CN106932354B - 一种toc水质监测传感器 - Google Patents

一种toc水质监测传感器 Download PDF

Info

Publication number
CN106932354B
CN106932354B CN201710343550.7A CN201710343550A CN106932354B CN 106932354 B CN106932354 B CN 106932354B CN 201710343550 A CN201710343550 A CN 201710343550A CN 106932354 B CN106932354 B CN 106932354B
Authority
CN
China
Prior art keywords
light
green
cabin
light source
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710343550.7A
Other languages
English (en)
Other versions
CN106932354A (zh
Inventor
付士民
陈丽洁
黄辉
张鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 49 Research Institute
Original Assignee
CETC 49 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 49 Research Institute filed Critical CETC 49 Research Institute
Priority to CN201710343550.7A priority Critical patent/CN106932354B/zh
Publication of CN106932354A publication Critical patent/CN106932354A/zh
Application granted granted Critical
Publication of CN106932354B publication Critical patent/CN106932354B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种TOC水质监测传感器,属于水质监测领域。解决了现有技术中紫外吸收式TOC检测设备存在弱光信号提取难的问题。本发明提出采用紫外光光源作为检测光源,绿光光源作为补偿光源,设计三个舱体分段式结构,紫外光光源、2号绿光电探测器和1号TEC恒温控制器均设置在紫外光探测舱体内;绿光光源、1号紫外光电探测器和2号TEC恒温控制器均设置在绿光探测舱体内,且紫外光的发射与接收方向跟绿光的发射与接收方向正好相反,使得各自的光电探测器不会接收到另一种光源发出的光信号,减少其它光信号的干扰。本发明主要用于水质监测。

