CN106939436A - 一种掺钇碱土氟化物光学晶体及其制备方法 - Google Patents

一种掺钇碱土氟化物光学晶体及其制备方法 Download PDF

Info

Publication number
CN106939436A
CN106939436A CN201610003878.XA CN201610003878A CN106939436A CN 106939436 A CN106939436 A CN 106939436A CN 201610003878 A CN201610003878 A CN 201610003878A CN 106939436 A CN106939436 A CN 106939436A
Authority
CN
China
Prior art keywords
crystal
alkaline earth
powder
earth fluoride
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610003878.XA
Other languages
English (en)
Inventor
姜大朋
苏良碧
段琪瑱
王静雅
唐飞
钱小波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201610003878.XA priority Critical patent/CN106939436A/zh
Publication of CN106939436A publication Critical patent/CN106939436A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种掺钇碱土氟化物光学晶体及其制备方法,所述碱土氟化物光学晶体掺杂有Y3+,化学式为MeF2+xYF3,其中,x=0.01~0.2。本发明提供的掺钇碱土氟化物光学晶体具有较小的位错密度,较高的晶体结晶度。本发明在MeF2(Me=Ca,Sr)基质中同时引入YF3,能在微观上直接减少位错缺陷和镶嵌结构的数量,在宏观上大大提高晶体的光学质量和结晶完整度。

Description

一种掺钇碱土氟化物光学晶体及其制备方法
技术领域
本发明是涉及碱土氟化物光学晶体,特别是一种掺Y3+碱土氟化物MeF2(Me=Ca,Sr)光学晶体,其特征是在生长纯碱土氟化物MeF2(Me=Ca,Sr)光学晶体时掺入适量的Y3+,可以显著降低晶体的缺陷密度,提高晶体光学质量。该晶体可用作各种光学窗口材料和稀土激活离子的掺杂基质。
背景技术
窗口材料在气象、环境、医学和等方面均有着重要作用。人们对于窗口材料的日益提升的要求从未停止,如要在真空、低温、强辐射等条件下工作;耐受雨水、喷气废气、海水盐雾侵蚀;特需波段下高透光率,使得跟踪、识别、搜索、制导、导航及热成像在各领域中发挥更好作用等等。人们在光学、机械学、热学性能和工艺条件对窗口材料一直有着高标准的技术要求:(1)透过率高,折射率温度系数低,光吸收、散射及反射损失小,自身热辐射率低,以免产生干扰信号。无双折射现象;(2)可应用于特定波段的窗口材料,如紫外、近红外、中红外波段等;(3)易加工成形,能够制成高质量、均匀、大尺寸、低成本的窗口、窗罩,表面易抛光;(4)化学性能稳定,耐化学腐蚀、耐阳光辐照、耐喷气燃料、耐雨水侵蚀。
传统的碱土氟化物MeF2(Me=Ca,Sr)晶体作为一种传统晶体材料,在工业应用和科学研究两个方面一直都有着非常重要的地位。以CaF2晶体为例,在工业应用方面,CaF2晶体是目前已知综合性能最优良的光学基质材料,具有众多的优异性能:(1)透光范围宽(0.125-10μm);(2)恒定的平均折射率和局部折射率;(3)损伤阈值高;(4)不潮解,抗化学腐蚀能力强;(5)熔点低,容易采用传统的晶体生长技术获得大尺寸单晶体等。因此,CaF2晶体适合于用作真空紫外到红外波段的窗口材料,也是其它材料无法取代的复消色差透镜材料,被广泛地用于紫外光刻、天文观测、航测、侦察及高分辨率光学仪器中。在科学研究上,CaF2晶体是从事物质结构、离子动力学性能、发光性能等基础理论研究工作的人们所青睐的材料之一。这主要是因为:(1)CaF2晶体是典型的萤石型立方结构,晶格中包含丰富的间隙格位,各种价态的激活离子都可以较高浓度地掺入;(2)只有一个Raman活性的晶格振动模式(T2g),易于分辨晶格缺陷态;(3)阳离子亚晶格非常稳定,一般只形成阴离子缺陷;(4)禁带宽度大(~12eV),作为基质晶体可以方便地研究掺质离子从深紫外到红外的吸收、发光特性。
制备低位错密度、高结晶度的大尺寸纯碱土氟化物单晶是近年来科研工作者一直钻研专注的热点。目前我国的生长技术尚不能制备出光学质量优异的纯碱土氟化物单晶,究其主要缺陷在于位错密度较高,单晶结晶度低等因素限制了纯碱土氟化物的成功制备。其次,单晶生长受到生长方法、生长工艺、生长气氛,甚至是生长炉具等各个因素的影响,这些困难都导致其不能制备出大尺寸、成规模的纯碱土氟化物单晶。如何填补由生长工艺中抽真空造成的氟离子空位等缺陷,从而减少位错密度、小角晶界、混晶甚至是多晶缺陷,技术难题摆在了人们的眼前。
发明内容
为了克服技术难题,本发明提供了一种掺钇碱土氟化物光学晶体及其制备方法。
本发明提供的掺钇碱土氟化物光学晶体,所述碱土氟化物光学单晶体掺杂有Y3+,化学式为MeF2+xYF3,其中,x=0.01~0.2。
本发明提供的掺钇碱土氟化物光学晶体MeF2+xYF3,其中Me优选为Ca或Sr。
本发明提供的掺钇碱土氟化物光学晶体MeF2+xYF3为具有低位错密度、高结晶度的大尺寸碱土氟化物单晶,其位错密度低于104cm2,其尺寸能达到250mm。本发明在MeF2(Me=Ca,Sr)基质中同时引入YF3,能在微观上直接减少位错缺陷和镶嵌结构的数量,在宏观上大大提高晶体的光学质量和结晶完整度。
此外,本发明还提供一种制备前述单掺Y3+碱土氟化物光学单晶体的制备方法,其特征在于,包括:根据化学计量配比原料MeF2(Me=Ca,Sr)粉末和YF3粉末,采用提拉法、坩埚下降法或温度梯度法在高真空状态或者保护气氛下生长晶体。
较佳地,在原料粉末中加入PbF2粉末作为除氧剂,所述PbF2粉末的加入量是MeF2粉末的0~3wt%,优选为0.2~1.0wt%。PbF2作为低熔点(800℃)除氧剂,在氟化物原料融化之前已充分挥发,所以Pb不会残留在晶体中。优选地,所述MeF2(Me=Ca,Sr)粉末、YF3粉末、PbF2粉末的纯度大于或等于99.99%。又,优选地,所述MeF2(Me=Ca,Sr)粉末、YF3粉末、PbF2粉末在混合前进行干燥脱水处理。
关于晶体的生长,可以采用提拉法生长晶体,所述坩埚材料选择可为铂金,晶体生长在高纯Ar气氛和/或含氟气氛中进行。
关于晶体的生长,还可以采用坩埚下降法或温度梯度法生长晶体,坩埚材料可选择采用高纯石墨,晶体生长在高纯Ar气氛和/或含氟气氛、或高真空气氛中进行。
优选地,所述的含氟气氛为CF4或/和HF气体及其混合气、或者CF4或/和HF气体与其它惰性气体Ar的混合气。
本发明提供的掺钇碱土氟化物光学晶体具有较小的位错密度,较高的晶体结晶度。本发明在MeF2(Me=Ca,Sr)基质中同时引入YF3,能在微观上直接减少位错缺陷和镶嵌结构的数量,在宏观上大大提高晶体的光学质量和结晶完整度。
附图说明
图1为实施例2的方法制得的纯CaF2晶体位错腐蚀坑图;
图2为本实施例2的方法制得的掺钇碱土氟化物(CaF2)晶体位错腐蚀坑图像;
图3为实施例3的方法制得的纯CaF2晶体的X射线摇摆曲线;
图4为实施例3的方法制得的掺钇碱土氟化物(CaF2)晶体的X射线摇摆曲线。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。
