CN106920013A - 一种地面气温观测资料的质量控制方法 - Google Patents

一种地面气温观测资料的质量控制方法 Download PDF

Info

Publication number
CN106920013A
CN106920013A CN201710152515.7A CN201710152515A CN106920013A CN 106920013 A CN106920013 A CN 106920013A CN 201710152515 A CN201710152515 A CN 201710152515A CN 106920013 A CN106920013 A CN 106920013A
Authority
CN
China
Prior art keywords
observation
temperature
observation station
station
quality control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710152515.7A
Other languages
English (en)
Inventor
叶小岭
熊雄
沈云培
邓华
姚润进
黄飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201710152515.7A priority Critical patent/CN106920013A/zh
Publication of CN106920013A publication Critical patent/CN106920013A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种地面气温观测资料的质量控制方法,首先对目标区域内气象观测站的气温数据进行采集,其次求解实验变异函数值并利用提出的反正切函数对其进行拟合,然后通过克里金方程组求解各邻近观测站对目标观测站的权重,进而利用梯度克里金法对各气象观测站的气温值进行估计并对其精度进行评价,最后对气温估计值与原始观测值进行阈值检验,从而判断数据是否有误并对其进行修正。本发明解决了现有质量控制方法对邻近观测站空间分布、气温空间相关性及其变异性以及地形对气温影响考虑不足的问题。

