (zh) * 2013-07-03 2013-10-23 哈尔滨工程大学 基于环形腔衰落的环形芯光纤传感器
CN103424375A (zh) * 2013-09-02 2013-12-04 山东大学 一种基于差分吸收技术的多通道多点位气体检测系统
CN203519485U (zh) * 2013-09-27 2014-04-02 山东大学 一种光纤激光器腔内光声光谱气体检测系统
CN103472002A (zh) * 2013-09-27 2013-12-25 山东大学 一种光纤激光器腔内光声光谱气体检测系统
CN103487402A (zh) * 2013-10-14 2014-01-01 北京信息科技大学 带有饱和吸收光纤的环形腔内腔光纤激光器气体检测系统
US20150131094A1 (en) * 2013-11-13 2015-05-14 King Abdullah University Of Science And Technology Cavity ring-down spectroscopic system and method
CN103674891A (zh) * 2013-12-02 2014-03-26 中国科学院安徽光学精密机械研究所 基于双腔式腔衰荡技术的大气no3自由基浓度测量系统
CN105424605A (zh) * 2015-11-18 2016-03-23 安徽大学 基于低相干光纤微分干涉非接触测振的光声光谱测量装置及方法
CN105352914A (zh) * 2015-12-07 2016-02-24 济南大学 一种基于双波长光纤环形腔的气体浓度检测系统及其方法
CN105866069A (zh) * 2016-04-20 2016-08-17 北京信息科技大学 一种基于可调谐光纤激光器的气体成分测试系统
CN106091973A (zh) * 2016-07-05 2016-11-09 哈尔滨理工大学 基于环形腔衰荡光谱技术应变传感器及应变检测方法
CN205909795U (zh) * 2016-07-05 2017-01-25 哈尔滨理工大学 基于环形腔衰荡光谱技术应变传感器

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CLAIRE VALLANCE: "Innovations in cavity ringdown spectroscopy", 《NEW J.CHEM.》 *
GEORGE STEWART 等: "An investigation of an optical fibreamplifier loop for intra-cavity andring-down cavity loss measurements", 《MEAS. SCI. TECHNOL.》 *
HELEN WAECHTER 等: "Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy", 《SENSORS》 *
LAURENT SCHARES 等: "40-GHz Mode-Locked Fiber-Ring Laser Using aMach–Zehnder Interferometer With Integrated SOAs", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 *
成洁 等: "基于飞秒激光加工的马赫-曾德尔干涉氢气传感器", 《光学学报》 *
王丹 等: "腔衰荡光谱技术中衰荡时间的准确快速提取", 《光谱学与光谱分析》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817221A (zh) * 2017-12-07 2018-03-20 哈尔滨理工大学 基于光热光谱技术和Sagnac干涉的气体传感器
CN109084930A (zh) * 2018-10-29 2018-12-25 深圳大学 一种空芯光子带隙光纤干涉仪传感器、制作装置和方法
CN109084930B (zh) * 2018-10-29 2023-12-22 深圳大学 一种空芯光子带隙光纤干涉仪传感器、制作装置和方法
CN109781637A (zh) * 2019-01-17 2019-05-21 哈尔滨理工大学 基于光纤双腔结构增敏及光热技术的气体传感器
CN109781637B (zh) * 2019-01-17 2021-06-11 哈尔滨理工大学 基于光纤双腔结构增敏及光热技术的气体传感器
CN110849838A (zh) * 2019-11-27 2020-02-28 西安交通大学 基于硅基集成空芯光波导的多组分气体检测方法及装置
CN113702302A (zh) * 2021-08-28 2021-11-26 武汉东泓华芯科技有限公司 一种基于光腔衰荡光谱技术的气体检测装置及方法
CN114813601A (zh) * 2022-05-19 2022-07-29 华北电力大学 一种用于锂离子电池内部易燃气体原位检测的光纤检测系统
CN114813601B (zh) * 2022-05-19 2022-09-20 华北电力大学 一种用于锂离子电池内部易燃气体原位检测的光纤检测系统
CN115266640A (zh) * 2022-08-05 2022-11-01 东北大学 一种基于空芯光纤微腔的自参考气体吸收光谱检测装置及方法
CN115266640B (zh) * 2022-08-05 2024-07-02 东北大学 一种基于空芯光纤微腔的自参考气体吸收光谱检测装置及方法
CN115372269A (zh) * 2022-10-24 2022-11-22 哈尔滨翰奥科技有限公司 基于圆偏振激光测量气体折射率及浓度的方法

Also Published As

Publication number Publication date
CN106950194B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN106950194B (zh) 气体传感器及用于检测二氧化硫气体浓度变化的方法
CN106908389A (zh) 气体传感器及用于检测氟化氢气体浓度变化的方法
Brown et al. Fiber-loop ring-down spectroscopy
CN105403322B (zh) 原子磁强计碱金属气室内温度分布的测量装置与方法
CN103487403A (zh) 带有参考腔补偿的双波长组合光纤激光器气体检测系统
CN106123933B (zh) 一种混沌光纤环衰荡传感装置及方法
CN103900680B (zh) 一种利用光源抑制偏振串音测量噪声的装置及检测方法
Zhao et al. Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method
CN109490235A (zh) 基于光纤Sagnac环与光纤FP腔级联增敏的光谱探测型气体传感器
CN104374410A (zh) 一种光子带隙光纤陀螺中光纤环熔接点反射的测量装置及方法
CN109490234A (zh) 基于光纤Sagnac双环并联结构的光谱探测型气体传感器
CN103487392B (zh) 一种频域腔衰荡光谱探测装置及方法
CN106017783A (zh) 一种同时测量碱金属气室内两种气体压强的方法
Wang et al. Transformer oil-dissolved acetylene detection with photonic crystal fiber loop ringdown spectroscopy
CN204177736U (zh) 基于双路光衰荡腔的痕量气体检测装置
CN109507128A (zh) 基于fp干涉计并联结构及光热技术的强度探测型气体传感器
CN109001155A (zh) 一种基于低增益低噪声光纤腔衰荡技术的湿度测量方法
Yu et al. Optical methane sensor based on a fiber loop at 1665 nm
CN107991267A (zh) 波长捷变的可调谐半导体激光吸收光谱气体检测装置及方法
CN105372208A (zh) 一种基于敏感膜涂覆的光子晶体光纤甲烷传感器
CN107941250A (zh) 一种具有损耗补偿结构的高分辨率混沌光纤环衰荡传感装置及方法
CN207675632U (zh) 基于空芯光波导的气体检测装置
CN103335967B (zh) 基于布里渊慢光效应的光纤环形腔衰荡光谱装置
CN105675501A (zh) 一种流体组分分析仪及其探测通道布置方法
CN110261671A (zh) 一种微波功率量子测量方法和真空腔体测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant