CN106943972A - 用于废水处理的壳核复合结构纳米磁性材料的制备方法 - Google Patents

用于废水处理的壳核复合结构纳米磁性材料的制备方法 Download PDF

Info

Publication number
CN106943972A
CN106943972A CN201710352346.1A CN201710352346A CN106943972A CN 106943972 A CN106943972 A CN 106943972A CN 201710352346 A CN201710352346 A CN 201710352346A CN 106943972 A CN106943972 A CN 106943972A
Authority
CN
China
Prior art keywords
manganese
nano
shell
zinc ferrite
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710352346.1A
Other languages
English (en)
Inventor
周连明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANTONG WANBAO INDUSTRY Co Ltd
Original Assignee
NANTONG WANBAO INDUSTRY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANTONG WANBAO INDUSTRY Co Ltd filed Critical NANTONG WANBAO INDUSTRY Co Ltd
Priority to CN201710352346.1A priority Critical patent/CN106943972A/zh
Publication of CN106943972A publication Critical patent/CN106943972A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Compounds Of Iron (AREA)
  • Catalysts (AREA)

Abstract

本发明是一种用于废水处理的壳核复合结构纳米磁性材料的制备方法,该磁性材料以锰锌铁氧体纳米粒子为核心,在该核心的外周围上复合有一层纳米二氧化钛薄膜,其制备的方法为:a.以硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇为原料,用溶胶‑凝胶法制备出纳米磁性核心锰锌铁氧体,b.经高温处理获得强磁性的尖晶石相,c.将尖晶石型锰锌铁氧体分离纯化后,分散于水溶液中,然后将钛酸酯的醇溶液滴加入其中进行水解反应,产生TiO2并沉积在磁性锰锌铁氧体表面,制备出以锰锌铁氧体为核心,TiO2为壳层的磁性复合纳米TiO2微粒;d.将步骤b中得到的产物焙烧处理,以获得高纯度的锐钛矿型TiO2壳核复合结构纳米磁性材料。

Description

用于废水处理的壳核复合结构纳米磁性材料的制备方法
技术领域
本发明是一种用于废水处理的壳核复合结构纳米磁性材料的制备方法,尤其是二氧化钛(Ti02)纳米材料与锰锌铁氧体复合的磁性材料的制备方法。
背景技术
在用物理方法处理污水的工艺中,纳米二氧化钛在紫外光照射下,可有效地将有机污染物完全催化氧化成二氧化碳、水、氯离子等无机物。随着全球环保意识的深刻化,使光催化消除有机物污染引起科技界的广泛兴趣。Ti02作为光催化剂,具有活性高、安全、无污染等优点,是最有开发前景的绿色环保催化剂之一,并正在有机废水处理、空气净化、杀菌除臭中扮演越来越重要的角色,其应用也越来越广泛。目前Ti02光催化剂在废水处理应用中,大多数研究局限于将Ti02粉末分散于废水池中的悬浮体系法。但由于Ti02纳米颗粒细小,悬浮法存在难以分离和回收,容易造成浪费、二次污染及中毒、凝聚等缺点。采用Ti02的固载化和集反应分离一体化的光催化反应器,可以克服悬浮法难回收的缺点,但光催化反应器的制备工艺复杂,且因负载基体的存在,TiO2的裸比表面减少,而牺牲TiO2的部分光催化活性和效果。
现有的制备方法是首先生成二氧化钛溶胶,再往溶胶中加入铁离子,形成凝胶,粉碎后在高温下用氢气还原铁离子获得TiO2-Fe复合粉体。可以想象,所得到的粉体只能是TiO2与Fe的复合材料,很难保证就是二氧化钛包铁这样一种核壳结构十分明确的材料,也有可能存在铁包二氧化钛或铁点缀在二氧化钛颗粒表面的复合材料。再退一步讲,最终产物若为二氧化钛包铁核壳材料,则首先必须保证中间步骤得到的凝胶粉体是二氧化钛包氧化铁,那么其中就有可能存在两个问题:一是如何用氢气去还原作为核心的氧化铁的?除非有气体进出二氧化钛壳层的通道,而若通道,这种材料就不能接触酸性水;二是如何保证二氧化钛包氧化铁的凝胶经粉碎处理后,还能保证是二氧化钛包氧化铁的结构。
发明内容
技术问题:本发明的目的就是提供一种具有高催化活性,又易回收、再利用的用于废水处理的壳核复合结构纳米磁性材料的制备方法。本方法工艺简单,可形成二氧化钛纳米薄壳包覆锰锌铁氧体磁性粒子的这样一种结构明确的复合微粒。
技术方案:本发明是一种用于废水处理的壳核复合结构纳米磁性材料的制备方法,该磁性材料以锰锌铁氧体纳米粒子为核心,在该核心的外周围上复合有一层纳米二氧化钛薄膜,其制备的方法为:
a.以硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇为原料,用溶胶-凝胶法制备出纳米磁性核心锰锌铁氧体,
b.经高温处理获得强磁性的尖晶石相,
c.将尖晶石型锰锌铁氧体分离纯化后,分散于水溶液中,然后将钛酸酯的醇溶液滴加入其中进行水解反应,产生TiO2并沉积在磁性锰锌铁氧体表面,制备出以锰锌铁氧体为核心,TiO2为壳层的磁性复合纳米TiO2微粒;
d.将步骤b中得到的产物焙烧处理,以获得高纯度的锐钛矿型TiO2壳核复合结构纳米磁性材料。
其中:
所述的硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇的质量组分为:
所述的溶胶-凝胶法制备出纳米磁性核心锰锌铁氧体,是将硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇进行混合,在常温下搅拌后生成纳米磁性核心锰锌铁氧体。
所述的高温处理是将所述的纳米磁性核心锰锌铁氧体放入焙烧炉,在500-800℃的条件下焙烧0.5-2小时。
所述的钛酸酯的醇溶液,其体积混合比为1:1.5-1:3。
所述的尖晶石型锰锌铁氧体与钛酸酯的醇溶液,其质量比为:1:1-1:5。
所述的焙烧处理是将以锰锌铁氧体为核心,TiO2为壳层的磁性复合纳米TiO2微粒放入焙烧炉,在300-700℃的条件下焙烧1-2小时。
有益效果:本发明的优点在于:磁性复合纳米Ti02这一功能材料,以具有强磁性和适宜居里温度特性的锰锌铁氧体磁性纳米粒子为核心,复合上纳米Ti02薄膜形成的核壳结构纳米复合材料,可直接将其应用于废水处理,既不损失Ti02的光催化活性,又可利用核心材料的优异磁性与居里温度特点,通过磁性分离技术顺利实现回收和循环再利用。一旦投入使用,必将带来不可估量的经济效益和社会效益,用本发明的方法制备的用于废水处理的壳核复合结构纳米磁性材料中,Ti02本身具有特异的光电磁学特性和抗菌防霉自清洁特性,与纳米磁性核心材料的强强复合,还会在除废水处理之外的其它领域有意想不到的妙用,如:在抗辐射屏蔽材料、靶向药物、磁治疗等。
本发明材料的制备方法采用了与现有技术完全不同的技术路线。本发明的方法是先制备出锰锌铁氧体纳米粒子,再以此磁性粒子作为成核中心,在表面原位生成并沉积二氧化钛纳米粒子,逐渐形成二氧化钛纳米薄壳包覆锰锌铁氧体磁性粒子的这样一种结构明确的复合微粒。
具体实施方式
本发明的实施方案如下:
选择锰锌铁氧体纳米材料为核心,首先用溶胶-凝胶法制备出锰锌铁氧体强磁性纳米粒子;分离纯化后,采用表面包覆技术,通过以钛酸酯为前驱物的溶胶法在该磁性核心表面沉积Ti02纳米薄膜,制备出磁性纳米Ti02复合微粒,并对复合微粒进行焙烧处理,制备出高纯度的锐钛矿型Ti02复合材料,再通过表面改性技术来改善产品的分散性和稳定性。控制具体的工艺条件,使Ti02壳层的厚度在纳米尺度内可控性沉积,从而获得不同功能梯度的复合材料,以满足不同的应用需求。
其具体的操作步骤为:
a.以硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇为原料,其质量组分为:
用溶胶-凝胶法将硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇进行混合,在常温下搅拌后生成纳米磁性核心锰锌铁氧体。
b.将所述的纳米磁性核心锰锌铁氧体放入焙烧炉,在500-800℃的条件下焙烧0.5-2小时,获得强磁性的尖晶石相。
c.将尖晶石型锰锌铁氧体分离纯化后,分散于水溶液中,然后将体积混合比为1:1.5-1:3的钛酸酯的醇溶液滴加入其中进行水解反应,产生TiO2并沉积在磁性锰锌铁氧体表面,制备出以锰锌铁氧体为核心,TiO2为壳层的磁性复合纳米TiO2微粒;所述的尖晶石型锰锌铁氧体与钛酸酯的醇溶液,其质量比为:1:1-1:5。
d.将步骤b中得到的锰锌铁氧体为核心,TiO2为壳层的磁性复合纳米TiO2微粒放入焙烧炉,在300-700℃的条件下焙烧1-2小时。以获得高纯度的锐钛矿型TiO2壳核复合结构纳米磁性材料。
e.再通过表面改性技术来改善产品的分散性和稳定性。

Claims (7)

1.一种用于废水处理的壳核复合结构纳米磁性材料的制备方法,其特征在于该磁性材料以锰锌铁氧体纳米粒子为核心,在该核心的外周围上复合有一层纳米二氧化钛薄膜,其制备的方法为:
a. 以硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇为原料,用溶胶-凝胶法制备出纳米磁性核心锰锌铁氧体,
b. 经高温处理获得强磁性的尖晶石相,
c. 将尖晶石型锰锌铁氧体分离纯化后,分散于水溶液中,然后将钛酸酯的醇溶液滴加入其中进行水解反应,产生TiO2并沉积在磁性锰锌铁氧体表面,制备出以锰锌铁氧体为核心,TiO2为壳层的磁性复合纳米TiO2微粒;
d. 将步骤b中得到的产物焙烧处理,以获得高纯度的锐钛矿型TiO2壳核复合结构纳米磁性材料。
2.根据权利要求1所述的用于废水处理的壳核复合结构纳米磁性材料的制备方法,其特征在于所述的硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇的质量组分为:
硝酸铁 30-50%
硝酸锰 20-40%
硝酸锌 10-30%
柠檬酸 5-20%
乙二醇 5-10% 。
3.根据权利要求1所述的用于废水处理的壳核复合结构纳米磁性材料的制备方法,其特征在于所述的溶胶-凝胶法制备出纳米磁性核心锰锌铁氧体,是将硝酸铁、硝酸锰、硝酸锌、柠檬酸、乙二醇进行混合,在常温下搅拌后生成纳米磁性核心锰锌铁氧体。
4.根据权利要求1所述的用于废水处理的壳核复合结构纳米磁性材料的制备方法,其特征在于所述的高温处理是将所述的纳米磁性核心锰锌铁氧体放入焙烧炉,在500-800℃的条件下焙烧0.5-2小时。
5.根据权利要求1所述的用于废水处理的壳核复合结构纳米磁性材料的制备方法,其特征在于所述的钛酸酯的醇溶液,其体积混合比为1:1.5-1:3。
6.根据权利要求1所述的用于废水处理的壳核复合结构纳米磁性材料的制备方法,其特征在于所述的尖晶石型锰锌铁氧体与钛酸酯的醇溶液,其质量比为:1:1-1:5。
7.根据权利要求1所述的用于废水处理的壳核复合结构纳米磁性材料的制备方法,其特征在于所述的焙烧处理是将以锰锌铁氧体为核心,TiO2为壳层的磁性复合纳米TiO2微粒放入焙烧炉,在300-700℃的条件下焙烧1-2小时。
CN201710352346.1A 2017-05-18 2017-05-18 用于废水处理的壳核复合结构纳米磁性材料的制备方法 Pending CN106943972A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710352346.1A CN106943972A (zh) 2017-05-18 2017-05-18 用于废水处理的壳核复合结构纳米磁性材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710352346.1A CN106943972A (zh) 2017-05-18 2017-05-18 用于废水处理的壳核复合结构纳米磁性材料的制备方法

Publications (1)