Description

一种地面气温观测资料的质量控制方法
技术领域
本发明属于气象观测技术领域,特别涉及了一种地面气温观测资料的质量控制方法。
背景技术
气象数据质量控制即对气象观测站和数据中心的资料审核,以便发现其中的缺测数据或错误数据并对其补充或修正,从而保证资料最大程度的完整和最大可能的准确。由于地面观测资料能够较为准确地提供大气近地面的动力、热力状况和湿度分布等大气特征,因此,地面资料同化技术的发展是提高数值天气预报水平的重要方法之一,而资料同化技术发展的首要任务就是如何利用质量控制方法获取高质量的观测资料,同时高质量的地面气象观测资料也是研究气候变化和气候模式必不可少的资料。
各国皆注重对气象资料的质量控制研究,质量控制技术也有了很大发展,如北欧国家的4级质量控制、美国国家环境预报中心的质量控制方法研究、中国的3级质量控制等。传统的基本方法有界限值检查、气候极值检查、历史极值检查、区域极值检查、内部一致性检查、时变检查、空间一致性检查等。其中空间一致性检查是根据邻近观测站对目标站进行质量控制,具有较大的优势,常用的有反距离加权法与空间回归检验法,其中空间回归检验法适用于降水、风速等单一空间变化较大要素的检验,而反距离加权法仅依据邻近观测站与目标站间的距离分配权重,在地形复杂度较高的地区性能较差。气温是最为重要的气象要素之一,地形对其有显著影响,而传统方法并没有将其考虑在内。
发明内容
为了解决上述背景技术提出的技术问题,本发明旨在提供一种地面气温观测资料的质量控制方法,解决反距离加权法对邻近观测站空间分布、气温空间相关性及其变异性以及地形对气温影响考虑不足的问题。
为了实现上述技术目的,本发明的技术方案为:
一种地面气温观测资料的质量控制方法,包括以下步骤:
(1)采集气象观测站气温观测数据并对其进行基本检查,获得数据集Zi(t),其中,i为气象观测站序列号,t为观测时刻;
(2)对于每一个观测时间t,根据公式计算得到一组实验变异函数值γ(h),其中,h为参与求解的观测站点间的分离距离;N(h)是分离距离为h的观测站点对数;Z(xj)与Z(xj+h)分别为在间距为h的观测站xj与xj+h处的气温观测值;
(3)对于每一个观测时间t,根据步骤(2)计算得到的实验变异函数值γ(h),利用反正切变异函数模型对其拟合;
(4)采用克里金方程组计算邻近观测站xk对目标观测站x0的权重ωk,其中,μ为拉格朗日常数;γ(xk-xl)为观测站xk和xl之间的变异函数值;m为目标观测站x0周围参与估值计算的邻近观测站数量;
(5)根据步骤(4)计算的权重ωk和梯度克里金公式,计算目标观测站气温的估计值;
(6)重复步骤(2)-(5),得到目标区域内每个观测站不同时刻t时的估计值并对估计值精度进行评价;
(7)判断气温估计值与实际观测值是否满足若满足则认为数据可信,若不满足则认为数据有误,使用可信的估计值对观测值进行修正,完成质量控制;其中,σ为估计值的标准误差。
进一步地,在步骤(3)中,所述反正切函数模型:
上式中,C0为块金值,反映了受不确定性因素影响的程度;C0+C为基台值,反映了Zi(t)总的变异强度;a为变程,表示气温具有空间相关性的最大距离;β为可变参数。
进一步地,在步骤(5)中,所述梯度克里金公式:
上式中,Z(x0)为目标观测站的估计值;Z(xk)是邻近观测站的观测值;θt为t时刻的气温垂直递减率,表示气温随海拔高度变化的梯度;Hk与H0分别为邻近观测站与目标观测站所处的海拔高度。
进一步地,t时刻的气温垂直递减率θt根据下式计算:
Z(t)=-θtH+b
上式中,Z(t)为各观测站t时刻气温观测值组成的序列,H为各观测站对应的海拔高度组成的序列,b为残差。
进一步地,在步骤(2)中,分离距离h取值的最大值为最大观测站间距的一半。
进一步地,在步骤(6)中,对估计值精度进行评价的评价指标包括均方根误差、平均绝对误差和一致性指标。
进一步地,在步骤(1)中,所述基本检查包括界限值检查、极值检查、一致性检查和时变性检查。
采用上述技术方案带来的有益效果:
本发明解决了反距离加权法对邻近观测站空间分布、气温空间相关性及其变异性考虑不足的问题。本发明提出的反正切变异函数模型,减少了选择高斯模型作为变异函数模型时可能产生的异常估计值。本发明采用的梯度克里金法相对于普通克里金法,考虑了地形对气温的影响,提高了整体性能。
附图说明
图1为本发明的方法流程图;
图2为实施例中福建省及其周围气象观测站的空间分布示意图;
图3为2014年福建省不同定时值气温不同月份的垂直递减率示意图;
图4为实施例运用本发明方法质量控制前后某观测站的02:00时气温数据对比示意图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
本发明方法的流程如图1所示,首先对目标区域内气象观测站的气温数据进行采集,然后计算实验变异函数值,并用反正切函数对其进行拟合,然后通过求解克里金方程组得到权重值,据此计算目标站的估计值,最后对气温估计值与原始观测值进行阈值检验,从而判断数据是否有误并对其进行修正。
以下将对2014年福建省63个观测站的逐日定时值气温数据进行实施例分析,进一步说明本发明:
步骤1、获取经过基本检查后气象观测站定时值(02:00,08:00,14:00与20:00)气温观测数据Zi(t),其中i为观测站序列号,本实施例i=1,2…63,而为减弱“边界效应”的影响,另取福建省周边地区42个气象观测站作为辅助观测站,共105个观测站的空间分布如图2所示;t为观测时刻,本实施例中其序列长度为365*4=1460。
步骤2、对于每一个观测时刻t,根据公式计算得到一组实验变异函数值。其中,γ(h)为实验变异函数值;h为分离距离,最大值宜为最大观测站间距的一半;N(h)是分离距离为h的观测站点对数;Z(xj)与Z(xj+h)分别为间距为h的观测站xj与xj+h处的气温观测值。
步骤3、对于每一个观测时刻t,按照步骤2可以得到一组h与γ(h)一一对应的数据集,通过最小二乘法运用提出的反正切变异函数对h—γ(h)散点值进行拟合求解,其函数模型为其中C0为块金值,反映受不确定性因素影响的程度;C0+C为基台值,反映了区域变量Zi(t)总的变异强度;a为变程,表示气温具有空间相关性的最大距离;h为分离距离;β为可变参数。
步骤4、对于每一个观测时刻t,通过克里金方程组可以计算距目标观测站最近的8个邻近观测站xk对目标观测站x0的权重ωk;其中,μ为拉格朗日常数;γ(xk-xl)为观测站xk和xl之间的变异函数值;m为目标观测站x0周围参与估值计算的邻近观测站数量;
步骤5、普通克里金法在考虑了地形对气温的影响之后转化得到梯度克里金公式计算目标观测站估计值,其中Z(x0)为目标观测站估计值;Z(xk)是邻近观测站值;ωk为参与估值的邻近观测站对目标观测站的权重;θt为t时刻该地区的气温垂直递减率(℃/100m),表示气温随海拔高度变化的梯度;Hk与H0分别为邻近观测站与目标观测站所处地的海拔高度(100m);x是气象观测站坐标。
步骤6、重复步骤2~5,得到福建省63个气象观测站1460个时刻的估计值评价方法的预测精度并与普通克里金法和反距离加权法进行比较。评价方法预测精度常用的评价指标有均方根误差(root mean square error,RMSE)、平均绝对误差(mean absoluteerror,MAE)、一致性指标(index of agreement,IOA),计算公式分别为 其中n为样本数,本实施例中n=1460,为原始观测平均值。RMSE对过大或过小的误差比较敏感,反映了预测的精密度,MAE反映预测误差的大小,两者的值越小,预测精度越高;IOA的取值范围为[0,1],1表示估计值与观测值完全吻合,0表示估计值与观测值完全不吻合。
步骤7、判断估计值与实际观测值是否满足公式σ为估计值的标准误差,若满足则认为数据可信,若不满足则认为数据有误,使用可信的估计值对其进行修正完成质量控制;其中为估计值;Zi(t)为原始值;σ为估计值的标准误差。
本实施例对所获取的数据进行整理,每个气象观测站点的记录表示为一行,分别记录该气象站的编号、气象站名称、气象站的经纬度与海拔以及该气象站各个时刻的气温,如表1所示。对每个气象站来说,每一日有四个定时值气温,即02:00,08:00,14:00,20:00,所以一年的时间序列长度为365*4=1460。
表1
根据公式计算实验变异函数值,其中最大分离距离hmax约为最大观测站间距离的一半230km。运用提出的反正切变异函数对所得实验变异函数值进行拟合,通过最小二乘法对模型参数进行求解,其结果如表2所示。
表2
参数 块金值 基台值 变程(m) β 拟合优度
最小值 0 0.45 14000 0.2 0.69
最大值 2.48 9.03 242000 2.3 0.97
平均值 1.13 5.87 186000 0.78 0.86
利用公式Z(t)=-θtH+b计算θt之前进行了气温与海拔的相关性检验,在0.01的显著性水平上存在相关性才进行θt计算,2014年福建省不同定时值气温不同月份的垂直递减率如图3所示。
利用梯度克里金公式完成对目标观测站气温值的估计,通过RMSE、MAE与IOA三个评价指标评价其预测精度。为验证该方法性能,将其与普通克里金法与反距离加权法进行比较,普通克里金法的计算公式为反距离加权法的计算公式为λk是参与估值的邻近观测站对目标观测站的权重;dk0是邻近观测站与目标观测站间的距离。表3是三种方法的预测精度对比结果,由此可以看出:本发明方法综合考虑目标站周围邻近观测站的空间分布与气温的空间相关性及其变异性,采用提出的反正切函数作为理论变异函数模型,并考地形拔对气温的影响,具有最高的预测精度,估计结果与原始观测结果最为相符。
表3
利用公式判断数据是否可信,对检验出的疑误数据,利用预测精度最高的方法得到的估计值替换修正原始观测值,实现质量控制的目的,如图4所示为某个气象观测站利用本发明方法进行质量控制前后的02:00时气温数据对比示意图。
试验结果显示:本发明方法在整体上具有比反距离加权法更好的质量控制效果,比改进前的普通克里金法也有10%的提升,能够很好地检验出原始资料中的有误数据并对其进行修正。
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (7)

