CN106932015A - 使用拉曼光谱的包衣药物片剂的实时表征 - Google Patents

使用拉曼光谱的包衣药物片剂的实时表征 Download PDF

Info

Publication number
CN106932015A
CN106932015A CN201611272951.XA CN201611272951A CN106932015A CN 106932015 A CN106932015 A CN 106932015A CN 201611272951 A CN201611272951 A CN 201611272951A CN 106932015 A CN106932015 A CN 106932015A
Authority
CN
China
Prior art keywords
tablet
raman spectrum
distribution
raman
surface nature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611272951.XA
Other languages
English (en)
Other versions
CN106932015B (zh
Inventor
西恩·J·吉列姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endless And Hauser Optical Analysis Co ltd
Original Assignee
Kaiser Optical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaiser Optical Systems Inc filed Critical Kaiser Optical Systems Inc
Publication of CN106932015A publication Critical patent/CN106932015A/zh
Application granted granted Critical
Publication of CN106932015B publication Critical patent/CN106932015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9508Capsules; Tablets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/005Coating of tablets or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2893Tablet coating processes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及使用拉曼光谱的包衣药物片剂的实时表征。具体地,本发明使用拉曼光谱实时测定药物片剂的性质,包括表面粗糙度,光泽度和温度;提供多个具有待建模的表面性质的已知值的分布的包衣药物片剂;获取每个包衣片剂的拉曼光谱以生成拉曼光谱的分布;然后基于获取的拉曼光谱分布与测量性质的已知值的分布的比较关系来开发相关模型;然后在包衣过程期间和/或之后获取药物片剂的拉曼光谱,并且使用相关模型确定片剂的表面性质的值。与模型开发相关的步骤离线进行,而与获取在线包衣过程期间(优选)或之后药物片剂的拉曼光谱相关的一个或多个步骤使用远程光纤耦合探头在线进行。

