CN106927056A - 飞行器中的气象数据的显示 - Google Patents

飞行器中的气象数据的显示 Download PDF

Info

Publication number
CN106927056A
CN106927056A CN201611246929.8A CN201611246929A CN106927056A CN 106927056 A CN106927056 A CN 106927056A CN 201611246929 A CN201611246929 A CN 201611246929A CN 106927056 A CN106927056 A CN 106927056A
Authority
CN
China
Prior art keywords
display
aircraft
pilot
symbol
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611246929.8A
Other languages
English (en)
Inventor
F·富尼耶
F·潘乔特
M·科尔尼永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of CN106927056A publication Critical patent/CN106927056A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/387Organisation of map data, e.g. version management or database structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0091Surveillance aids for monitoring atmospheric conditions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/003Maps
    • G09B29/006Representation of non-cartographic information on maps, e.g. population distribution, wind direction, radiation levels, air and sea routes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0075Adaptations for use of electronic flight bags in aircraft; Supports therefor in the cockpit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Atmospheric Sciences (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Ecology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Neurosurgery (AREA)
  • Software Systems (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

本发明涉及飞行器中的气象数据的显示。由计算机实施的用于管理气象数据的方法,所述气象数据用于管理飞行器的飞行,所述方法包括下述步骤:接收地图背景以及气象产物的选择(711);接收与飞行器的飞行计划相关的根据第一空间比例的气象数据;确定一个或多个类型的图形符号;以及,根据第二空间比例确定该类型的图形符号的一个或多个图形变体(720),其中图形叠加是预先限定的;以及显示(730)地图背景和所确定的图形变体。研发描述了对显示的视觉密度进行的管理,其考虑到了飞行环境和/或飞行员的生理,根据请求停止对显示进行的调节。还描述了软件和系统方面(例如,电子飞行包、目光监控)。