Description

一种TOC水质监测传感器
技术领域
本发明涉及一种水质传感器,属于水质监测领域。
背景技术
目前,水质中TOC检测大多采用化学式方法,但是化学式检测技术都是基于化学方法氧化,其检测过程繁琐,复杂,耗时,体积较大,会造成化学试剂的损耗,还会造成二次化学污染,价格昂贵,无法进行实时监测。紫外吸收法是一种物理方式的检测方法,不需要化学反应,紫外吸收式监测能够实现体积小、功耗低、速度快,可以对水质进行在线的监测,适用范围广。但针对目前市场上的紫外吸收式TOC检测设备存在弱光信号提取难的问题。
发明内容
本发明是为了解决现有技术中紫外吸收式TOC检测设备存在弱光信号提取难的问题,本发明提供了一种TOC水质监测传感器。TOC为总有机碳,且英文全称为Total OrganicCarbon。
一种TOC水质监测传感器,它包括三段式舱体,三段式舱体间通过管道连通,且依次为紫外光探测舱体、绿光探测舱体和信号处理舱体,紫外光探测舱体和绿光探测舱体的舱底相对设置,且二者的舱底上均设有密封透光窗;还包括紫外光光源、绿光光源、两个光源频率控制电路、两个探测信号处理电路、两个光电探测器和两个TEC恒温控制器;
两个光电探测器分别定义为1号紫外光电探测器和2号绿光电探测器;
两个TEC恒温控制器分别定义为1号TEC恒温控制器和2号TEC恒温控制器;
紫外光光源、2号绿光电探测器和1号TEC恒温控制器均设置在紫外光探测舱体内,且紫外光光源和2号绿光电探测器均固定在1号TEC恒温控制器的热端,1号TEC恒温控制器的冷端固定在紫外光探测舱体的舱盖上;
绿光光源、1号紫外光电探测器和2号TEC恒温控制器均设置在绿光探测舱体内,且绿光光源和1号紫外光电探测器均固定在2号TEC恒温控制器的热端,2号TEC恒温控制器的冷端固定在绿光探测舱体的舱盖上;
两个光源频率控制电路和两个探测信号处理电路均固定在信号处理舱体内,且两个光源频率控制电路分别用于对紫外光光源和绿光光源输出的光信号的频率进行控制;
紫外光光源发出的光透过两个密封透光窗后,经1号紫外光电探测器对紫外光进行光电探测,1号紫外光电探测器的电信号输出引线通过管道与一个探测信号处理电路的电信号输入端连接,该探测信号处理电路对接收的电信号进行提取;
绿光光源发出的光经过两个密封透光窗后,经2号绿光电探测器对绿光进行光电探测,2号绿光电探测器的电信号输出引线通过管道与另一个探测信号处理电路的电信号输入端连接,该探测信号处理电路对接收的电信号进行提取。
本发明带来的有益效果是,本发明提出采用紫外光光源作为检测光源,绿光光源作为补偿光源,设计三个舱体分段式结构,实现传感器方便检测,进行实时在线监测,减少其它光的干扰,两个光源频率控制电路和两个探测信号处理电路采用锁相放大技术,解决弱光信号提取难的问题;且紫外光的发射与接收方向跟绿光的发射与接收方向正好相反,使得各自的光电探测器不会接收到另一种光源发出的光信号,减少其它光信号的干扰;传感器整体密封防水,直接置于待测水体中即可进行监测,方便快捷,舱体之间的管道进行走线,TEC恒温控制器冷端与光源和探测器接触,热端与舱体壳体接触,通过水进行散热,保证恒温系统的正常运行。本发明能够快速提取弱光信号来进行水质有机物实时在线监测,可以广泛应用到日常饮用水、工业用水TOC含量的测量。
附图说明
图1为本发明所述的一种TOC水质监测传感器的结构示意图。
具体实施方式
具体实施方式一:参见图1说明本实施方式,本实施方式所述的一种TOC水质监测传感器,它包括三段式舱体,三段式舱体间通过管道10连通,且依次为紫外光探测舱体1、绿光探测舱体2和信号处理舱体3,紫外光探测舱体1和绿光探测舱体2的舱底相对设置,且二者的舱底上均设有密封透光窗11;还包括紫外光光源4、绿光光源5、两个光源频率控制电路6、两个探测信号处理电路7、两个光电探测器和两个TEC恒温控制器;
两个光电探测器分别定义为1号紫外光电探测器8-1和2号绿光电探测器8-2;
两个TEC恒温控制器分别定义为1号TEC恒温控制器9-1和2号TEC恒温控制器9-2;
紫外光光源4、2号绿光电探测器8-2和1号TEC恒温控制器9-1均设置在紫外光探测舱体1内,且紫外光光源4和2号绿光电探测器8-2均固定在1号TEC恒温控制器9-1的热端,1号TEC恒温控制器9-1的冷端固定在紫外光探测舱体1的舱盖上;
绿光光源5、1号紫外光电探测器8-1和2号TEC恒温控制器9-2均设置在绿光探测舱体2内,且绿光光源5和1号紫外光电探测器8-1均固定在2号TEC恒温控制器9-2的热端,2号TEC恒温控制器9-2的冷端固定在绿光探测舱体2的舱盖上;
两个光源频率控制电路6和两个探测信号处理电路7均固定在信号处理舱体3内,且两个光源频率控制电路6分别用于对紫外光光源4和绿光光源5输出的光信号的频率进行控制;
紫外光光源4发出的光透过两个密封透光窗11后,经1号紫外光电探测器8-1对紫外光进行光电探测,1号紫外光电探测器8-1的电信号输出引线通过管道10与一个探测信号处理电路7的电信号输入端连接,该探测信号处理电路7对接收的电信号进行提取;
绿光光源5发出的光经过两个密封透光窗11后,经2号绿光电探测器8-2对绿光进行光电探测,2号绿光电探测器8-2的电信号输出引线通过管道10与另一个探测信号处理电路7的电信号输入端连接,该探测信号处理电路7对接收的电信号进行提取。
本实施方式,中由于待测水体中TOC对紫外光具有吸收作用,所以经过待测水体后光电探测器接收到的光信号强弱将有所变化,通过比尔-郎伯定律就可以换算出待测水体对紫外光的吸光度,从而得到TOC的浓度。
采用本发明所述的一种TOC水质监测传感器,使得紫外光的发射与接收方向跟绿光的发射与接收方向正好相反,使得各自的光电探测器不会接收到另一种光源发出的光信号,减少其它光信号的干扰。
具体实施方式二:参见图1说明本实施方式,本实施方式与具体实施方式一所述的一种TOC水质监测传感器的区别在于,所述的紫外光光源4作为检测光源,且该光源为LED紫外光光源;绿光光源5作为补偿光源,且该光源为LED绿光光源。
本实施方式,紫外光光源4作为检测光源,通过光信号的衰减检测水中TOC含量,绿光光源5作为补偿光源用于检测水质的浊度,并对检测光源进行补偿。
具体实施方式三:本实施方式与具体实施方式一所述的一种TOC水质监测传感器的区别在于,它还包括温补感温头12,且温补感温头12固定在三段式舱体的外壳上,用于感知待测水温。
本实施方式,具体应用过程中,温补感温头12用于感知待测水温,并根据检测到水温上传至上位机,上位机根据水质的实时水温对当前温度下测得TOC的浓度数据进行补偿。
上位机的控制芯片采用MAX1978实现,并对TEC恒温控制器进行闭环自动控制,TEC恒温控制器可采用热敏电阻作为温度反馈元件,通过比例积分微分PID补偿网络,控制TEC恒温控制器。
具体实施方式四:本实施方式与具体实施方式一所述的一种TOC水质监测传感器的区别在于,所述的每个探测信号处理电路7对接收的电信号进行提取采用锁相放大技术实现,且提取的具体过程为:对接收的电信号依次进行放大、带通滤波、相敏检测和低通滤波。
具体实施方式五:本实施方式与具体实施方式一所述的一种TOC水质监测传感器的区别在于,所述的紫外光探测舱体1和绿光探测舱体2的舱底上的密封透光窗11相对设置。
具体实施方式六:本实施方式与具体实施方式一所述的一种TOC水质监测传感器的区别在于,所述的密封透光窗11采用石英材料或其它透光材料实现。

Claims (5)

1.一种TOC水质监测传感器,其特征在于,它包括三段式舱体,三段式舱体间通过管道(10)连通,且依次为紫外光探测舱体(1)、绿光探测舱体(2)和信号处理舱体(3),紫外光探测舱体(1)和绿光探测舱体(2)的舱底相对设置,且二者的舱底上均设有密封透光窗(11);还包括紫外光光源(4)、绿光光源(5)、两个光源频率控制电路(6)、两个探测信号处理电路(7)、两个光电探测器和两个TEC恒温控制器;
两个光电探测器分别定义为1号紫外光电探测器(8-1)和2号绿光电探测器(8-2);
两个TEC恒温控制器分别定义为1号TEC恒温控制器(9-1)和2号TEC恒温控制器(9-2);
紫外光光源(4)、2号绿光电探测器(8-2)和1号TEC恒温控制器(9-1)均设置在紫外光探测舱体(1)内,且紫外光光源(4)和2号绿光电探测器(8-2)均固定在1号TEC恒温控制器(9-1)的热端,1号TEC恒温控制器(9-1)的冷端固定在紫外光探测舱体(1)的舱盖上;
绿光光源(5)、1号紫外光电探测器(8-1)和2号TEC恒温控制器(9-2)均设置在绿光探测舱体(2)内,且绿光光源(5)和1号紫外光电探测器(8-1)均固定在2号TEC恒温控制器(9-2)的热端,2号TEC恒温控制器(9-2)的冷端固定在绿光探测舱体(2)的舱盖上;
两个光源频率控制电路(6)和两个探测信号处理电路(7)均固定在信号处理舱体(3)内,且两个光源频率控制电路(6)分别用于对紫外光光源(4)和绿光光源(5)输出的光信号的频率进行控制;
紫外光光源(4)发出的光透过两个密封透光窗(11)后,经1号紫外光电探测器(8-1)对紫外光进行光电探测,1号紫外光电探测器(8-1)的电信号输出引线通过管道(10)与一个探测信号处理电路(7)的电信号输入端连接,该探测信号处理电路(7)对接收的电信号进行提取;
绿光光源(5)发出的光经过两个密封透光窗(11)后,经2号绿光电探测器(8-2)对绿光进行光电探测,2号绿光电探测器(8-2)的电信号输出引线通过管道(10)与另一个探测信号处理电路(7)的电信号输入端连接,该探测信号处理电路(7)对接收的电信号进行提取。
2.根据权利要求1所述的一种TOC水质监测传感器,其特征在于,所述的紫外光光源(4)作为检测光源,且该光源为LED紫外光光源;
绿光光源(5)作为补偿光源,且该光源为LED绿光光源。
3.根据权利要求1所述的一种TOC水质监测传感器,其特征在于,它还包括温补感温头(12),且温补感温头(12)固定在三段式舱体的外壳上,用于感知待测水温。
4.根据权利要求1所述的一种TOC水质监测传感器,其特征在于,所述的每个探测信号处理电路(7)对接收的电信号进行提取采用锁相放大技术实现,且提取的具体过程为:对接收的电信号依次进行放大、带通滤波、相敏检测和低通滤波。
5.根据权利要求1所述的一种TOC水质监测传感器,其特征在于,所述的紫外光探测舱体(1)和绿光探测舱体(2)的舱底上的密封透光窗(11)相对设置。
CN201710343550.7A 2017-05-16 2017-05-16 一种toc水质监测传感器 Expired - Fee Related CN106932354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710343550.7A CN106932354B (zh) 2017-05-16 2017-05-16 一种toc水质监测传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710343550.7A CN106932354B (zh) 2017-05-16 2017-05-16 一种toc水质监测传感器

Publications (2)

Publication Number Publication Date
CN106932354A CN106932354A (zh) 2017-07-07
CN106932354B true CN106932354B (zh) 2019-10-22

Family

ID=59429781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710343550.7A Expired - Fee Related CN106932354B (zh) 2017-05-16 2017-05-16 一种toc水质监测传感器

Country Status (1)

Country Link
CN (1) CN106932354B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107011B (zh) * 2017-12-30 2020-08-14 北方工业大学 一种基于双光源水质cod检测参数的智能传感器
CN108918366A (zh) * 2018-05-11 2018-11-30 中国电子科技集团公司第四十九研究所 一种基于锁相放大技术的浊度传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042965A (zh) * 2010-11-18 2011-05-04 上海衡伟信息技术有限公司 在线宽光谱水质分析仪
CN103149166A (zh) * 2013-01-31 2013-06-12 中国计量学院 一种双波长紫外法有机废水cod检测装置及方法
CN105259129A (zh) * 2015-11-12 2016-01-20 浙江微兰环境科技有限公司 一种探头式水质多参数在线监测仪及其监测方法
CN105675521A (zh) * 2016-04-12 2016-06-15 国家深海基地管理中心 一种基于敏感膜在线检测水体pH值的方法及检测装置
CN105954217A (zh) * 2016-05-23 2016-09-21 中国电子科技集团公司第四十九研究所 一种toc检测系统
CN206710300U (zh) * 2017-05-16 2017-12-05 中国电子科技集团公司第四十九研究所 一种toc水质监测传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042965A (zh) * 2010-11-18 2011-05-04 上海衡伟信息技术有限公司 在线宽光谱水质分析仪
CN103149166A (zh) * 2013-01-31 2013-06-12 中国计量学院 一种双波长紫外法有机废水cod检测装置及方法
CN105259129A (zh) * 2015-11-12 2016-01-20 浙江微兰环境科技有限公司 一种探头式水质多参数在线监测仪及其监测方法
CN105675521A (zh) * 2016-04-12 2016-06-15 国家深海基地管理中心 一种基于敏感膜在线检测水体pH值的方法及检测装置
CN105954217A (zh) * 2016-05-23 2016-09-21 中国电子科技集团公司第四十九研究所 一种toc检测系统
CN206710300U (zh) * 2017-05-16 2017-12-05 中国电子科技集团公司第四十九研究所 一种toc水质监测传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双波长紫外吸收法有机废水COD测量技术与仪器设计;邵敏超等;《环境工程学报》;20130131;第7卷(第1期);396-400 *

Also Published As

Publication number Publication date
CN106932354A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN106932354B (zh) 一种toc水质监测传感器
FR2904127B1 (fr) Procede de fonctionnement d'un dispositif de capteur domotique autonome pour detecter l'existence et/ou mesurer l'intensite d'un phenomene physique
CN101866020B (zh) 一种检测动静态人体的智能探测方法
CN101692049B (zh) 用于cod在线自动监测仪的控制系统
WO2008054820A3 (en) Thermoelectric sensor for analytes in a fluid and related method
CN104459065A (zh) 一种化学需氧量在线监测系统
CN103500770A (zh) 一种多气体检测的红外气体传感器
CN201229299Y (zh) 具备气压补偿功能的红外可燃碳氢化合物气体传感器
CN103623637A (zh) 一种压滤系统智能在线检测及控制系统
CN103674882A (zh) 一种非分红外光气体检测系统
CN203949870U (zh) 一种基于荧光分析的液体理化参数测量装置
CN206710300U (zh) 一种toc水质监测传感器
CN108918366A (zh) 一种基于锁相放大技术的浊度传感器
CN201707454U (zh) 一种检测动静态人体的智能探测装置
CN105606162A (zh) 远程多参数水质检测设备及水质检测方法
CN103983667B (zh) 一种游离脂肪酸快速测定装置与检测方法
CN204359675U (zh) 水质氨氮检测恒温装置
CN204613108U (zh) 一种高精度光学溶解氧测量装置
CN107219275A (zh) 水质监测船型机器人
CN205280580U (zh) 一种cod和氨氮多参数在线监测装置及其系统
CN205506109U (zh) 远程多参数水质检测设备
CN202836767U (zh) 电力系统红外温度监控及预警装置
CN109141669B (zh) 基于光谱技术的无线测温方法及装置
CN101271062B (zh) 一种紫外吸光法测定cod浓度的在线监测仪
CN204028063U (zh) 高温甲烷传感器测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191022

Termination date: 20200516

CF01 Termination of patent right due to non-payment of annual fee