Description

使用拉曼光谱的包衣药物片剂的实时表征
技术领域
本发明总体上涉及药物片剂处理,并且特别涉及通过拉曼光谱实时监测和测定片剂光泽度、表面粗糙度和片剂温度。
背景技术
片剂的包衣在制药工业中是常规的。应用这样的包衣有两个主要原因:为了实现预期的装饰外观,以及在某些情况下,为了功能性地引入例如活性药物成分(API)的物质以控制药物释放。
在包衣过程中,当添加包衣时,随着包衣被施加到包衣机中的片剂上,一些包衣相关的性质改变。这些性质可包括表面粗糙度、片剂光泽度和片剂温度。例如包衣材料浓度和组成、片芯组成以及包衣机性质(即喷雾速率,入口温度,转鼓速度等)的包衣本身的性质对这些关键的包衣性质(值)在整个过程中如何变化,以及在包衣过程结束时这些值是多少起作用。
对于这些性质,在包衣过程中通常设定有达到或超过的预定限度。这样的限度可以取决于片剂的应用,习惯,产品类型等等。因此,关键在于在片剂可被释放到包装之前实现这些性质。如果不能满是一个或多个预期的性质,则一批次的片剂可能由于包衣质量差而不合格,从而导致经济损失。测量表面粗糙度和片剂光泽度的当前实践限于离线方法,通常在批次结束时。如果在批次期间提取少量样品(即通过“取样器”),则以相对慢的离线方法逐片进行测量。如果在连续生产方式的包衣过程中,性质不是以应该的方式变化,则离线测定需要时间,且不能以相对“瞬时”的方式进行所需的过程改变。在离线处理下,由于测量值在该批次可以被“批准”和释放之前获取,该批次会在一段时间内保持隔离。这些额外的步骤花费时间和金钱。
此外,知晓包衣过程中片剂的温度可以帮助消除可能的温度诱导的片剂中可能会对温度敏感的成分的变化,包括例如载药包衣中的多晶型变化。温度测量,如果获得的话,可能难以测量单个片剂本身,并且将需要使用另一个传感器用于该测量——导致额外的成本。
与测量片剂光泽度和粗糙度相关的当前实践使用离线测定方法。例如,对于表面粗糙度,任选在批次期间,或者更常规地,在一批片剂被包衣之后,将一种离线激光表面光度仪用于从包衣机移除的片剂。测量表面粗糙度的其它方法也可以离线使用,例如SEM成像EDX分析和太赫兹脉冲成像(TPI)。量化表面粗糙度的另一种可能的方法是使用近红外光谱(NIR)。NIR方法基于漫反射信号,当被设定为固定几何形状的包衣片被离线测量时,表面粗糙度可能从包衣信号中被提取。
对于片剂光泽度,这种包衣性质通常使用光泽计离线测量——该光泽计是一种在预定角度以固定强度将光束发射到片剂表面上的装置。在相等但相反的角度测量反射强度。该方法也需要将片剂从包衣机中取出用于测量,无法原位实时测量。
对于片剂温度的测量,常规实践是在包衣期间或在从包衣机排出片剂的期间,通过热电偶或非接触红外(IR)温度计检测温度。对于后者,IR温度计激光束必须仅聚焦在片剂上,否则测量将不准确,因为片剂/片床可能处于与周围表面不同的温度,特别是在连续包衣机中。
表面粗糙度和片剂光泽度两者都已经通过拉曼显微镜形式用拉曼以成像或映射几何进行了检查。然而,这目前是在每个片剂的基础上离线完成的。片剂温度测量可以用投射到片床中的IR其它装置实现。包衣温度也可以使用包衣机入口和出口空气温度来测量,但是在这样的温度和片剂温度之间会存在复杂的关系。如果在过程期间以不同的间隔移出个别片剂,则可以伪实时地测量温度。然而,这是一种“破坏性”模式,因为片剂一旦被移出用于测量,将不能再被引回到过程中。
发明内容
本发明总体上涉及药片检查,特别涉及使用拉曼光谱检测和测定片剂性质。在优选的实施方案中,这些性质包括使用本文所述的方法和装置实时获得的表面粗糙度,光泽度和温度。
本发明的方法方面包括测量具有待建模的表面性质的已知值的分布的多个包衣药物片剂的步骤。获取每个包衣片剂的拉曼光谱以形成拉曼光谱的分布。基于获得的拉曼光谱分布和测量的性质的已知值的分布的比较关系来开发相关模型。然后获得在包衣过程期间或之后获得药物片剂的拉曼光谱,并且使用相关模型确定药片的表面性质的值。
更具体地,该方法涉及测量多个包衣药物片剂,以确定待建模的多个表面性质的已知值的不同分布,以及将获取的拉曼光谱与待建模的每个表面性质的已知值相匹配。基于所获得的拉曼光谱分布与每个测量的性质的已知值的分布的比较关系来开发相关模型。在所有实施方式中,可以开发单变量或多变量模型。
与模型开发相关的步骤优选在离线下进行,而与在线包衣过程中或之后获取药片的拉曼光谱相关的一个或多个步骤通过在线使用远程光纤耦合探头实现。系统还进一步包括一个用于存储含有通过测量多个包衣的药物片剂获得的表面性质的已知值的分布的数据集的装置,以及一个被配置为接收所述数据集和拉曼光谱分布以开发相关模型的处理器。虽然理想但非必需地,可以使用相同的拉曼光谱仪和处理器用于离线模型开发和在线分析。
附图说明
图1是显示在包衣过程中拉曼与片剂光泽相关性的图,其绘制了离线测量的检测值与在线拉曼预测值的对比关系;
图2是显示在包衣过程中拉曼与片剂光泽相关性的图,其绘制了多个运行期间,离线测量的检测值与在线拉曼预测值的对比关系;
图3是显示在包衣过程中拉曼与片剂表面粗糙度相关性的图,其绘制了离线测量的检测值与在线拉曼预测值的对比关系;
图4是显示在包衣过程中拉曼与片剂表面粗糙度相关性的图,其绘制了多个运行期间,离线测量的检测值与在线拉曼预测值的对比关系;以及
图5是显示在包衣过程中和之后拉曼与片剂温度相关性的图。
具体实施方式
广义而言,本发明利用拉曼光谱测量包衣物体的表面粗糙度,光泽度和温度。虽然也适用于其它工业,但公开的实施例与药物片剂包衣相关。
对于仪器,使用光纤耦合拉曼探头,优选在包衣机本身内部。可以使用任何合适的,商业可获得的拉曼探头,包括由密歇根州安娜堡市的Kaiser光学系统有限公司制造和销售的那些,还进一步包括美国专利No.7,148,963中描述的大收集面积光学探头,其全部内容通过引用并入本文。
拉曼具有将激发源远程传递到特定过程以及远程收集拉曼散射光的能力。当探头放置于制药包衣机(它是间歇式或连续式包衣机)内部时,使用拉曼检测物质的化学和物理信息特性的能力,可以在包衣过程中的任何点以非破坏性方式实时收集片剂自身的化学和物理信息。
根据本发明,这种实时信息反馈提供了几个优点,包括:(1)通过监测实际的化学和物理的片剂信息对包衣过程的实时反馈控制;(2)预先确定个别性质的终点;和(3)无需额外的离线测试确定批次终点性质,从而提供实时的片剂释放。
由于具有在同一光谱内实时收集多种物理和化学性质的光谱特征的能力,拉曼具有提取关于表面粗糙度,片剂光泽度和片剂温度,连同包衣重量增加百分比的定量片剂信息的能力,因为在重量增加百分比和片剂包衣厚度之间存在直接相关性。
如果进行后续的离线检测参考测量,则可以对于特定性质以及这些性质如何相对于获得的拉曼光谱变化建立相关性,无论该光谱是实时还是在运行后获得。这样的相关性可以在单变量和/或多变量空间中进行,以将在线拉曼光谱采集与经由片剂性质测定测量离线获取的离散可量化离线性质相关联。例如,已经显示,表面粗糙度,片剂光泽度和/或片剂温度之间可以同在每个性质的各个可量化的量下获取的片剂光谱变化的包衣重量增加百分比形成相关性。光谱预处理以及例如部分最小二乘法(PLS)和/或间接硬建模法(IHM)的多元分析提供了可以在时间标度上绘制的信息,以使操作者实时地知道在包衣运行期间和之后的表面粗糙度,片剂光泽和片剂温度的可定量状态。
根据本发明,在一个或多个包衣运行期间,在每个运行期间以特定的间隔获取拉曼光谱。在包衣过程期间和/或之后,通过离线测定法定量测量几个包衣(或部分包衣)片剂样品的表面粗糙度,片剂光泽度和片剂温度。在特定的采样时间点,获得的样品的拉曼光谱用于构建定量模型,其将每个性质与在该组片剂内发生的拉曼光谱变化相关联。在可能较不相关的模式(对在线测量)中,用拉曼离线分析包衣各种表面粗糙度,片剂光泽度等的样品,然后与其离线测定值相关。在生成该模型之后,在药物包衣机中使用集成的拉曼探头实时应用该模型。优选实施方式的具体步骤如下:
1a.将具有各种已知量的表面粗糙度,片剂光泽度和/或片剂温度的(统计学上的)大组片剂包衣。这些量的获知应该用常规生成这些值的离线测定测量装置来确定,包括在本发明的背景技术里讨论的那些装置。
2a.使用足以产生足够的信噪比的总采集时间的预定量,获取每个单独的片剂的离线拉曼光谱,使其与单独的离线测定值相关联。
3a.将待建模的性质的拉曼光谱采集与离线定量测定值相匹配。
4a.对拉曼光谱数据集应用光谱预处理以最小化非相关变化并且放大由于重要性质的相关变化。
5a.确定是否需要单变量或多变量建模方法。建立将光谱变化与定量测定变化相关的模型。
6a.使用建模统计,细化模型以增强与测定值的相关性,和/或减少噪声,偏差或其他不需要的人工产物(artifact)。
7a.将这个/这些模型应用于其他数据集,用于定量预测每个测定值(无论将来是在线还是离线)。
一个可选择的实施方式包括以下步骤:
1b.进行生产(统计学上的)大组(在线)片剂的包衣实验设计(DoE),其由不同量的表面粗糙度,片剂光泽度和/或片剂温度组成。
2b.在DoE包衣过程中,利用相同的总采集时间在包衣过程中的不同时间点(特别是在包衣循环的开始和结束时)获得拉曼光谱。
3b.在包衣循环后,通过离线测定分析来自每个批次的一分组样品。
4b.将待建模性质(表面粗糙度,片剂光泽度和/或片剂温度)的拉曼光谱采集和离线定量值相匹配。
5b.对拉曼光谱数据集应用光谱预处理以使非相关变化最小化并且将重要性质的相关变化放大。
6b.确定是否需要单变量或多变量建模方法。建立将光谱变化与定量测定变化相关联的模型。
7b.使用建模统计,细化模型以增强与测定值的相关性,和/或减少噪声,偏差或其他不需要的人工产物。
8b.将这个/这些模型应用于其他数据集,用于定量预测每个测定值(无论在将来是在线还是离线)。
通过本发明使实时信息变成可能,如果离计划轨道有任何移动,其允许通过反馈回路进行立即调整来校正属性。另外,在批次结束时这些性质将是已知的(作为总计),这样不需要进行附加的离线测量。在包衣过程中,拉曼采集应设置为适当的总采集时间,以在预处理和建模之后,提供一定水平的精度的预测化学或物理测量法,无论是单变量还是多变量。拉曼测量其中包含从这些化学和物理性质到各种信噪比的若干光谱特征,这取决于与给定性质相关的信号的强度和在相关波长位置的光谱内的噪声。
对于在排放期间和排放时的所有这些包衣性质——表面粗糙度,片剂光泽度和批次温度,在所述批次期间获得的拉曼测量均含有这种信息。一旦应用预处理(对数据集的数学处理以增加特定性质的方差),那么这些信号与在数据集内的每个性质中发生的变化相关。已经确定,在预处理之后,可以在包衣过程中原位测量期间实时确定表面粗糙度,片剂光泽度和批次温度。
实施例
图1是显示了在包衣过程中拉曼与片剂光泽度的相关性的图,其绘制了离线测量值与在线预测值的对比关系。该图显示在几个连续制造运行期间(19个试验组DoE)获得的在线片剂光泽度测量值的交叉验证的预测。虚线表示相关的单位(y=x),而R2表示与单位(1.0)相比的相关系数。片剂光泽度预测值的模型精度由估计量的均方根误差(RMSEE)和交叉验证的均方根误差(RMSEcv)给出。
图2是显示了在包衣过程中拉曼与片剂光泽度的相关性的图,其绘制了贯穿整个19个试验组运行中的离线测量值与在线预测值的对比关系。在图上显示了离线测量(正方形)和在线片剂光泽度预测值(圆形)。在线预测值是由早期观察到的PLS光泽度预测片剂模型产生的。当片剂在整个过程中移动时,片剂光泽度应当随着施用包衣而增加。
图3是显示了在包衣过程中拉曼与片剂表面粗糙度的相关性的图,其绘制了离线测量值与在线预测值的对比关系。该图显示在几个连续制造运行(19个试验组DoE)期间获得的在线表面粗糙度测量值的交叉验证的预测值。虚线表示相关的单位(y=x),而R2表示与单位(1.0)相比的相关系数。表面粗糙度预测值的模型精度由估计量的均方根误差(RMSEE)和交叉验证的均方根误差(RMSEcv)给出。
图4是显示了在包衣过程中拉曼与片剂表面粗糙度的相关性的图,其绘制了在整个19个试验组运行中离线测量值与在线预测值的对比关系。在图上显示了离线测量(正方形)和在线表面粗糙度预测值(圆形)。在线预测值是由早期观察到的PLS表面粗糙度片剂模型产生的。当片剂在整个过程中移动时,表面粗糙度随着施用包衣而增大。
图5是显示在包衣过程中和之后拉曼与片剂温度的相关性的图。离线测量值与在线预测样品温度对比绘制,显示了在几个连续制造运行(19个试验组DoE)期间获得的在线样品温度测量值的交叉验证的预测值。虚线表示相关的单位(y=x),而R2表示与单位(1.0)相比的相关系数。样本温度预测值的模型精度由估计量的均方根误差(RMSEE)和交叉验证的均方根误差(RMSEcv)给出。
总而言之,本发明提供了在包衣过程中测量表面粗糙度,片剂光泽度和/或片剂温度与片剂重量增加百分比(即包衣厚度)的能力,以及如果这些特性出现问题具有对过程进行实时更改的能力。
该系统和方法还提供了在该过程结束时获知合计的表面粗糙度,片剂光泽度和/或片剂温度,片剂重量增加百分比(即包衣厚度)的能力,以允许批次的实时释放。
优点在于降低了离线测定所涉及的成本(仪器采购,仪器维护,运行包衣后测定所涉及的操作者成本),同时允许制造商精简/缩短包衣过程以定量的命中这些性质需要的最小值,并且仍然批次释放。这又使得包衣成本降低并且改进了包衣机上的循环时间。

Claims (24)

1.一种测定包衣药物片剂性质的方法,其包括以下步骤:
(a)测量具有待建模的表面性质的已知值的分布的多个包衣药物片剂;
(b)获取每个包衣片剂的拉曼光谱以生成拉曼光谱分布;
(c)基于所获取的拉曼光谱分布与所测量的性质的已知值的分布的对比关系来开发相关模型;
(d)在包衣过程期间和/或之后获取药物片剂的拉曼光谱;和
(e)使用(c)中开发的模型确定片剂的表面性质的值。
2.根据权利要求1所述的方法,其中所述表面性质是表面粗糙度。
3.根据权利要求1所述的方法,其中所述表面性质是片剂光泽度。
4.根据权利要求1所述的方法,其中所述表面性质是样品温度。
5.根据权利要求1所述的方法,其包括以下步骤:
测量多个包衣药物片剂以确定待建模的多个表面性质的已知值的不同分布;
使所获取的拉曼光谱与待建模的每个表面性质的已知值相匹配;和
基于所获得的拉曼光谱的分布与每个测量的性质的已知值的分布的对比关系来开发相关模型。
6.根据权利要求1所述的方法,其包括在(b)中使用小于或等于(d)中使用的总拉曼信号采集时间的步骤。
7.根据权利要求1所述的方法,其包括在(c)中使用单变量或多变量建模的步骤。
8.根据权利要求1所述的方法,其包括对所述拉曼光谱应用光谱预处理以使所述性质中的非相关变化最小化或将相关变化放大的步骤。
9.根据权利要求1所述的方法,其包括使用建模统计来细化所述模型以增强相关性和/或减少不想要的人工产物的步骤。
10.根据权利要求1所述的方法,其包括在包衣过程期间和/或之后使用远程光纤耦合探头获取药物片剂的拉曼光谱的步骤。
11.根据权利要求1所述的方法,其包括使用在(c)中开发的模型实时确定所述片剂的表面性质的量的步骤。
12.根据权利要求1所述的方法,其包括响应在(e)中确定的表面性质的量来调节包衣过程的步骤。
13.一种用于确定包衣药物片剂的性质的系统,其包括:
存储数据集的装置,所述数据集具有通过测量多个包衣药物片剂获取的表面性质的已知值的分布;
拉曼光谱仪,其用于获取每个包衣片剂的拉曼光谱以生成拉曼光谱的分布;
处理器,其配置为接收数据集和拉曼光谱分布,以基于所获取的拉曼光谱分布与所测量的性质的已知值的分布的对比关系开发相关模型;
拉曼光谱仪,其用于在包衣过程期间或之后获取药物片剂的拉曼光谱;和
处理器,其使用相关模型可操作用于确定片剂的表面性质的值。
14.根据权利要求13所述的系统,其中所述表面性质是表面粗糙度。
15.根据权利要求13所述的系统,其中所述表面性质是片剂光泽度。
16.根据权利要求13所述的系统,其中所述表面性质是样品温度。
17.根据权利要求13所述的系统,其中所述数据集包括待建模的多个表面性质的已知值的不同分布;
其中所获取的拉曼光谱与待建模的每个表面性质的已知值相匹配;并且
相关模型是基于所获得的拉曼光谱分布与每个测量的性质的已知值的分布的对比关系。
18.根据权利要求13所述的系统,其中当在包衣过程期间或之后获取所测量的片剂的光谱和药物片剂的光谱时的总拉曼信号采集时间基本相似。
19.根据权利要求13所述的系统,其中手动和/或自动建模是单变量或多变量的。
20.根据权利要求13所述的系统,其中所述处理器可操作以将光谱预处理应用于所述拉曼光谱,从而将所述性质中的非相关变化最小化和/或将相关变化放大。
21.根据权利要求13所述的系统,其中所述处理器可操作以应用建模统计来细化模型从而增强相关性和/或减少不想要的人工产物。
22.根据权利要求13所述的系统,其进一步包括远程光纤耦合探头,以在包衣过程期间或之后获取药物片剂的拉曼光谱。
23.根据权利要求13所述的系统,其中药物片剂的拉曼光谱的获取在所述包衣过程期间实时发生。
24.根据权利要求13所述的系统,其进一步包括信息反馈回路,使得能够响应于在包衣过程期间或之后确定的样品性质的量来调节包衣过程。
CN201611272951.XA 2015-12-31 2016-12-30 使用拉曼光谱的包衣药物片剂的实时表征 Active CN106932015B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/986,260 US10365229B2 (en) 2015-12-31 2015-12-31 Real-time characterization of pharmaceutical tablet coatings using Raman spectroscopy
US14/986,260 2015-12-31