Description

飞行器中的气象数据的显示
技术领域
本发明涉及的技术领域为,用于例如飞行器的交通工具的导航辅助中的气象数据管理。
背景技术
气象信息对于辅助飞行器的导航是必要的,在变化多端的大气条件下,气象信息的变化很快。
气象信息影响任务的操作准备和飞行中的决策。决定性的气象事件尤其包括:大气运动(例如,风、风暴、对流、涡流等)、水文形成(例如,雨、雪、雾等)、冰的存在、能见度条件差或下降、以及电现象(闪电)。
气象数据一般以文本和/或图形的形式提供。对于图形式的气象数据,其一般以符号的形式显示,这些符号叠加在一个或多个地图背景或覆盖物上。
一般向飞行员提供不同的显示选项,以便通过气象数据有效地导航。这些选项主要包括,能够选择或过滤一个或多个与特定类型的气象事件相关的标准,能够选择或操纵显示覆盖物,选择或得益于彩色代码的使用从而指示任何风险或优先级,管理屏幕上显示的不同符号的透明度等。
即便如此,这些方案存在限制。
当前用于表示和显示数据的技术有时会产生使得数据难以辨认的数据堆叠。当飞行员尝试同时看几个类型的气象数据时,其可能被信息(符号、线、文本、颜色)淹没,结果丧失了其分析能力。数据的可辨认性差和/或令人不满的导航选项有时对飞行员的决策产生非常不利的影响。飞行器的飞行安全性可能要妥协,因为气象条件构成了对于飞行管理和飞行器的驾驶的最关键信息的一部分。
存在对于用于在飞行器的驾驶舱中管理气象数据的先进系统和方法的操作需要。
发明内容
公开了由用于管理飞行器的飞行的气象信息管理计算机实施的方法,其包括下列步骤:接收地图背景以及气象产物的选择;接收与飞行器的飞行计划相关的根据第一空间比例的气象数据;确定一个或多个类型的图形符号;以及,根据第二空间比例确定该类型的图形符号的一个或多个图形变体,其中图形叠加是预先限定的;以及显示地图背景和所确定的图形变体。研发描述了尤其根据显示的视觉密度对显示进行的调节,其考虑到了飞行环境和/或飞行员的生理,根据请求停止对显示进行的调节。还描述了软件和系统方面(例如,电子飞行包、目光监控)。
有益地,本发明的实施方案通过能够彼此区别不同的产物,能够同时显示多个气象产物。
有益地,本发明的实施方案能够创建或维持气象产物与其关键性之间的联系。
有益地,本发明通过尤其提高所显示的信息的可辨认性,以可测量的方式改善了飞行员的决策。
有益地,所述示例简化了人机界面,尤其将飞行员从冗长的有时是重复性且经常复杂的访问气象信息的过程中解放,同样地还提高了飞行员对于实际飞行的集中注意力的能力。改善人机交互模型,飞行员的视野可以得到最佳和更集中的使用,能够维持高水平的注意力或最佳地使用注意力。要提供的认知努力得到优化,或者更精确而言,认知努力部分地再分配至对于飞行管理和飞行目标更有用的认知任务。换言之,与本发明的某些方面相联系的技术效果对应人机界面的使用者的认知负载的减少。
有益地,得益于传统以及标准符号和规范符号的综合,符号的有益实施方案能够减少训练或学习成本。
有益地,本发明能够辅助飞行员预先确定环境性有用信息。
有益地,本发明能够同时恢复屏幕的气象事件的“关键性”(定性重要性)和“严重性”(定量重要性)的方面。在可靠性或质量管理的领域,“关键性”定义为事件出现的概率与其结果的严酷性或严重性的乘积(“关键性=概率×严酷性”)。气象事件的关键性同等地取决于频率或其出现概率、其严酷性,以便用于估算和防止不希望的连锁反应的风险(系统性风险)。
有益地,本发明可以应用于航空电子或航空环境(包括远程无人机飞行),但是也可以用于机动车辆、轨道或海洋交通环境。
附图说明
本发明的其他特征和益处将通过下面的描述和所附附图中的图而变得明显,在附图中:
图1示出了本发明的整体技术环境;
图2示意性示出了已知FMS式的飞行管理系统的结构和功能;
图3表示根据本发明的实施方案的一类符号的示例;
图4显示了给定类型的符号的图形变体的示例;
图5和图6示出了根据本发明的实施方案的显示的调节的示例;
图7显示了根据本发明的方法的各步骤;
图8显示了多个气象产物的选择的示例;
图9示出了视觉密度的测量的系统方面;
图10示出了关于人机界面HMI的不同的方面。
具体实施方式
本发明可以实施在一个或多个电子飞行包EFB上和/或一个或多个飞行管理系统FMS的屏幕上和/或一个或多个驾驶舱显示系统CDS的屏幕上。显示可以“分布”在这些不同的显示屏幕上。
电子飞行包缩写为EFB,其指代嵌入的电子库。EFB是导航人员(例如,飞行员、技师、空服机组等)使用的电子设备。EFB可以向机组提供飞行信息,辅助其执行任务(其逐渐无纸化)。一个或多个应用能够管理用于飞行管理任务的信息。这些通用计算机平台旨在减少或替代纸质参考材料,纸质参考材料常见于“飞行员飞行包”的手提行李中,其处理可能是冗长的,尤其在关键飞行阶段中。参考纸质文档一般包括,飞行员手册、各种导航地图以及地面操作手册。有益的是,这些文档在EFB中无纸化。此外,EFB可以作为专用于将平时手动进行的操作自动化的软件应用的主机,例如,起飞性能计算(限制速度的计算等)。EFB硬件有不同的类别。类别1的EFB设备为便携式电子设备(PED),其在起飞和其他关键阶段通常不使用。该类别的设备不需要任何特定的认证或授权监管过程。类别2的EFB设备通常布置在驾驶舱中,例如,安装在在全部飞行阶段中都使用这些设备的位置。该类别的设备需要事先使用授权。类别1和类别2的设备被认为是便携式电子设备。类别3的固定安装件,例如安装在飞行器的驾驶舱中的计算机架或固定扩展坞,一般需要监管方的同意和认证。
类似于任何显示设备,EFB上显示的信息量可能受到限制(尤其是关于天气数据的显示),而有益的是,实施对数据的显示进行优化的方法。
另外,或者作为替选,为了显示在一个或多个EFB上,数据可以显示在飞行器的驾驶舱中显示的FMS的一个或多个屏幕上。缩写FMS对应“飞行管理系统”,并且指代飞行器飞行管理系统。在准备飞行时或转向时,机组一般使用飞行器管理系统FMS来输入关于飞行过程的不同信息。FMS包括输入装置和显示装置以及计算装置。操作者,例如飞行员或副飞行员,可以通过输入装置来输入例如RTA(到港所需时间)或与航线点有关的“航线点”(即,飞行器必须竖直经过的点)的信息。在现有技术中,这些元素通过国际标准ARINC 424而已知。计算装置尤其能够根据飞行计划(飞行计划包括航线点的列表)、根据航线点之间的地理情况和/或海拔和速度条件来计算飞行器的轨迹。
下文中,缩写FMD用于表示驾驶舱中的FMS的显示器,其一般布置为下视显示器(在仪表板的较低的水平上)。
缩写ND用于表示驾驶舱中的FMS的图形显示器,其一般布置为平视显示器,即在脸的正面。该显示器由参考点(居中或在显示器底部)和限定显示区域尺寸的范围所限定。
缩写HMI对应人机界面。信息的输入,以及输入的信息或显示装置计算的信息的显示,构成这样的人机界面。概括而言,HMI装置使得能够输入和查阅飞行计划信息。下文描述的实施方案详述先进的HMI系统。
下面对不同的实施方案进行描述。
公开了由用于管理飞行器的飞行的气象信息管理计算机实施的方法,其包括下列步骤:从多个预先限定的地图背景中接收地图背景;接收多个气象产物的选择;接收与飞行器的飞行计划相关的根据第一空间比例的气象数据;根据所选择的气象产物和所接收的气象数据确定一个或多个类型的图形符号;以及,根据第二空间比例确定该类型的图形符号的一个或多个图形变体,其中该类型的符号的所述变体的图形叠加是预先限定的;显示地图背景和所确定的图形变体。
该类型的符号的变体的图形叠加是组合限定的:该方法从可能的选项中选择最佳图形选项(主要在可辨认性方面)。
空间比例对应空间单元的大小(一般为km2或平方海里),其对应例如监管性质的气象数据的格式。本发明分别允许“放大”或“拉近”、“缩小”或“简化”或“拉远”,伴随或不伴随视觉密度的修改。在实施方案中,内容针对所选择的显示比例调整。
在实施方案中,飞行员手动选择显示比例(例如,缩放或放大的水平):第二空间比例接收自飞行员和/或配置文件(涉及第三方机器)。
进一步地,该方法进一步包括下述步骤:测量包括地图背景和图形符号的显示的视觉密度;根据所测量的视觉密度调节所述显示。
在实施方案中,显示比例自动确定。在实施方案中,根据针对所显示的视觉密度测量结果而调整的可辨认性(心理计量学概念)确定合适的显示比例。
显示密度可以尤其通过内在测量结果(例如,每单位表面区域的像素数量)和/或外在测量结果(例如,外在图像获取手段)来确定。
测量视觉密度的步骤和调节的步骤在时间上是独立的:这些步骤可以相继执行或并行执行,即,伴随或不伴随第一未优化的显示(其也可以对飞行员隐藏)的修正。在实施方案中,优化逆向进行(测量视觉密度是内在的),显示最终结果。在实施方案中,查明然后修正外在视觉密度测量。
进一步地,该方法进一步包括下列步骤:确定飞行器的当前飞行环境,根据所述飞行器的当前飞行环境确定气象产物的多个选择。
进一步地,该类型的符号的变体的图形叠加与预先限定的视觉排名相关,确定该类型的图形符号的一个或多个图形变体的步骤包括最大化与所确定的图形变体的叠加相关的排名的和的步骤。
可以被调用的不同符号的叠加的能力(或属性)可以量化(通过测量视觉密度而客观量化,或通过初步评估而主观量化)。符号的“叠加性”因此是可配置的。排名的监控因此能够例如调整显示的渲染。
进一步地,调节显示的步骤包括修改图形符号的类型和/或数量的步骤。
根据本发明的该类型的符号的变体可以通过构造而叠加。进一步地,量化信息被图形化编码(例如,组成符号或其变体的线的粗度、颜色等)。量化信息应当被理解为,指的是例如,关注的气象产物的频率或数量。
进一步地,调节显示的步骤包括消除和/或叠加所显示的符号的一个或多个类型的图形变体。
进一步地,该方法进一步包括下述步骤:接收至少一个与飞行器的飞行员的生理状态有关的值,根据飞行员的生理状态来确定该类型的图形符号的一个或多个图形变体和/或对显示进行调节。
进一步地,对显示进行的调节根据请求而停止。
在飞行员请求时和/或根据来自航空电子系统的请求(所谓的断开模式,其例如用于去除非必要图形覆盖物的紧急情况),图形符号的自动缩放和/或操纵可以取消或停止或倒退。
公开了一种计算机程序产品,包括当所述程序运行在计算机上时能够执行该方法的步骤的代码指令。
公开了一种系统,其包括用于实施该方法的步骤的装置。
进一步地,该系统包括至少一个显示屏幕,该显示屏幕选自:飞行屏幕PFD和/或导航屏幕ND/VD和/或多功能屏幕MFD和/或电子飞行包的一个或多个显示屏幕。
进一步地,该系统包括用于获取一个或多个显示屏幕的图像的装置。
进一步地,该系统包括(新增加的或作为替代的)用于监控飞行器的飞行员的生理的装置。
进一步地,该系统包括(新增加的或作为替代的)用于监控飞行员的目光的设备。
进一步地,该系统包括(新增加的或作为替代的)增强现实和/或虚拟现实装置。
图1示出了本发明的整体技术环境。航空电子装备项或机场装置100(例如,与空中交通控制系统相联系的控制塔)与飞行器110通信。飞行器是能够在地球的大气中移动的交通装置。例如,飞行器可以是飞机或直升机(或无人机)。飞行器包括飞行员舱室或驾驶舱120。在驾驶舱中有飞行装备项121(所谓航空电子装备项),其包括例如,一个或多个机载计算机(计算、存储器和数据存储装置),其包括FMS、用于显示或看数据以及输入数据的装置、通信装置以及(可能的)触觉反馈装置和滑行计算机。机上可以装载触摸平板或EFB 122,其为便携式或整合在驾驶舱中。所述EFB可以与航空电子装备项121交互(双向通信123)。EFB也可以与外在计算机资源通信124(可通过网络(例如,云计算125)访问外在计算机资源)。具体而言,计算可以在EFB上本地进行,或者可以部分地或完全地在可以通过网络访问的计算装置上进行。机载装备项121一般是已认证和被监管的,但是EFB 122和连接的计算装置125一般没有被认证(或程度较轻)。该架构能够在EFB 122侧注入灵活性,同时确保嵌入式航空电子121侧的受控安全性。
在机载装备项中,有不同的屏幕。ND屏幕(与FMS相关的图形显示)一般布置在主要视野中,在“平视”处,而FMD位于“下视”。由FMS输入或计算的全部信息在所谓FMD页上成组。现有的系统能够一页页地导航,但是屏幕的尺寸以及对于为了信息的可辨认性而在一个页面上不放置太多信息的需要使得不能以简明的方式把握当前和未来的全部飞行情形。现代飞机的驾驶舱中的机组一般包括两个人,其分布在驾驶舱的两侧:“飞行员”侧和“副飞行员”侧。商用飞机有时只有飞行员,而某些老旧的飞机或军用运输飞机有三个人的机组。每个人看与其相关的他/她的HMI页。在执行任务时一般永久显示上百种可能性中的几个:首先是“飞行计划”页,其包含飞机遵循的路线信息(接下来的航线点的列表以及与其相关的关于距离、时间、海拔、速度、燃料、风的预测)。路线分为多个段、航程和程序(其自身又由多个点组成)并且包括“性能”页,该页包含对于在短期内引导飞机有用的参数(要遵循的速度、海拔升限、下一次海拔改变)。机上还有大量其他的可用页(横向和竖直修正页、信息页、特定于某飞行器的页),或者通常上百页。
图2示意性示出了已知FMS式的飞行管理系统的结构和功能。布置在驾驶舱120和航空电子装置121中的FMS式系统200具有人机界面220,其包括输入装置(例如由键盘构成)和显示装置(例如由显示屏幕构成),或者只是触摸显示屏幕,并且该界面具有至少下述功能:
-导航(LOCNAV)201,其用于根据全球定位装置(例如GNSS卫星全球定位(例如,GPS、GALILEO、GLONASS等))、VHF无线电导航信标、惯性单元来进行飞行器的最优定位。该模块与上述地理定位设备通信;
-飞行计划(FPLN)202,其用于输入构成要遵循的路线的“骨架”的地理元素,例如离港和到港程序引入的点、航线点、空中走廊,其通常称为“航路”。FMS一般聚集了多个飞行计划(所谓“有效”飞行计划,飞机在该计划上被导引;“临时”飞行计划能够作出修改而不激活在该飞行计划上的导引;以及“无效”工作飞行计划(所谓“第二计划”))。
-导航数据库(NAVDB)203,其用于根据数据库中包括的关于点、信标、拦截或高空航程等的数据来构造地理路线和程序;
-性能数据库(PERFDB)204,其包含飞行器的空气动力学和发动机参数;
-横向轨迹(TRAJ)205,其用于根据飞行计划的点构造连续的轨迹、遵守飞行器的性能水平以及约束限制(对于区域导航的RNAV或对于所需导航性能的RNP);
-预测(PRED)206,其用于构造横向和竖直轨迹上的已优化的竖直简况,并且给出尤其在每个点处、每个飞行参数改变时和目的地的距离、时间、海拔、速度、燃料和风的估计,其将向机组显示。
-导引(GUID)207,其使用预测功能206计算出的信息,在横向和竖直平面上在飞行器的三维轨迹上导引飞行器,同时优化其速度。在装备有自动飞行设备210的飞行器上,自动飞行设备可以与导引模块207交换信息;
-数字数据链路(DATALINK)208,其用于在飞行计划/预测功能和控制中心或其他飞行器209之间交换飞行信息。
-一个或多个HMI屏幕220。
