CN106927504A - 一种制备高纯度二氧化铬的方法 - Google Patents

一种制备高纯度二氧化铬的方法 Download PDF

Info

Publication number
CN106927504A
CN106927504A CN201710103876.2A CN201710103876A CN106927504A CN 106927504 A CN106927504 A CN 106927504A CN 201710103876 A CN201710103876 A CN 201710103876A CN 106927504 A CN106927504 A CN 106927504A
Authority
CN
China
Prior art keywords
cro
purity
oxygen
pressure
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710103876.2A
Other languages
English (en)
Inventor
司平占
王祥廉
葛洪良
姚璐璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201710103876.2A priority Critical patent/CN106927504A/zh
Publication of CN106927504A publication Critical patent/CN106927504A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • C01G37/027Chromium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种制备高纯度二氧化铬 (CrO2)的方法。通过在高压氧气中加热分解CrO3,制备高纯度CrO2,在三氧化铬分解反应发生之前就将系统的氧气压力通过增压装置升至高压,直到反应结束高氧压一直维持。高氧压环境使亚稳态CrO2在整个反应过程都处于稳定态,而其它价态的氧化铬处于非稳态,故所制备的CrO2的纯度很高,这可以通过样品的X‑射线衍射图谱和磁化强度测量得到证明。

Description

一种制备高纯度二氧化铬的方法
技术领域
本发明涉及磁性材料技术领域,特别是涉及一种高纯度磁性化合物的合成技术。
背景技术
二氧化铬具有铁磁性和所有物质中最高的自旋极化率,在磁电子学及器件中应用广泛。然而,CrO2由于在常压下是亚稳态,并且铬的氧化物价态众多,包括Cr2O3在内的氧化铬在常温常压下更稳定,所以在常压下合成CrO2非常困难,合成高纯度CrO2更加困难。
高氧压对保持CrO2稳定非常有效。杜邦公司最早利用水热法商业制备CrO2,过程是在封闭空间中加热CrO3和水的混合物,随着CrO3分解的氧气增多,封闭空间的氧气压力增加,最终获得纯度较高的CrO2。合成过程的最佳温度是300摄氏度,最佳气体压力是2000个大气压。也有人尝试在没有水的情况下热分解CrO3制备CrO2。但这两种方法的起始气压都是常压,高氧压的获得是通过CrO3在封闭空间分解出的氧气无法释放获得的,所以氧气压力是缓慢增加的。通常在系统产生足够的氧气压力之前,CrO3就已经部分分解成Cr3O8, Cr2O5,CrO2, 和Cr2O3等化合物,低价态的氧化铬通常很难通过高压氧气氧化获得高价态的氧化物,导致这种方法或多或少会有一些不同价态的氧化铬杂质存在。该法中反应温度、分解所能产生的气体压力、反应时间、反应腔体的空间大小和反应物的填充量都会对CrO2产物的纯度和化学计量产生影响,对反应过程参数控制要求很高。
有报道利用两步法在常压下制备CrO2,首先在250℃ 加热CrO3,然后在392 ℃附近加热第一步的中间产物。据报道两步法可以通过控制加热过程精确控制Cr2O5和Cr2O3的含量。然而,在此过程中CrO2和Cr2O5 都处于热力学不稳定状态,所以任何制备条件的微小波动都有可能导致其他价态氧化物的形成。
目前商业可以买得到的CrO2多是制备过程中加了催化剂(如Sb2O3/RuO2)的用于磁记录的产品。催化剂的使用可以大大降低生产过程需要的温度和压力,并且增加样品的矫顽力以用于磁记录。催化剂残留于样品之中,所以经过催化剂改性的CrO2磁化强度会降低,矫顽力会增加,形貌会变成针状,尺度会很小,纯度会降低。
发明内容
为了克服上述现有技术在产物纯度上的不足,本发明提供了一种制备超高纯度CrO2的方法。该工艺不仅简化了反应的控制参数,而且从热分解的初始阶段就施加氧气压力,从而大大提高了最终产物CrO2的纯度,也从理论和技术的角度避免了可能形成除CrO2以外的其它价态氧化铬。
本发明所采用的技术方案是:
一种制备高纯度CrO2的方法,在 CrO3加热热分解过程之前,首先将高气压氧气输入反应器;通过在高达1-60 MPa的高氧气压力下分解CrO3来制备高纯度CrO2颗粒或块体。
进一步的,在上述反应中CrO2自始至终都处于热力学稳定状态,从而获得高纯度CrO2
与现有技术相比,本发明避免了CrO3在初始氧气低压力阶段形成不需要的低价氧化物,同时避免使用可以残留在产品中的催化剂,从而使CrO2的纯度明显提高。
附图说明
图1是CrO2微粒的扫描电子显微镜(SEM) 形态图;
图2是CrO2产物在5K和300K的磁滞回线图;
图3是在高温高气压O2下分解CrO3制备出的 CrO2的XRD粉末衍射图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,CrO2微粒大部分是具有直边,平坦表面和八边形横截面的细长棒。CrO2粉末是具有平坦表面,直边缘和八边形横截面的细长棒状,这样的形貌意味着CrO2在形成过程中铬离子具有非常好的迁移能力,导致晶粒生长很快。铬离子高迁移能力的原因在于CrO2在环境压力下的熔点为375℃。所以,在低于其熔点的温度下形成的CrO2与前驱体的形态相似,因Cr离子在固体CrO2中的迁移率较小。然而,Cr离子在熔融CrO2中的迁移率显著增加,结果是CrO2的晶粒生长显着增强。由于金红石结构的c轴与颗粒的长轴一致,所以沿着c轴的晶粒生长速率应该比沿着垂直方向的晶粒生长速率高。本发明所得 CrO2产物比当前细针状商业粉体具有更大的尺寸。比二步法所得粉体具有更完整准确的铬氧原子比。
本发明的制备高纯度CrO2的方法,在加热 CrO3热分解过程之前,首先使反应器具有高氧压力,通过在1-60 MPa的高氧气压力下分解CrO3来制备高纯度CrO2。与传统方法不同,本工艺在反应的初始阶段就维持高氧压力直至结束。从而获得的CrO2显示出超高的纯度。
本发明通过外加氧气压力使整个反应过程自始至终都处于高氧压,如此实现CrO2自始至终都处于热力学稳定状态,从而获得高纯度CrO2
如图2显示样品的磁化强度接近CrO2的理论值,也是目前已经报道的最高磁化强度。由于X-射线衍射对微量杂质无法探测,所以样品纯度的证明主要通过磁性测量实现。因为在所有的不同价态氧化铬中,只有二氧化铬具有铁磁性,任何非二氧化铬的存在都会导致磁化强度的下降。所以在相同的测试条件下,二氧化铬的纯度越高,磁化强度越大。我们测得的样品的磁化强度分别达到129 Am2 / kg(5K)和107 Am2 / kg(300K)。杜邦公司的无催化剂水热法制备的CrO2的室温磁化强度在0.4特斯拉磁场下为90Am2/kg,而我们的二氧化铬产物在相同条件下的磁化强度为96.1Am2 /kg,说明我们的样品的纯度高于杜邦公司的无催化剂水热法获得的二氧化铬产物。我们的样品的居里温度是383 K,与标准化学计量化合物的居里温度完全一致。二步法获得的二氧化铬居里温度为400 K,说明其产物具有非化学计量氧含量,虽然这从XRD测试中看不出来。
图3显示产物是高纯度CrO2物相。XRD测试未见任何来自其它铬氧化物或其它杂质的衍射峰,进一步证明我们的制备方法有效。

Claims (3)

1.一种制备高纯度CrO2的方法,其特征在于:
在加热 CrO3热分解过程之前就使反应器的氧气气压高于常压,并维持这种氧气高气压直到制备过程结束;
通过在高达1-60 MPa的氧气高压力下分解CrO3来制备高纯度CrO2粉体或块体。
2.如权利要求1所述的制备高纯度CrO2的方法,其特征在于:在上述反应中CrO2自始至终都处于热力学稳定状态,从而获得高纯度CrO2
3.如权利要求1所述的制备高纯度CrO2的方法,其特征在于:在上述反应中以CrO3为原料制备高纯度CrO2
CN201710103876.2A 2017-02-24 2017-02-24 一种制备高纯度二氧化铬的方法 Pending CN106927504A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710103876.2A CN106927504A (zh) 2017-02-24 2017-02-24 一种制备高纯度二氧化铬的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710103876.2A CN106927504A (zh) 2017-02-24 2017-02-24 一种制备高纯度二氧化铬的方法