Publications (2)

Publication Number Publication Date
CN106932015A true CN106932015A (zh) 2017-07-07
CN106932015B CN106932015B (zh) 2020-03-13

Family

ID=59068936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611272951.XA Active CN106932015B (zh) 2015-12-31 2016-12-30 使用拉曼光谱的包衣药物片剂的实时表征

Country Status (3)

Country Link
US (1) US10365229B2 (zh)
CN (1) CN106932015B (zh)
DE (1) DE102016124644A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042363A (zh) * 2018-01-17 2018-05-18 陶俊荣 一种可在线检测中成药片剂制备系统和方法
CN108775870A (zh) * 2018-04-08 2018-11-09 雄安华讯方舟科技有限公司 包衣锅的监控方法及系统
CN113252634A (zh) * 2020-02-13 2021-08-13 凯塞光学系统股份有限公司 使用拉曼光谱法实时监测葡萄酒发酵特性
CN115736290A (zh) * 2022-11-07 2023-03-07 南京邦康生物技术有限公司 一种增加骨密度产品的生产工艺控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201704447D0 (en) * 2017-03-21 2017-05-03 Asterope Ltd Wire coating determination
TW202124922A (zh) * 2019-10-25 2021-07-01 美商安進公司 基於拉曼光譜法鑒定生物產品之可配置掌上型生物分析儀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309767A (zh) * 1998-07-13 2001-08-22 阿斯特拉曾尼卡有限公司 控制包衣工艺的方法
US7218395B2 (en) * 2003-04-16 2007-05-15 Optopo Inc. Rapid pharmaceutical identification and verification system
US20080034833A1 (en) * 2006-07-31 2008-02-14 John Maier Optical Spectroscopy Instrument Response Correction
CN101460831A (zh) * 2006-04-05 2009-06-17 科学技术设备委员会 拉曼分析
CN101614667A (zh) * 2008-06-27 2009-12-30 同方威视技术股份有限公司 拉曼光谱系统及拉曼光谱测量方法
US20130309302A1 (en) * 2012-05-07 2013-11-21 Bayer Pharma Aktiengesellschaft Process for manufacturing a pharmaceutical dosage form comprising nifedipine and candesartan cilexetil