Publication Number Publication Date
CN106943972A true CN106943972A (zh) 2017-07-14

Family

ID=59479778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710352346.1A Pending CN106943972A (zh) 2017-05-18 2017-05-18 用于废水处理的壳核复合结构纳米磁性材料的制备方法

Country Status (1)

Country Link
CN (1) CN106943972A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913978A (zh) * 2019-03-06 2019-06-21 武汉理工大学 一种核-壳结构复合纤维及其制备方法和在聚合物基柔性复合薄膜中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323046A (zh) * 2001-06-07 2001-11-21 东南大学 锰锌铁氧体复合的二氧化钛纳米磁性材料及制备方法
CN1792428A (zh) * 2006-01-06 2006-06-28 北京化工大学 一种磁性纳米光催化剂及其制备方法
CN104437536A (zh) * 2014-11-13 2015-03-25 重庆大学 一种锰锌铁氧体/氧化铋磁性光催化剂的制备方法
CN105536690A (zh) * 2015-12-23 2016-05-04 苏州冠达磁业有限公司 一种纳米颗粒包覆复合锰锌铁氧体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323046A (zh) * 2001-06-07 2001-11-21 东南大学 锰锌铁氧体复合的二氧化钛纳米磁性材料及制备方法
CN1792428A (zh) * 2006-01-06 2006-06-28 北京化工大学 一种磁性纳米光催化剂及其制备方法
CN104437536A (zh) * 2014-11-13 2015-03-25 重庆大学 一种锰锌铁氧体/氧化铋磁性光催化剂的制备方法
CN105536690A (zh) * 2015-12-23 2016-05-04 苏州冠达磁业有限公司 一种纳米颗粒包覆复合锰锌铁氧体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姜德彬等: "锰锌铁氧体/SiO2复合磁性材料的制备和表征", 《化工环保》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913978A (zh) * 2019-03-06 2019-06-21 武汉理工大学 一种核-壳结构复合纤维及其制备方法和在聚合物基柔性复合薄膜中的应用

Similar Documents

Publication Publication Date Title
Feng et al. A magnetically recyclable dual Z-scheme GCNQDs-CoTiO3/CoFe2O4 composite photocatalyst for efficient photocatalytic degradation of oxytetracycline
Wang et al. Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review
Liu Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants
Jacinto et al. Magnetic materials for photocatalytic applications—a review
CN103172030B (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
Fu et al. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst
Wang et al. Magnetic (γ-Fe2O3@ SiO2) n@ TiO2 functional hybrid nanoparticles with actived photocatalytic ability
Lee et al. Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst
Shih et al. Synthesis of magnetically recoverable ferrite (MFe2O4, M Co, Ni and Fe)-supported TiO2 photocatalysts for decolorization of methylene blue
Emadian et al. Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation
Akhoondi et al. Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications
Fu et al. Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst
CN109806876B (zh) 一种磁性ZnFe2O4/石墨烯纳米复合光催化剂及其制备方法与应用
CN101850251B (zh) 可磁分离二氧化钛可见光催化剂的制备方法
CN107442178A (zh) 一种可见光催化剂Fe3O4@PDA@Ag复合微球的制备方法
CN101579628B (zh) 一种铁酸镍基磁载型二氧化钛光催化剂的制备方法
CN1562464A (zh) 磁性纳米TiO2复合光催化剂及其制备方法
Zielinska-Jurek et al. Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality
Saleh et al. Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/chitosan/TiO2 heterostructured catalyst
Balgude et al. Succinate assisted synthesis of magnetically separable Fe2O3/g-C3N4 nano-heterostructure: A stable catalyst for environmental remediation
Zhou et al. Core-shell catalysts for the elimination of organic contaminants in aqueous solution: A review
Li et al. Synthesis and applications of TiO2‐based nanostructures as photocatalytic materials
CN103949259A (zh) 新型废水处理剂—ZnFe2O4/TiO2复合物的制备和应用
Wei et al. Synthesis of Fe2O3/g-C3N4 composite with efficient photocatalytic degradation for methyl orange
CN1165920C (zh) 锰锌铁氧体复合的二氧化钛纳米磁性材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170714

RJ01 Rejection of invention patent application after publication