由FMS输入或计算的全部信息在显示屏幕(FMD、NTD和PFD页、HUD或类似)上成组。在空客A320或A380式航空公司飞机中,FMS的轨迹显示在平视显示器上,称为导航显示(ND)的显示屏幕。“导航显示”提供飞机所处情形的地理视图,其显示地理背景(实际的自然,其外观和内容可以变化),有时显示飞机的飞行计划、任务的特征点(等时点、爬坡终点、下降的开始等)、周围的交通、天气的各个方面(例如雨和风暴区域、结冰的条件等),其一般源自嵌入的气象雷达(例如,反射的回音,其能够检测降雨或风暴的区域)。在空客A320、A330、A340、波音B737/747代的飞机上,不存在与飞行计划显示屏幕的交互。飞行计划通过称为MCDU(多功能控制显示器)的界面上的字母数字键盘来构造。飞行计划通过输入以表格的形式表示的“航线点”的列表来构造。通过键盘,可以输入关于这些“航线点”的一定数量的信息项,例如飞机在经过航线点时必须遵守的限制(速度、海拔)。该方案显示出几个缺陷。其不能直接使得轨迹变形,其必须通过相继输入或者存在于导航数据库(标准机载的AEECARINC 424格式的NAVDB)中或者由机组通过其MCDU(例如通过输入坐标)创建的“航线点”来完成。由于当前显示屏幕的尺寸及其分辨率,该方法冗长且不准确。对于每次修改(例如,使得轨迹变形以避免正在移动的危险的天气灾害),必须再次输入不在所关注的区域的一连串的航线点。
根据飞行员所限定的飞行计划(“航线点”的列表),横向轨迹根据航线点(通常称为航程)之间的地理和/或海拔和速度条件(其用于计算转向半径)来计算。在该横向轨迹上,FMS优化涉及任何海拔、速度、时间约束的竖直轨迹(就海拔和速度而言)。由FMS输入或计算的全部信息在显示屏幕(MFD页、NTD和PFD显示、HUD或类似)上成组。图2的HMI部分220因此包括:a)FMS的HMI组件,其构造发送至显示屏幕(称为用于驾驶舱显示系统的CDS)的数据;和b)CDS自身,其表示屏幕及其图形驱动软件,该软件处理轨迹的绘图显示并且包括能够识别手指(对于触摸界面)或定位设备的移动的计算机驱动。
由FMS输入或计算的全部信息在“页”(其在一个或多个FMS屏幕上图形化显示)上成组。现有的系统(称为“玻璃驾驶舱”)能够一页页地导航,但是屏幕的尺寸以及(为了保持信息的可辨认性)不过载页面的需要使得不能以简明的方式把握当前和未来的全部飞行情形。从而,搜索飞行计划的特定元素可能花费飞行员很长时间,尤其是在飞行员需要在多个页面(长飞行计划)中导航时。实际上,当前使用的不同FMS和屏幕技术只能够显示6到20行以及4到6列。
图3显示根据本发明的实施方案的一类符号的示例。
根据本发明的符号展现出在原理上构造的或之后构造的“可叠加性”的属性。该叠加属性是可配置的,并且表示图形符号能够图形化地叠加在几个其他预先限定的图形符号上的能力。在本发明的实施方案中,图形符号与多个图形变体的形式相关,在图形符号显示在其他图形元素上或下时,这些形式中的每一个被配置为优化在所述符号中编码的信息的图形可辨认性。
图3所示的示例300包括子部分301,其表示晴天涡流气象条件(“晴空涡流”);子部分302,其与对流区气象条件(“对流”)相关;以及子部分303,其与结冰气象条件(“结冰”)相关。
在统一的方式下,符号300在同一个符号中集中三种类型的气象信息,同时不需要飞行员方面进行任何显著的学习。
根据本发明的一个方面,标准图标(标准化的或实际上是标准的)合并或统一,但是其先前是分开使用的。这一精明的合并避免了飞行员方面的显著的学习周期。例如,对于“晴空涡流”、“结冰”和“对流”,统一的几何符号300在同一个图案中组合了三种类型的事件的标准符号,使得飞行员能够快速认知这三个组分。
叠加原理可以一般化。
进一步地,根据本发明的符号法可以存储量的方面,尤其是环境的方面(即,按在数据库中过滤和/或选择的来翻译或反映数据或值)。换言之,技术数据上进行的技术操作的技术结果由特定的图形编码复原。
根据本发明的方法可以操纵不同类型的符号或气象产物,尤其是“表面”类型(例如,由图形表面(例如尤其用于冰和对流、多云、尘云、SIGMET等的多边形)表示的产物)、“线”类型(例如,线性表示的产物,相比于表面,对其进行比例的改变和/或显示调节的操纵更困难,例如急流线、热/冷前饰彩线)、“点”类型(例如,以点的形式表示的产物,例如闪电雷击、根据METAR/TAF、PIREP等的机场状态)以及“矩阵”类型(例如,由本地测量的矩阵组成的产物,例如在不同海拔的风/温度的显示网格)。
图4显示了给定类型的符号的图形变体的示例(对于示例300)。
例如,变化实施方案401反映显著的涡流气象条件和/或相反地,较轻或可忽略的结冰条件。变化的实施方案402显示涡流条件不存在,但是强调了显著的对流和结冰条件(例如,在一个或多个预先限定的阈值之上)。变化的实施方案403示出了结冰条件占主要的情形。情形404示出了结冰条件不存在的情形(例如,预先限定的阈值之下)。没有表示颜色的变化,但是其增加组合的可能性。
有益地,在根据本发明的一个或多个符号中的信息的制码或编码可以由自动系统读取(因为该系统知道编码,即,“机器可读内容”)。换言之,根据本发明的符号可以被认为是可以由人类操作者和机器(例如,计算机)辨认的代码。
图5和图6显示了根据本发明的方法的特定步骤的示例。进一步地,根据本发明的方法可以实际上包括一个或多个步骤:调节飞行器的驾驶舱中的显示屏幕上显示的符号的视觉密度。无论视觉密度测量结果是内在的(即,显示系统中进行的测量)还是外在的(即,由第三方系统进行的测量),都可以修改所显示的符号的数量和/或特性。例如,基于缩放水平,即基于飞行员所选择的底层绘图的放大水平,最终图形表示可以间隔适宜,或详细(相反地)。通过考虑空间比例或节距或计算单元,该方法可以包括下述步骤:在每个计算单元中确定一个或多个主要气象条件。
图5显示了叠加了多个根据本发明的符号的地图背景的提取形式。该图示出了四个单元(50km2表面区域)510、520、530和540。
图6显示了调节显示的示例(例如,根据显示密度测量结果和/或飞行环境)。在每个单元中,有不同的气象条件。在示例中,因为单元510的视觉密度在特定的飞行环境中太高,所以计算611确定,单元510只与同一个符号620相关。不同的计算形态可以用于进行这样的约简。当前单元上的平均气象条件可以被确定并复原。或者,可以应用过滤器,以便仅复原所关注的单元内的异常和/或关键事件。所得符号的确定还可以根据包括飞行环境、给定时刻的飞行员的生理状态、一个或多个气象事件的关键性和/或严重性等的标准或参数。
在本发明的实施方案中,显示至少部分地取决于飞行员的生理参数值的测量结果。
图7显示了根据本发明的方法的各步骤的示例。
基于不同的参数710(气象产物的选择711、飞行环境712、视觉密度713、生理714),事先优化的来自数据库720的符号被显示,并且显示被调节730。
根据显示环境和/或显示密度,可以不同地显示一个相同的符号。显示环境可以尤其根据飞行环境(例如,起飞、爬坡、巡航等)来确定。
例如,可以在存在气象产物的区域放置不同的气象符号,尺寸针对绘图的缩放调整,比例与产物的频率和/或数量相联系,并且颜色与其严重度相匹配。在实施方案中,前线和风以及温度符号以标准方式显示,并且叠加在晴空涡流、结冰和对流符号上。前线可以尤其为透明的,并且在后面显示其他气象产物。有关风的符号可以足够薄,以至能够看见背景中的产物。温度可以按文本显示,并且显示可以针对当前放大的水平(“缩放”)调整,以便能够看背景中的气象产物。在某些实施方案中,云可以表示为叠加在地图背景上的或多或少地稠密的白色区域的形式,而在背景中,全部的其他气象产物维持可见。云轮廓可以以连续线来识别。