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750996A (en) * 1996-09-26 1998-05-12 Duquesne University Of The Holy Ghost Apparatus for nondestructively inspecting a coated article and associated method
US6453264B1 (en) * 1997-04-30 2002-09-17 Southwest Research Institute Surface flaw detection using spatial raman-based imaging
US6654118B2 (en) * 2002-02-04 2003-11-25 Ortho-Mcneil Pharmaceutical, Inc. Method and apparatus for obtaining molecular data from a pharmaceutical specimen
US7148963B2 (en) 2003-12-10 2006-12-12 Kaiser Optical Systems Large-collection-area optical probe
TWI428271B (zh) * 2004-06-09 2014-03-01 Smithkline Beecham Corp 生產藥物之裝置及方法
EP1909973B1 (en) * 2005-07-15 2018-08-22 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US8645084B1 (en) * 2006-03-20 2014-02-04 Clarkson University Non-contact mechanical property determination of drug tablets
US9063000B2 (en) * 2009-05-15 2015-06-23 Glaxosmithkline Llc Using thermal imaging for control of a manufacturing process
GB2513343A (en) * 2013-04-23 2014-10-29 Univ Singapore Methods related to instrument-independent measurements for quantitative analysis of fiber-optic Raman spectroscopy
US9500634B2 (en) * 2012-12-31 2016-11-22 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309767A (zh) * 1998-07-13 2001-08-22 阿斯特拉曾尼卡有限公司 控制包衣工艺的方法
US7218395B2 (en) * 2003-04-16 2007-05-15 Optopo Inc. Rapid pharmaceutical identification and verification system
CN101460831A (zh) * 2006-04-05 2009-06-17 科学技术设备委员会 拉曼分析
US20080034833A1 (en) * 2006-07-31 2008-02-14 John Maier Optical Spectroscopy Instrument Response Correction
CN101614667A (zh) * 2008-06-27 2009-12-30 同方威视技术股份有限公司 拉曼光谱系统及拉曼光谱测量方法
US20130309302A1 (en) * 2012-05-07 2013-11-21 Bayer Pharma Aktiengesellschaft Process for manufacturing a pharmaceutical dosage form comprising nifedipine and candesartan cilexetil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042363A (zh) * 2018-01-17 2018-05-18 陶俊荣 一种可在线检测中成药片剂制备系统和方法
CN108775870A (zh) * 2018-04-08 2018-11-09 雄安华讯方舟科技有限公司 包衣锅的监控方法及系统
CN113252634A (zh) * 2020-02-13 2021-08-13 凯塞光学系统股份有限公司 使用拉曼光谱法实时监测葡萄酒发酵特性
CN115736290A (zh) * 2022-11-07 2023-03-07 南京邦康生物技术有限公司 一种增加骨密度产品的生产工艺控制方法

Also Published As

Publication number Publication date
US20170191947A1 (en) 2017-07-06
CN106932015B (zh) 2020-03-13
DE102016124644A1 (de) 2017-07-06
US10365229B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
CN106932015A (zh) 使用拉曼光谱的包衣药物片剂的实时表征
Markl et al. Review of real-time release testing of pharmaceutical tablets: State-of-the art, challenges and future perspective
Romero-Torres et al. Raman spectroscopy for tablet coating thickness quantification and coating characterization in the presence of strong fluorescent interference
Möltgen et al. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process
CN105300923B (zh) 一种近红外光谱分析仪在线应用时无测点温度补偿模型修正方法
Markl et al. In-line monitoring of a pharmaceutical pan coating process by optical coherence tomography
De Beer et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes
Mantanus et al. Moisture content determination of pharmaceutical pellets by near infrared spectroscopy: method development and validation
CN103842800B (zh) 幅材检测校准系统及相关方法
Vanarase et al. Development of a methodology to estimate error in the on-line measurements of blend uniformity in a continuous powder mixing process
Sacher et al. Shedding light on coatings: Real-time monitoring of coating quality at industrial scale
Liu et al. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes—A review
Zhong et al. Trends-process analytical technology in solid oral dosage manufacturing
Mantanus et al. Building the quality into pellet manufacturing environment–feasibility study and validation of an in-line quantitative near infrared (NIR) method
Saerens et al. Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion
El Hagrasy et al. Raman spectroscopy for the determination of coating uniformity of tablets: Assessment of product quality and coating pan mixing efficiency during scale-up
CA3034957A1 (en) Methodology for the identification of materials through methods of comparison of the spectrum of a sample against a reference library of spectra of materials
Wahl et al. How to measure coating thickness of tablets: Method comparison of optical coherence tomography, near-infrared spectroscopy and weight-, height-and diameter gain
US7800069B2 (en) Method for performing IR spectroscopy measurements to determine coating weight/amount for metal conversion coatings
Momose et al. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet
Feng et al. Application of process analytical technology for pharmaceutical coating: challenges, pitfalls, and trends
Sacher et al. Feasibility of In-line monitoring of critical coating quality attributes via OCT: Thickness, variability, film homogeneity and roughness
CN105466885B (zh) 基于无测点温度补偿机制的近红外在线测量方法
Hohl et al. Monitoring of a hot melt coating process via a novel multipoint near-infrared spectrometer
Brouckaert et al. Development and validation of an at-line fast and non-destructive Raman spectroscopic method for the quantification of multiple components in liquid detergent compositions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221101

Address after: Michigan, USA

Patentee after: Endless and Hauser Optical Analysis Co.,Ltd.

Address before: State of Michigan

Patentee before: KAISER OPTICAL SYSTEMS Inc.

TR01 Transfer of patent right