本发明的掺钇碱土氟化物其化学式为MeF2+xYF3,其中x=0.01~0.2。Y3+以YF3的形式掺入。Me为Ca或Sr。制备原料配方如下:初始原料采用YF3,MeF2(Me=Ca,Sr)和PbF2,前两种原料按摩尔比等于x:1进行配料,其中x等于0.01~0.2。PbF2的加入量为CaF2的0~3wt%,优选范围为0.2~1.0wt%。
可以采用熔体法生长本发明掺钇碱土氟化物单晶体,所述熔体法包括提拉法、坩埚下降法或温度梯度法。首先按上述配方比例称取所有原料,充分混合均匀后装入坩埚内,采用熔体法生长上述单晶体。
采用提拉法时,坩埚材料为铂金,晶体生长在高纯Ar气氛和/或含氟气氛(CF4或HF)中进行。
对于坩埚下降法或温度梯度法,坩埚材料采用高纯石墨,坩埚底部可以不放籽晶,或放入特定方向的MeF2(Me=Ca,Sr)籽晶,晶体生长在高纯Ar气氛和/或含氟气氛(CF4或HF)或高真空气氛中进行。
位错缺陷的腐蚀实验测试:将本发明的方法生长的所述掺钇碱土氟化物单晶体沿(111)面切割,样品表面经粗磨、细磨和两面光学抛光后,放入4mol/L的盐酸溶液中,腐蚀20~30min后,取出晶体用蒸馏水清洗数遍,然后用滤纸擦干。侵蚀后的样品放置在ORTHOLUXⅡPOL-BK偏光显微镜下观测晶体表面的蚀坑的形状、分布及密度;并通过下述步骤统计计算其位错密度:
1)将待测样品分为n个待测区域(n≥10),然后按顺序依次对各个区域的腐蚀形貌进行观察、拍照;
2)记录每张照片腐蚀坑的个数Ni及面积Si(1≤i≤n);
3)腐蚀坑密度=(N1+N2+…+Nn)/(S1+S2+…+Sn)。
X射线摇摆曲线衍射测试:采用的高分辨X射线衍射(High resolution X~raydiffraction,HRXRD)仪是四圆衍射仪。将本发明的方法生长的所述掺钇碱土氟化物单晶体沿(111)面切割,样品表面经粗磨、细磨和两面光学抛光后,放入衍射仪内进行测试,本发明测试所采用的HRXRD仪器型号是Bruker D8~Discover。检测所需的电压和电流为40kV和40mA。
本发明提供的掺钇碱土氟化物光学晶体制备方法可以减少CaF2晶体和SrF2晶体的位错密度,提高晶体结晶度,制备出低位错密度、高结晶度的大尺寸纯碱土氟化物单晶。
实施例1:提拉法生长晶体
(1)按YF3,CaF2的摩尔比为0.01:1称取原料,然后加入CaF2重量1wt%的PbF2作为去氧剂,混合均匀后放于铂金坩埚内,采用提拉法生长晶体,晶体生长在高纯Ar气与CF4混合气氛中进行;。通过上述统计计算法,纯CaF2和1wt%Y:CaF2晶体的位错密度分别是8.8×104/cm2、3.5×104/cm2
(2)步骤同上,用SrF2代替上述的CaF2进行提拉法生长晶体。通过上述统计计算法,纯SrF2和1wt%Y:SrF2晶体的位错密度分别是12.3×104/cm2、9.0×103/cm2
实施例2:温梯法生长晶体
(1)按YF3,CaF2的摩尔比为0.08:1进行配料,混合均匀后放于高纯石墨坩埚内。采用温度梯度法,在高真空气氛中生长晶体。将所生长的晶体沿(111)面切割,样品表面经粗磨、细磨和两面光学抛光后,放入4mol/L的盐酸溶液中,腐蚀20~30min在光学显微镜下观察与计算;
图1为实施例2的方法制得的纯CaF2晶体位错腐蚀坑图;图2为本实施例2的方法制得的掺钇碱土氟化物(CaF2)晶体位错腐蚀坑图像。通过统计计算,纯CaF2和8wt%Y:CaF2晶体位错腐蚀坑的位错密度分别为6.8×104/cm2、4.2×103/cm2
(2)步骤同上,用SrF2代替上述的CaF2进行温梯法生长晶体。通过统计计算,纯SrF2和8wt%Y:SrF2晶体位错腐蚀坑的位错密度分别为12.3×104/cm2、8.1×103/cm2
实施例3:温梯法生长晶体
(1)按YF3,CaF2的摩尔比为0.1:1称取原料,然后加入CaF2重量1.5wt%的PbF2作为去氧剂。原料混合均匀后放于高纯石墨坩埚内,坩埚底籽晶槽内放有[111]方向的CaF2单晶棒作为籽晶。装好原料的石墨坩埚放入温度梯度炉内,在高纯Ar和CF4混合气氛中生长晶体(混合比例为1:0.05)。将所生长的晶体切割成片,沿(111)面切割,样品表面经粗磨、细磨和两面光学抛光后,放入Bruker D8~Discover衍射仪内进行测试;
图3为实施例3的方法制得的纯CaF2晶体的X射线摇摆曲线,图4为实施例3的方法制得的掺钇碱土氟化物(CaF2)晶体的X射线摇摆曲线。通过X射线摇摆曲线,结果显示纯CaF2晶体的半峰宽为98arcsec,掺钇碱土氟化物(CaF2)晶体的半峰宽为42arcsec;
(2)Y:SrF2晶体的生长步骤、测试步骤同上。通过X射线摇摆曲线,结果显示纯SrF2晶体的半峰宽为91arcsec,掺钇碱土氟化物(SrF2)晶体的半峰宽为43arcsec。
实施例4:坩埚下降法生长[Y(3at%):MeF2(Me=Ca,Sr)]晶体
按YF3,CaF2的摩尔比为0.03:1称取原料,然后加入CaF2重量2wt%的PbF2作为去氧剂。原料混合均匀后放于高纯石墨坩埚内,坩埚底籽晶槽内放有[111]方向的CaF2单晶棒作为籽晶。装好原料的石墨坩埚放入坩埚下降炉内,在高纯Ar和CF4混合气氛中生长晶体(混合比例为1:0.1)。通过统计计算,纯CaF2和3wt%Y:CaF2晶体的位错密度分别是5.3×104/cm2、3.9×103/cm2
(2)Y:SrF2晶体的坩埚下降法生长步骤同上。通过统计计算,纯SrF2和3wt%Y:SrF2晶体的位错密度分别是9.3×104/cm2、7.1×103/cm2