某些符号可以与更高的显示优先级相关,其不仅就出现而言(如果事件出现,则其立即复原在屏幕上而无需使用时间延迟),而且就计算深度而言(例如,在实施方案中,与闪电相关的气象事件可以被操纵为具有优先级,闪电一般被视作更关键,而且如果有必要,对应的符号总是显示在前景上)。在本发明的实施方案中,闪电将叠加在全部产物上。
基于显示放大(或者缩小)的水平(“缩放”或“不缩放”),一些显示区域可以放大和/或两个符号之间的距离可以增加。
在实施方案中,在任何时刻,对于每个产物,飞行员可以选择气象产物的符号或表示,以访问所选择的区域的详细信息(伴随预先限定的命令的长按、短按等)。
不同水平的图形叠加可以是预先限定的,即,先前限定的。在实施方案中,预先限定多种类型的符号,每种符号具有不同的图形变体,每种变体与不同的叠加属性相关,不同类型的符号具有不同的变体。通过叠加符号而尽量以更高水平的叠加“添加”信息对显示进行调整,但是为了某些方面也简化其显示。
不同的调节是可能的。在实施方案中,缩放或放大的水平提高(或降低)。在其他实施方案中,通过图像分析(以固定的规律间隔进行,或对于视频捕捉而言连续地进行),信息密度根据图像的不同的子部分得到估计,动态地确定显示调节。例如,在显示屏幕变得太“挤”(文本或图形符号的数量超过一个或多个预先限定的阈值)的情况下,较低优先级信息被“约简”或“浓缩”或“简明化”为可以根据各种形态选择的标记或符号的形式(将交互标记放置在飞行器的飞行的图形表示上或沿着飞行器的飞行的图形表示放置交互标记)。相反,如果所显示的信息的密度允许,则例如先前约简或浓缩或简明化的信息扩展或详细化或扩充或放大。
在本发明的实施方案中,“视觉密度”保持基本不变。飞行阶段或环境可以调整其视觉密度(例如,在着陆时或在飞行的关键阶段,信息密度被减小)。
图8显示了多个气象产物的选择的示例。
飞行员从多个地图背景(即,不同的显示覆盖物)中选择地图背景。类似地,一个或多个显示标准能够配置可用气象信息的显示。
飞行员可以尤其通过选择要显示的信息的类型来配置气象数据的显示(飞行员可以选择全部,或不选择,或根据情况选择)。在实施方案中,飞行员可以选择“严重条件”参数或因素(严重气象条件,即,可能威胁到飞行器的条件),这然后使得以(例如)表示为风暴的区域的形式(例如,符号(闪电点)或图(机场的天气))来显示全部类型气象数据的全部的“严重条件”。有益地,“严重条件”类型的信息的存在可以显示在屏幕上(例如类似彩色垫的符号),并且可以指示何种类型的气象数据具有“严重条件”。换言之,“严重条件”的存在可以图形化地得到提示。
在实施方案中,可以选择显示大气现象的不同强度。例如,飞行员可以过滤,即选择,要显示的严重度水平(例如,“温和和严重”、“严重”)。
更一般而言,关于气象信息,可以作出手动和/或自动的选择。自动地,机载仪器(传感器、襟翼状态、嵌入计算等)和/或飞行员的手动申明可以确定当前的飞行器的飞行环境(例如,起飞、爬坡、巡航、接近、下降等)。进一步地,根据当前飞行环境对显示进行调节。实际上有益的是,在某些点/时刻(例如,地面上或起飞的风、巡航中急流的存在等)显示某些气象信息。气象信息的环境化是有益的。
在本发明的某些实施方案中,该方法包括能够确定飞行器的“飞行环境”或“当前飞行环境”的逻辑方法或步骤。
在给定时刻的飞行环境包含飞行员进行的全部动作(尤其是实际飞行设定点)以及外部环境对飞行器的影响。
“飞行环境”例如包括预先限定或预先归类的与数据(数据例如位置、飞行阶段、航线点、当前程序(或其他))相关的情形中的情形。例如,飞行器可以处于着陆的接近阶段、起飞阶段、巡航阶段,但也可以处于水平上升、水平下降等(可以预先限定多种情形)。另外,当前“飞行环境”可以与大量描述性属性或参数(当前气象状态、交通状态、包括例如传感器测量的压力水平的飞行员的状态等)相关。
飞行环境可以因此还包括例如由优先级过滤的数据和/或基于飞行阶段数据、气象问题、航空电子参数、ATC协商、与飞行状态相联系的异常、与交通和/或救助相联系的问题的数据。“飞行环境”的示例包括例如,例如“巡航速度/无涡流/飞行员压力额定”或“着陆阶段/涡流/飞行员压力强”的环境。这环境可以根据各种模型构造(例如,例如树形组织的层次化的模型,或根据包括图的各种依赖性的模型)。可以限定环境的归类,以便总结就人机交互而言的需要(例如,最小或最大交互延迟、最小和最大文字数量等)。特定规则也可以保留在某些环境中,尤其是紧急或关键的情形中。环境的归类可以是静态的或动态的(例如,可配置的)。
该方法可以实施在包括用于确定飞行器的飞行环境的装置的系统中,所述确定装置包括特定软件规则,其操纵例如由物理测量装置测量的值。换言之,用于确定“飞行环境”的装置包括系统或“硬件”或物理/有形装置和/或逻辑装置(例如,逻辑规则,例如,预先限定)。例如,物理装置包括航空电子仪表(雷达、探针等),其能够建立表征飞行的事实测量。逻辑规则表示能够解释(例如,环境化)事实测量的全部信息处理操作。一些值可以对应多个环境,而且通过关联和/或计算和/或模拟,通过这些逻辑规则能够在候选“环境”之间做决定。多种技术能够实施这些逻辑规则(形式逻辑、模糊逻辑、直觉逻辑等)。
基于该方法所确定的环境,根据本发明的方法可以“有知觉地”复原精心或“智能”地选择了其选择的信息。知觉复原应当理解为,指的是信息可以通过不同的认知模式(视觉、听觉、触觉反馈,即,触摸/震动等)和/或根据这些模式的组合来复原。单个认知感觉可能是有压力的(例如,仅通过信息的图形显示),但是根据一些实施方案,可以进行多模式复原(图形显示和(同时的或异步的)通过适当设备向例如飞行员的手腕传递震动)。有益地,多模式复原能够向飞行员提供飞行设定点的通信的一定的稳定性。例如,如果一份信息有可能没有被考虑到,则可以使用认知模式的不同组合来进行提醒。
图9示出了视觉密度的测量的系统方面。
显示密度可以尤其由内在测量结果(例如,每单位表面区域的像素数量,例如由内部图形处理器指示)和/或外在测量结果(例如,通过例如测量每单位表面区域的该像素数量来捕捉EFB 122和/或FMS屏幕121上的数据的表示的最终渲染的视频相机910或图像获取装置920)确定。
根据实施方案,“视觉密度”或“显示密度”可以测量为每平方厘米上打开或有效的像素的数量,和/或每单位表面区域的字母数字字符的数量和/或每单位表面区域的预先限定的几何图案的数量。视觉密度也可以至少部分地根据生理标准(飞行员阅读速度的模型等)限定。
从系统的角度看,图像获取装置(例如,布置在驾驶舱中的相机或视频相机)能够捕捉向飞行员显示的全部视觉信息中的至少一部分(有益地,该视频反馈被放置在仰视面板上、智能眼镜或任何其他飞行员穿戴的装备上,以便捕捉飞行员的主观视野)。
在实施方案中,该方法包括下述步骤:接收第三方图像获取系统对显示屏幕的捕捉,确定所述捕捉的视觉密度图。
视觉密度的确定可以通过从图像提取数据来完成(“拆解”)。可以从图像或视频获取提取的数据包括例如文本(通过OCR,光学字符识别)、数值、光标或转盘位置等的数据。(分开地或组合地)从音频流提取数据或信息也是可能的。
“拆解”操作指代复原操作或在数字对象上捕捉信息的操作,所述复原或捕捉不是该数字对象内在提供的。例如,该信息复原可以包括,获取一个或多个图像,之后在所捕捉的图像中识别字符。
在实施方案中,快照被获取、分析、概略画出,所捕捉的信息从该图像中提取。所捕捉的图像类型的现有知识可以允许特定的识别(例如,视角)。在变化中,快照是视频式的920,即,获取相继的固定图像,捕捉大量的图像尤其能够允许信息捕捉的优化和/或允许携带图像获取装置的使用者的移动的稳定性。根据另一实施方案,图像获取装置以固定方式安装在飞行器的驾驶舱中。通过该装置,可以连续进行信息的捕获或复原。根据另一实施方案,图像获取装置可以对应固定在虚拟或增强现实头戴装置上的相机或视频相机。
本发明中,进一步地,该方法进一步包括下述步骤:接收930至少一个与飞行器的飞行员900的生理状态有关的值,根据所测量的飞行员的生理状态来调节显示。确定飞行员的生理状态包括直接和/或间接测量。直接测量尤其包括飞行员的心率和/或ECG(心电图)和/或EEG(脑电图)和/或出汗和/或呼吸率的一个或多个测量。间接测量包括估计飞行员的兴奋或疲劳或压力,这些状态可以与飞行阶段关联。
不同的HMI管理模型是可能的。显示的环境和生理管理可以基于规则进行。
显示的再配置可以是条件性的,例如,规则可以包括测试和/或检查。规则可以采取航空电子式和/或非航空电子式的参数。例如,飞行计划的不同阶段(起飞、巡航或着陆),包括轻微的故障,可以与不同的配置/再配置规则相关。例如,起飞时的显示需要不同于巡航中的显示需要,显示密度可以相应再配置。测试还可以考虑认知和/或生物数据(例如,通过飞行员的认知负载的测量,导致返回到显示的调整,飞行员生物参数(例如心率和出汗,压力水平可以根据其推测)的监控可以导致以某方式调整或再配置显示,例如通过增加密度或使得屏幕变亮等)。
在实施方案中,屏幕的再配置是“可断开的”,即,飞行员可以决定取消当前显示的全部调整,快速返回没有所述再配置的原生显示模式。再配置模式可以例如由语音命令(密码)或通过致动器(停止按钮)来退出。
图10示出了关于可以设置为实施根据本发明的方法的人机界面HMI的不同方面。除了(或者替代)机载FMS和/或EFB计算机的屏幕,可以使用额外的HMI装置。概括而言,FMS航空电子系统(其是由航空公司监管方认证的系统,且就显示和/或分工而言可能展示出某些限制)可以有益地通过非航空电子装置补充,尤其是先进HMI。
飞行器的飞行的至少一部分的表示可以在二维(例如,显示屏幕)下产生,但是也可以在三维(例如,虚拟现实或屏幕上的3D显示)下产生。在3D实施方案中,标记可以是可选择的空间区域(可以由不同的装置选择,例如通过虚拟现实界面、手套、轨迹球或通过其他设备)。三维显示可以补充驾驶舱内的二维显示(例如,半透明虚拟现实头戴装置、增强现实头戴装置等)。如果有需要,则飞行的表示的各种形式是可能的,额外的深度维度能够分配给时间维度(例如,飞行时长)和/或空间维度(例如,不同航线点之间的距离、飞行器在空间中的轨迹的物理表示等)。可以实施相同变体或类似于2D情况的变体:管理信息密度、放置标志、符号的出现和消失、高亮飞行中的事件等。
具体而言,人机界面可以使用虚拟和/或增强现实头戴装置。图10显示了飞行员戴着的不透明虚拟现实头戴装置1010(或半透明增强现实头戴装置或透明度可配置的头戴装置)。单个显示头戴装置1010可以是虚拟现实(VR)头戴装置或增强现实(AR)头戴装置或仰视显示器等。头戴装置因而可以是“头戴显示器”、“可佩戴计算机”、“眼镜”或视频头戴装置。头戴装置可以包括计算和通信装置1011、投影装置1012、音频获取装置1013和视频投影和/或视频获取装置1014。以此方式,飞行员可以例如通过语音命令的方式配置三维(3D)飞行计划的显示。头戴装置1010显示的信息可以完全是虚拟的(显示在单个头戴装置中)、完全是现实的(例如投影到驾驶舱现实环境中可用的平的表面上)或两者的组合(部分是叠加在现实上或与显示合并的虚拟显示,部分是通过投影仪的现实显示)。
信息的再现可以尤其以多模式方式进行(例如,出价反馈、视觉和/或听觉和/或压觉和/或震动再现)。
显示的特征还可以在于,应用预先限定的放置规则和显示规则。例如,人机界面(或信息)可以“分布”(分割为不同的部分,有可能是部分冗余的,然后分配)在不同的虚拟屏幕(例如,1010)和/或现实屏幕(例如,FMS、TAXI)之间。
该方法的各个步骤可以完全或部分地实施在FMS和/或一个或多个EFB上。在特定实施方案中,全部信息只显示在FMS的屏幕上。在另一实施方案中,与该方法的步骤相关的信息只显示在嵌入的EFB上。最后,在另一实施方案中,例如通过将信息“分布”到不同设备的不同屏幕上,FMS和EFB的屏幕可以联合使用。以合适的方式进行的信息的空间分布可以有助于减少飞行员的认知负载并且从而改善决策并增加飞行安全性。
本发明也可以实施在不同的显示屏幕上,尤其是电子飞行包EFB、ANF(机场导航功能)等。进一步地,该系统包括增强现实和/或虚拟现实装置。
除了FMS的屏幕,显示装置可以包括不透明的虚拟现实头戴装置和/或半透明的增强现实头戴装置或透明度可配置的头戴装置、投影仪(例如微投影仪或用于投影模拟场景的视频投影仪)或甚至这些设备的组合。头戴装置因此可以是“头戴显示器”、“可佩戴计算机”、“眼镜”、视频头戴装置等。显示的信息可以完全是虚拟的(显示在单个头戴装置中)、完全是现实的(例如投影到驾驶舱现实环境中可用的平的表面上)或两者的组合(部分是叠加在现实上或与显示合并的虚拟显示,部分是通过投影仪的现实显示)。
AR装置尤其包括HUD(“仰视显示器”)式系统,VR装置尤其包括EVS(“增强视觉系统”)或SVS(“综合视觉系统”)式系统。
视觉信息可以根据飞行员的浸入式视觉环境而分布或分配或投影或遮罩。该“分布”可以导致这样的环境:飞行员通过考虑全部可用表面以便添加(叠加、覆盖)虚拟信息而处于充满机会的状态,所述虚拟信息按其本性(显示什么)、时间性(何时显示、以何频率显示)以及放置(显示的优先级、放置的稳定性等)而被选择。在一个极端情况下,可以采用在使用者的环境中使用很少或微小的全部放置以便增加信息显示密度。甚至,通过投影叠加在现实对象上的图像遮罩,显示可以“擦除”驾驶舱中物理存在的一个或多个几何结构已知并稳定的控制仪器(操纵杆、把手、致动器),以便进一步增加可以利用的表面。驾驶舱的现实环境因而可以变为许多“潜在”屏幕,甚至变为一个统一的屏幕。
显示可以“分布”在驾驶舱中:驾驶舱中存在的各种屏幕依据其是否可以被访问而可以有助于分配必须显示的信息。另外,增强和/或虚拟现实装置可以增加显示表面。可用显示表面的增强不会使得本发明实现的显示密度控制无效和无价值。相反,融合了该可利用显示表面的增加和视觉密度的控制(例如环境集中或密度增加)的显示(环境)再配置能够显著增强人机交互。
在实施方案中,根据本发明的屏幕的再配置可以“可断开的”,即,飞行员可以决定取消或停止全部当前显示的修改,以快速返回“额定”显示,即没有显示修改的原生模式。再配置模式可以例如由语音命令(密码)或通过致动器(停止按钮)来退出。不同的事件可以触发正在进行的图形再配置的该快速退出(例如,航线点的“排序”、飞行阶段的改变、例如发动机故障的主要异常的检测、降压等)。
进一步地,该系统排他地包括触摸式界面装置。在本发明的特定实施方案中,驾驶舱是全触摸的,即,排他地由触摸式HMI界面组成。根据本发明的方法和系统实际上允许“全触摸”实施方案,即,根据完全由触摸屏幕组成的人机交互环境,没有有形致动器而是有益地完全可配置。
进一步地,该系统进一步包括用于获取驾驶舱的图像的装置(例如,通过OCR解释或再注入数据和/或通过安装在飞行员戴着的头戴装置上安装的相机或固定在驾驶舱后部的相机来“拆解”识别图像)和/或目光跟踪设备。
本发明可以在硬件和/或软件元素上实施。其可以为计算机可读介质上的可用的计算机程序产品。介质可以是电子的、磁的、光学的或电磁的。一些计算装置或资源可以是分布式的(“云计算”)。