Publications (1)

Publication Number Publication Date
CN106927504A true CN106927504A (zh) 2017-07-07

Family

ID=59424180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710103876.2A Pending CN106927504A (zh) 2017-02-24 2017-02-24 一种制备高纯度二氧化铬的方法

Country Status (1)

Country Link
CN (1) CN106927504A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654282A (zh) * 2009-09-16 2010-02-24 吉林大学 铁磁性二氧化铬的高温高压制备方法
CN105540668A (zh) * 2016-01-21 2016-05-04 武汉科技大学 以TiO2为基体SnO2为种子层的CrO2材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654282A (zh) * 2009-09-16 2010-02-24 吉林大学 铁磁性二氧化铬的高温高压制备方法
CN105540668A (zh) * 2016-01-21 2016-05-04 武汉科技大学 以TiO2为基体SnO2为种子层的CrO2材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
并河建等: "高氧差压热分析仪分析CrO2生成过程", 《日本化学会誌》 *

Similar Documents

Publication Publication Date Title
Ali et al. Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route
Pradeep et al. Production of single phase nano size NiFe2O4 particles using sol–gel auto combustion route by optimizing the preparation conditions
Kotsikau et al. Structure and magnetic properties of manganese–zinc-ferrites prepared by spray pyrolysis method
Liu et al. Preparation and magnetic properties of La–Mn and La–Co doped barium hexaferrites prepared via an improved co-precipitation/molten salt method
Ogasawara et al. Microstructure and hysteresis curves of the barium hexaferrite from co-precipitation by organic agent
Wang et al. Carbothermal reduction method for Fe3O4 powder synthesis
Waqas et al. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process
Hou et al. The phase transition of W-doped VO2 nanoparticles synthesized by an improved thermolysis method
WO2008133153A1 (ja) 熱電変換材料、その製造方法および熱電変換素子
Jafarnejad et al. Synthesis, characterization and optical band gap of pirochromite (MgCr2O4) nanoparticles by stearic acid sol-gel method
Jabeen et al. Unraveling optimized parameters for phase pure rhombohedral perovskite bismuth ferrite without leaching
Sharma et al. Improvement in magnetic parameters of polycrystalline barium hexaferrite by nonmagnetic cation substitution and microwave processing
Randhawa et al. Preparation of nickel ferrite from thermolysis of nickel tris (malonato) ferrate (III) heptahydrate precursor
CN106927504A (zh) 一种制备高纯度二氧化铬的方法
Luo Preparation of strontium ferrite powders by mechanochemical process
Yao et al. Preparation of Ni0. 9Mn2. 1–xMgxO4 (0≤ x≤ 0.3) negative temperature coefficient ceramic materials by a rheological phase reaction method
CA1049250A (en) Process for preparing ferromagnetic chromium dioxide
Nandan et al. Static magnetic properties and cation distribution in partially inverse polycrystalline Ni–Co ferrites
Shabani et al. Polyethylene glycol coated NiFe2O4 nanoparticles produced by solution plasma method for biomedical applications
Michalsky et al. Rapid synthesis of nanocrystalline magnesium chromite and ferrite ceramics with concentrated sunlight
Toncheva et al. Production method role for the composite powders quality
WO2020075194A1 (en) Heteroatom-induced ferromagnetism in antiferromagnetic hematite
Randhawa et al. Synthesis of potassium ferrite by precursor and combustion methods: A comparative study
Randhawa et al. Preparation of ferrites from the combustion of metal nitrate-oxalyl dihydrazide solutions
US3423320A (en) Preparation of ferromagnetic chromium dioxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170707

RJ01 Rejection of invention patent application after publication