Claims (8)

1.一种掺钇碱土氟化物光学晶体,其特征在于,所述碱土氟化物光学晶体掺杂有Y3+,化学式为MeF2+xYF3,其中,x=0.01~0.2。
2.根据权利要求1所述的掺钇碱土氟化物光学晶体,其特征在于,其中Me为Ca或Sr。
3.一种权利要求1或2中所述掺钇碱土氟化物光学晶体的制备方法,其特征在于,包括:根据化学计量配比原料MeF2(Me=Ca, Sr)粉末和YF3粉末,采用熔体法在高真空或者保护气氛下生长晶体。
4.根据权利要求 3所述的制备方法,其特征在于,在原料粉体中加入PbF2粉末作为除氧剂,所述PbF2粉末的加入量是MeF2粉末的0~3wt%,优选为0.2~1.0wt%。
5.根据权利要求 3或4中所述的制备方法,其特征在于,所述熔体法为提拉法,坩埚材料为铂金,晶体生长在高纯Ar气氛和/或含氟气氛中进行。
6.根据权利要求3~5中任一所述的制备方法,其特征在于,采用坩埚下降法或温度梯度法生长晶体,坩埚材料采用高纯石墨,晶体生长在高纯Ar气氛和/或含氟气氛、或高真空气氛中进行。
7.根据权利要求3~6中任一所述的制备方法,其特征在于,所述MeF2(Me=Ca, Sr)粉末、YF3粉末、PbF2 粉末的纯度大于或等于99.99%。
8.根据权利要求3~7中任一所述的制备方法,其特征在于,所述含氟气氛为CF4和/或HF气体、或者CF4和/或HF气体与其它惰性气体Ar的混合气。
CN201610003878.XA 2016-01-04 2016-01-04 一种掺钇碱土氟化物光学晶体及其制备方法 Pending CN106939436A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610003878.XA CN106939436A (zh) 2016-01-04 2016-01-04 一种掺钇碱土氟化物光学晶体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610003878.XA CN106939436A (zh) 2016-01-04 2016-01-04 一种掺钇碱土氟化物光学晶体及其制备方法

Publications (1)

Publication Number Publication Date
CN106939436A true CN106939436A (zh) 2017-07-11

Family

ID=59469542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610003878.XA Pending CN106939436A (zh) 2016-01-04 2016-01-04 一种掺钇碱土氟化物光学晶体及其制备方法