Claims (14)

1.一种由计算机实施的用于管理气象数据的方法,所述气象数据用于管理飞行器的飞行,所述方法包括下述步骤:
-从多个预先限定的地图背景中接收地图背景;
-接收气象产物的多个选择(711);
-接收与飞行器的飞行计划相关的根据第一空间比例的气象数据;
-根据所选择的气象产物和所接收的气象数据确定一个或多个类型的图形符号;
-根据第二空间比例,确定该类型的图形符号的一个或多个图形变体,该类型的符号的所述变体的图形叠加(720)是预先限定的;
-显示(730)地图背景和所确定的图形变体。
2.根据权利要求1所述的方法,进一步包括下述步骤:测量包括地图背景和图形符号的显示的视觉密度(713);根据所测量的视觉密度调节所述显示。
3.根据在前权利要求中的任一项所述的方法,进一步包括下列步骤:确定飞行器的当前飞行环境(712),根据飞行器的所述当前飞行环境确定气象产物的多个选择。
4.根据权利要求1所述的方法,该类型的符号的变体的图形叠加与预先限定的视觉排名相关,确定该类型的图形符号的一个或多个图形变体的步骤包括使与所确定的图形变体的叠加相关的排名的和最大化的步骤。
5.根据权利要求2所述的方法,调节显示的步骤包括修改图形符号的类型和/或数量的步骤。
6.根据权利要求2所述的方法,调节显示的步骤包括消除和/或叠加所显示的符号的一个或多个类型的图形变体。
7.根据在前权利要求中的任一项所述的方法,进一步包括下述步骤:接收至少一个与飞行器的飞行员的生理状态(714)有关的值,根据飞行员的生理状态来确定该类型的图形符号的一个或多个图形变体和/或对显示进行调节。
8.根据权利要求2所述的方法,对显示进行的调节根据请求而停止。
9.一种计算机程序产品,包括当所述程序运行在计算机上时能够执行根据权利要求1至8中的任一项所述的方法的步骤的代码指令。
10.一种系统,其包括用于实施根据权利要求1至8中的任一项所述的方法的步骤的装置,该系统包括至少一个显示屏幕,该显示屏幕选自:飞行屏幕PFD和/或导航屏幕ND/VD和/或多功能屏幕MFD和/或电子飞行包的一个或多个显示屏幕。
11.根据权利要求10所述的系统,包括用于获取一个或多个显示屏幕的图像的装置。
12.根据权利要求10或11所述的系统,包括用于监控飞行器的飞行员的生理的装置。
13.根据权利要求10至12中的任一项所述的系统,包括用于跟踪飞行员的目光的设备。
14.根据权利要求10至13中的任一项所述的系统,包括增强现实和/或虚拟现实装置。
CN201611246929.8A 2015-12-29 2016-12-29 飞行器中的气象数据的显示 Pending CN106927056A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502715 2015-12-29
FR1502715A FR3046226B1 (fr) 2015-12-29 2015-12-29 Affichage de donnees meteorologiques dans un aeronef