1.一种地面气温观测资料的质量控制方法,其特征在于,包括以下步骤:
(1)采集气象观测站气温观测数据并对其进行基本检查,获得数据集Zi(t),其中,i为气象观测站序列号,t为观测时刻;
(2)对于每一个观测时间t,根据公式计算得到一组实验变异函数值γ(h),其中,h为参与求解的观测站点间的分离距离;N(h)是分离距离为h的观测站点对数;Z(xj)与Z(xj+h)分别为在间距为h的观测站xj与xj+h处的气温观测值;
(3)对于每一个观测时间t,根据步骤(2)计算得到的实验变异函数值γ(h),利用反正切变异函数模型对其拟合;
(4)采用克里金方程组计算邻近观测站xk对目标观测站x0的权重ωk,其中,μ为拉格朗日常数;γ(xk-xl)为观测站xk和xl之间的变异函数值;m为目标观测站x0周围参与估值计算的邻近观测站数量;
(5)根据步骤(4)计算的权重ωk和梯度克里金公式,计算目标观测站气温的估计值;
(6)重复步骤(2)-(5),得到目标区域内每个观测站不同时刻t时的估计值并对估计值精度进行评价;
(7)判断气温估计值与实际观测值是否满足若满足则认为数据可信,若不满足则认为数据有误,使用可信的估计值对观测值进行修正,完成质量控制;其中,σ为估计值的标准误差。
2.根据权利要求1所述一种地面气温观测资料的质量控制方法,其特征在于:在步骤(3)中,所述反正切函数模型:
&gamma; ( h ) = 0 h = 0 C 0 + C ( a r c t a n ( h / a ) &beta; ) 0 < h &le; 1.57 &beta; a C 0 + C h > 1.57 &beta; a
上式中,C0为块金值,反映了受不确定性因素影响的程度;C0+C为基台值,反映了Zi(t)总的变异强度;a为变程,表示气温具有空间相关性的最大距离;β为可变参数。
3.根据权利要求1所述一种地面气温观测资料的质量控制方法,其特征在于:在步骤(5)中,所述梯度克里金公式:
Z ( x 0 ) = &Sigma; k = 1 m &omega; k Z ( x k ) + &theta; t ( &Sigma; k = 1 m &omega; k H k - H 0 )
上式中,Z(x0)为目标观测站的估计值;Z(xk)是邻近观测站的观测值;θt为t时刻的气温垂直递减率,表示气温随海拔高度变化的梯度;Hk与H0分别为邻近观测站与目标观测站所处的海拔高度。
4.根据权利要求3所述一种地面气温观测资料的质量控制方法,其特征在于,t时刻的气温垂直递减率θt根据下式计算:
Z(t)=-θtH+b
上式中,Z(t)为各观测站t时刻气温观测值组成的序列,H为各观测站对应的海拔高度组成的序列,b为残差。
5.根据权利要求1所述一种地面气温观测资料的质量控制方法,其特征在于:在步骤(2)中,分离距离h取值的最大值为最大观测站间距的一半。
6.根据权利要求1所述一种地面气温观测资料的质量控制方法,其特征在于:在步骤(6)中,对估计值精度进行评价的评价指标包括均方根误差、平均绝对误差和一致性指标。
7.根据权利要求1所述一种地面气温观测资料的质量控制方法,其特征在于:在步骤(1)中,所述基本检查包括界限值检查、极值检查、一致性检查和时变性检查。
CN201710152515.7A 2017-03-15 2017-03-15 一种地面气温观测资料的质量控制方法 Pending CN106920013A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710152515.7A CN106920013A (zh) 2017-03-15 2017-03-15 一种地面气温观测资料的质量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710152515.7A CN106920013A (zh) 2017-03-15 2017-03-15 一种地面气温观测资料的质量控制方法