Country Status (1)

Country Link
CN (1) CN106939436A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740186A (zh) * 2017-10-30 2018-02-27 中国科学院上海硅酸盐研究所 一种大尺寸Yb,R:CaF2/SrF2激光晶体及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562183A (zh) * 2014-12-31 2015-04-29 西南技术物理研究所 大尺寸稀土掺杂氟化钇钡单晶生长方法
CN104862779A (zh) * 2015-05-29 2015-08-26 中国科学院上海硅酸盐研究所 一种Nd掺杂氟化锶钙晶体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562183A (zh) * 2014-12-31 2015-04-29 西南技术物理研究所 大尺寸稀土掺杂氟化钇钡单晶生长方法
CN104862779A (zh) * 2015-05-29 2015-08-26 中国科学院上海硅酸盐研究所 一种Nd掺杂氟化锶钙晶体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHHATTAR SINGH KUCHERIA: "Self-diffusion of Calcium and Yttrium in Pure and YF3-Doped CaF2 Single Crystals, British Journal of Obstetrics & Gynaecology", 《BRITISH JOURNAL OF OBSTETRICS & GYNAECOLOGY》 *
T.YU.BUGAENKO ET AL.: "Thermal Decay of Photochromic Color Centers in CaF2,SrF2 and BaF2 Crystals Doped by La and Y impurities", 《PHYSICS OF THE SOLID STATE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740186A (zh) * 2017-10-30 2018-02-27 中国科学院上海硅酸盐研究所 一种大尺寸Yb,R:CaF2/SrF2激光晶体及其制备方法

Similar Documents

Publication Publication Date Title
US7608828B2 (en) Solid solution material of rare earth element fluoride (polycrystal and single crystal), and method for preparation thereof, and radiation detector and test device
JP6341618B2 (ja) 可視範囲及び赤外範囲で透明なナノ構造化されたガラス及びガラスセラミック
US11898268B2 (en) Calcium metaborate birefringent crystal, preparation method and use thereof
WO2012174846A1 (zh) 可用于紫外深紫外的硼酸盐双折射晶体及生长方法和用途
Nabokin et al. Floating zone growth of high-quality SrTiO3 single crystals
CN103046137A (zh) 一种高强力学性能蓝宝石晶体及其制备方法
CN108425152B (zh) 偏硼酸锶双折射晶体及制备方法和用途
CN106939436A (zh) 一种掺钇碱土氟化物光学晶体及其制备方法
CN113970779A (zh) 一种钙钛矿填充微孔面板形成的微结构闪烁屏及制备方法
CN102025099A (zh) 具有改善的激光寿命的氟化钙光学器件
Paraschiva et al. Distribution of Pb^2+ Ions in PbF_2-Doped CaF_2 Crystals
Bless et al. Anion and cation defect structure in magnesium fluorogermanate
CN104386730B (zh) 一种Ho3+/Yb3+双掺杂α-NaYF4激光晶体及其制备方法
CN103849932B (zh) 一种氟硼酸钡钠紫外双折射晶体及生长方法和用途
Burianek et al. Single‐crystal growth and characterization of mullite‐type orthorhombic Bi2M4O9 (M= Al3+, Ga3+, Fe3+)
CN115504480A (zh) 化合物硼酸锌钡和硼酸锌钡双折射晶体及其制备方法和用途
CN103757699B (zh) 一种铕离子掺杂氟化钆钠光学晶体及其制备方法
EP2771498A2 (en) Method of manufacturing znmgo film
US20060279836A1 (en) Last lens of immersion lithography equipment
Hua et al. Nanocrystal formation and structure in oxyfluoride glass ceramics
Pang et al. Study on the growth, etch morphology and spectra of Y2SiO5 crystal
Shtukenberg et al. Effect of growth conditions on the birefringence of mixed crystals revealed in alum solid solutions
CN113322517B (zh) 化合物镉铅氧氯和镉铅氧氯红外光学晶体及制备方法和用途
Ren et al. Optical Absorption on Cubic β-PbF 2 Crystals
JP2021130593A (ja) 単結晶インゴットの育成方法及び単結晶試料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170711

WD01 Invention patent application deemed withdrawn after publication