Publications (1)

Publication Number Publication Date
CN106927056A true CN106927056A (zh) 2017-07-07

Family

ID=56263738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611246929.8A Pending CN106927056A (zh) 2015-12-29 2016-12-29 飞行器中的气象数据的显示

Country Status (4)

Country Link
US (1) US20170186203A1 (zh)
EP (1) EP3187826B1 (zh)
CN (1) CN106927056A (zh)
FR (1) FR3046226B1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919252A (zh) * 2018-04-03 2018-11-30 河北泽华伟业科技股份有限公司 风暴天气自动追踪导航系统
CN109640071A (zh) * 2017-10-05 2019-04-16 泰勒斯公司 双目竞争管理
CN112017460A (zh) * 2020-07-17 2020-12-01 广州新科佳都科技有限公司 一种基于多种信息显示的引导系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023912B1 (fr) * 2014-07-18 2020-05-08 Thales Calcul de performance pour aeronef
FR3050291B1 (fr) * 2016-04-15 2020-02-28 Thales Procede d'affichage de donnees pour la gestion du vol d'un aeronef, produit programme d'ordinateur et systeme associes
US10379606B2 (en) * 2017-03-30 2019-08-13 Microsoft Technology Licensing, Llc Hologram anchor prioritization
CN108269303B (zh) * 2017-12-22 2021-08-24 广东纳睿雷达科技股份有限公司 一种三维气象雷达显示方法
CN109830238B (zh) * 2018-12-24 2021-07-30 北京航空航天大学 塔台管制员工作状态的检测方法、装置及系统
US11104449B2 (en) * 2019-01-17 2021-08-31 Honeywell Interntional Inc. Significant weather advisory system
US10559135B1 (en) * 2019-03-15 2020-02-11 Microsoft Technology Licensing, Llc Fixed holograms in mobile environments
JP2022035982A (ja) * 2020-08-21 2022-03-04 ザ・ボーイング・カンパニー 3次元の経路に沿った気象現象の可視化
US20220139235A1 (en) * 2020-10-29 2022-05-05 Rockwell Collins, Inc. Mixed aspect graphic for neighboring fields of view
PL4047434T3 (pl) * 2021-02-19 2024-04-15 Anarky Labs Oy Urządzenie, sposób i oprogramowanie do wspomagania operatora w pilotowaniu drona z użyciem pilota zdalnego sterowania i okularów rozszerzonej rzeczywistości ar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022217A1 (en) * 2006-07-21 2008-01-24 The Boeing Company Selecting and identifying view overlay information for electronic display
US20100057275A1 (en) * 2008-09-04 2010-03-04 Christina Schilke Presenting weather information on a display
US20100240988A1 (en) * 2009-03-19 2010-09-23 Kenneth Varga Computer-aided system for 360 degree heads up display of safety/mission critical data
US20120147030A1 (en) * 2010-12-13 2012-06-14 Theo Hankers Temporally Based Weather Symbology
CN102854884A (zh) * 2011-06-30 2013-01-02 通用电气公司 与飞行器轨迹有关的气象数据选择
US20130120166A1 (en) * 2011-11-15 2013-05-16 Honeywell International Inc. Aircraft monitoring with improved situational awareness
US20130249712A1 (en) * 2012-03-20 2013-09-26 Airbus Operations (Sas) Method and device for displaying meteorological data on an aircraft screen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265024A (en) * 1991-04-05 1993-11-23 Vigyan, Inc. Pilots automated weather support system
US7612688B1 (en) * 2005-03-10 2009-11-03 Wsi Corporation Inflight weather service
US9513403B2 (en) * 2009-07-27 2016-12-06 Peck Labs, Inc Methods and systems for displaying customized icons
US9349296B2 (en) * 2011-03-11 2016-05-24 The Boeing Company Methods and systems for dynamically providing contextual weather information
US9020665B1 (en) * 2013-06-26 2015-04-28 Rockwell Collins, Inc. Winds aloft symbology presentation system, device, and method
IL228797A (en) * 2013-10-08 2017-11-30 Elbit Systems Ltd A method and system for detecting pilot incompetence based on animal sign sensors and head sensors
FR3013444B1 (fr) * 2013-11-19 2017-05-05 Airbus Operations Sas Procede et systeme d'affichage de phenomenes meteorologiques rencontres par un aeronef volant le long d'un plan de vol.
US9473367B2 (en) * 2014-08-19 2016-10-18 Honeywell International Inc. Aircraft monitoring with improved situational awareness

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022217A1 (en) * 2006-07-21 2008-01-24 The Boeing Company Selecting and identifying view overlay information for electronic display
US20100057275A1 (en) * 2008-09-04 2010-03-04 Christina Schilke Presenting weather information on a display
US20100240988A1 (en) * 2009-03-19 2010-09-23 Kenneth Varga Computer-aided system for 360 degree heads up display of safety/mission critical data
US20120147030A1 (en) * 2010-12-13 2012-06-14 Theo Hankers Temporally Based Weather Symbology
CN102854884A (zh) * 2011-06-30 2013-01-02 通用电气公司 与飞行器轨迹有关的气象数据选择
US20130120166A1 (en) * 2011-11-15 2013-05-16 Honeywell International Inc. Aircraft monitoring with improved situational awareness
US20130249712A1 (en) * 2012-03-20 2013-09-26 Airbus Operations (Sas) Method and device for displaying meteorological data on an aircraft screen
CN103359294A (zh) * 2012-03-20 2013-10-23 空中客车运营简化股份公司 用于在飞行器屏幕上显示气象数据的方法和设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109640071A (zh) * 2017-10-05 2019-04-16 泰勒斯公司 双目竞争管理
CN108919252A (zh) * 2018-04-03 2018-11-30 河北泽华伟业科技股份有限公司 风暴天气自动追踪导航系统
CN112017460A (zh) * 2020-07-17 2020-12-01 广州新科佳都科技有限公司 一种基于多种信息显示的引导系统

Also Published As

Publication number Publication date
EP3187826B1 (fr) 2019-10-23
US20170186203A1 (en) 2017-06-29
EP3187826A1 (fr) 2017-07-05
FR3046226A1 (fr) 2017-06-30
FR3046226B1 (fr) 2020-02-14

Similar Documents

Publication Publication Date Title
CN106927056A (zh) 飞行器中的气象数据的显示
CN107014383A (zh) 飞行器中的气象数据的显示
US10347140B2 (en) Flight planning and communication
US10209122B1 (en) Systems and methods for generating avionic displays including forecast overpressure event symbology
US7855664B2 (en) Display system for aircraft
US20170032576A1 (en) Man-machine interface for managing the flight of an aircraft
US10055116B2 (en) Tactile interface for the flight management system of an aircraft
US9564055B2 (en) Prediction and warning of transported turbulence in long-haul aircraft operations
US20160093223A1 (en) Unknown
EP2163849A2 (en) Methods and systems for indicating fuel required to reach a location
CN109074749A (zh) 用于飞行器飞行管理的数据的显示方法以及相关的计算机程序产品和系统
US20180292661A1 (en) Avionic display systems and methods for generating avionic displays including aerial firefighting symbology
CN109656496A (zh) 提供基于优先方案的垂直情况显示器对象与横向地图显示器上显示的对象的情境自关联方法
Below et al. 4D flight guidance displays: an approach to flight safety enhancement
US10490091B1 (en) Systems and methods for avoidance traversal analysis for flight-plan routing
US20170003838A1 (en) Viewing system comprising means for selecting, sharing and displaying graphical objects in various viewing modes and associated method
Trombetta Multi-trajectory automatic ground collision avoidance system with flight tests (project Have ESCAPE)
Laurain et al. Design of an on-board 3D weather situation awareness system
Mubarak et al. The impacts of advanced Avionics on degraded visual environments
Chittaluri Development and Evaluation of Cueing Symbology for Rotorcraft Operations in Degraded Visual Environment (DVE)
Vernaleken et al. The European research project ISAWARE II: a more intuitive flight deck for future airliners
Cauchi et al. A decision support tool for weather and terrain avoidance during departure
Fenley et al. Degraded visual environment operational levels
Dennstaedt A Targeted Approach to Provide Weather Guidance for General Aviation Pilots Based on Estimated Time of Departure and Personal Weather Minimums
Helmetag et al. Analysis, Design and Evaluation of a 3D Flight Guidance Display

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170707