Publications (1)

Publication Number Publication Date
CN106920013A true CN106920013A (zh) 2017-07-04

Family

ID=59460330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710152515.7A Pending CN106920013A (zh) 2017-03-15 2017-03-15 一种地面气温观测资料的质量控制方法

Country Status (1)

Country Link
CN (1) CN106920013A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154271A (zh) * 2017-12-28 2018-06-12 南京信息工程大学 一种基于空间相关性和曲面拟合的地面气温质量控制方法
CN108537417A (zh) * 2018-03-21 2018-09-14 南京信息工程大学 一种基于协同克里金法的地面气温质量控制方法
CN108614803A (zh) * 2018-04-16 2018-10-02 深圳市赑玄阁科技有限公司 一种气象数据质量控制方法及系统
CN109272230A (zh) * 2018-09-19 2019-01-25 中国气象局气象探测中心 一种地面观测站气压要素的数据质量评估方法和系统
CN111190979A (zh) * 2019-12-20 2020-05-22 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于气象观测数据的电波环境数字地图获取方法
CN112330197A (zh) * 2020-11-24 2021-02-05 西南技术物理研究所 一种气象水文数据质量控制与评价方法
CN112990701A (zh) * 2021-03-12 2021-06-18 南京信息工程大学 一种基于eof的自动站温度资料质量控制方法
CN113344805A (zh) * 2021-05-18 2021-09-03 南京信息工程大学 基于eof的自动气象站观测资料修复方法
CN116451396A (zh) * 2023-04-18 2023-07-18 南京禹顺水利环境科技有限公司 一种基于地下水要素空间相关性的监测井网优化方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154271A (zh) * 2017-12-28 2018-06-12 南京信息工程大学 一种基于空间相关性和曲面拟合的地面气温质量控制方法
CN108537417B (zh) * 2018-03-21 2021-11-30 南京信息工程大学 一种基于协同克里金法的地面气温质量控制方法
CN108537417A (zh) * 2018-03-21 2018-09-14 南京信息工程大学 一种基于协同克里金法的地面气温质量控制方法
CN108614803A (zh) * 2018-04-16 2018-10-02 深圳市赑玄阁科技有限公司 一种气象数据质量控制方法及系统
CN109272230B (zh) * 2018-09-19 2022-03-11 中国气象局气象探测中心 一种地面观测站气压要素的数据质量评估方法和系统
CN109272230A (zh) * 2018-09-19 2019-01-25 中国气象局气象探测中心 一种地面观测站气压要素的数据质量评估方法和系统
CN111190979A (zh) * 2019-12-20 2020-05-22 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于气象观测数据的电波环境数字地图获取方法
CN112330197A (zh) * 2020-11-24 2021-02-05 西南技术物理研究所 一种气象水文数据质量控制与评价方法
CN112330197B (zh) * 2020-11-24 2023-06-23 西南技术物理研究所 一种气象水文数据质量控制与评价方法
CN112990701A (zh) * 2021-03-12 2021-06-18 南京信息工程大学 一种基于eof的自动站温度资料质量控制方法
CN112990701B (zh) * 2021-03-12 2023-06-23 南京信息工程大学 一种基于eof的自动站温度资料质量控制方法
CN113344805A (zh) * 2021-05-18 2021-09-03 南京信息工程大学 基于eof的自动气象站观测资料修复方法
CN113344805B (zh) * 2021-05-18 2023-06-13 南京信息工程大学 基于eof的自动气象站观测资料修复方法
CN116451396A (zh) * 2023-04-18 2023-07-18 南京禹顺水利环境科技有限公司 一种基于地下水要素空间相关性的监测井网优化方法

Similar Documents

Publication Publication Date Title
CN106920013A (zh) 一种地面气温观测资料的质量控制方法
CN101799561B (zh) 一种基于减灾小卫星的雪灾遥感监测模拟评估方法
CN111665575B (zh) 一种基于统计动力的中长期降雨分级耦合预报方法及系统
CN108154271A (zh) 一种基于空间相关性和曲面拟合的地面气温质量控制方法
CN106199627B (zh) 一种无人机lidar反演草地植被参数的精度改进方法
CN107862148A (zh) 一种基于遥感数据的参考作物腾发量计算方法
CN108981616B (zh) 一种由无人机激光雷达反演人工林有效叶面积指数的方法
CN105809321A (zh) 地面气象观测站采集气温数据的质量控制方法
CN110334404A (zh) 一种流域尺度骤发干旱精准识别方法
CN114254802B (zh) 气候变化驱动下植被覆盖时空变化的预测方法
CN113553766B (zh) 一种使用机器学习反演北极积雪深度的方法
CN110134907B (zh) 一种降雨缺失数据填补方法、系统及电子设备
Xu et al. Determinants and identification of the northern boundary of China’s tropical zone
CN109685334A (zh) 一种新的基于多尺度理论的水文模型模拟评估方法
CN111652522A (zh) 一种关于自然保护地的生态风险评估方法
Zhu et al. Validation of rainfall erosivity estimators for mainland China
CN114580834A (zh) 耕地质量等级评价方法、装置及电子设备
Liu et al. Predictive modeling of the potential natural vegetation pattern in northeast China
CN106934094B (zh) 一种基于二十四节气的风电功率预测方法
CN109948175B (zh) 基于气象数据的卫星遥感反照率缺失值反演方法
CN105069292B (zh) 一种局部山地区域的温度日变化基线的构建方法
Minářová et al. Seasonality of mean and heavy precipitation in the area of the Vosges Mountains: dependence on the selection criterion
CN112633347B (zh) 登陆台风近地层风特性及其与晴空风特性差异的分析方法
CN109559053B (zh) 一种基于路径距离的植被可达性度量方法
Dlamini et al. Models for calculating monthly average solar radiation from air temperature in Swaziland

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170704

RJ01 Rejection of invention patent application after publication