CN106919785B - 一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法 - Google Patents

一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法 Download PDF

Info

Publication number
CN106919785B
CN106919785B CN201710050098.5A CN201710050098A CN106919785B CN 106919785 B CN106919785 B CN 106919785B CN 201710050098 A CN201710050098 A CN 201710050098A CN 106919785 B CN106919785 B CN 106919785B
Authority
CN
China
Prior art keywords
particle
formula
weight
magnetic field
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710050098.5A
Other languages
English (en)
Other versions
CN106919785A (zh
Inventor
黄玉
齐瑞云
吕振川
武立华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201710050098.5A priority Critical patent/CN106919785B/zh
Publication of CN106919785A publication Critical patent/CN106919785A/zh
Application granted granted Critical
Publication of CN106919785B publication Critical patent/CN106919785B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Abstract

本发明属于非线性最优估计和地磁测量领域,尤其涉及一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法。本发明包括:(1)选择一块载体干扰磁场补偿的区域,用标量磁力计测量该区域的总场值||Ho||;(2)k=0时刻,对待估参数进行初始化,根据先验概率密度P(X0)产生N个先验粒子集,所有粒子集的权值为1/N;(3)令k=k+1,载体作改变姿态的机动动作,由捷联于载体的三轴磁力计获得载体干扰磁场存在时的地磁矢量测量值Hmk。本发明将BP神经网络、双阈值切割法和生物多样性熵函数应用于粒子滤波的参数估计,增加了粒子滤波的有效粒子数同时避免了粒子多样性贫乏的问题,提高载体干扰磁场参数估计与补偿精度。

Description

一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法
技术领域
本发明属于非线性最优估计和地磁测量领域,尤其涉及一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法。
背景技术
地磁矢量一般使用三轴磁力计进行测量,因此地磁矢量的测量误差主要分为仪器自身误差和干扰磁场误差。由仪器制造工艺和安装精度产生的仪器误差是三轴磁力计的自身误差,磁性物质产生的干扰磁场是一种依赖于外界环境的干扰误差,两者都将影响地磁矢量测量的精度。一般来说,载体硬铁磁场和软铁磁场是干扰磁场的主要成分,本发明只针对硬铁磁场和软铁磁场进行在线补偿。硬铁磁场是由铁磁性物质在外来磁场的作用下被磁化而产生剩磁,剩磁的大小和方向不会随着载体姿态的变化而变化。软铁磁场与引起它的外加磁场成正比,也随着载体姿态的变化而变化。
李季等人使用无迹卡尔曼算法对干扰磁场参数进行估计,从而对磁测误差进行补偿,但是无迹卡尔曼对非线性较强的系统以及非高斯系统估计性能不佳。一项美国国家专利(美国专利号5182514,1993年1月26日,Automatic compensator for an airbornemagnetic anomaly detector)提到,采用一个三轴磁场传感器和一个标量磁场传感器,利用两者输出计算出地磁场与飞机坐标系间的方向余弦;但在干扰磁场强度较大时,存在方向余弦无法测出的问题。
地磁矢量观测方程具有强的非线性,因此,本发明采用对非线性具有较好估计效果的粒子滤波算法对载体干扰磁场参数组成的系统状态量进行估计。但是粒子滤波存在随着迭代次数的增多有效粒子数和粒子多样性都降低的缺陷。本发明采用双阈值切割法增加粒子滤波粒子集的有效粒子数,同时采用BP神经网络调整粒子集的权值,由生物多样性的熵函数检验粒子集的多样性,避免了粒子集多样性的贫乏,实现了载体干扰磁场的在线补偿,提高了载体地磁矢量的测量精度。
发明内容
为了解决干扰磁场对地磁矢量测量精度影响较大的问题,本发明提出了一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法。
本发明的目的是这样实现的:
一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法,包括如下步骤:
(1)选择一块载体干扰磁场补偿的区域,用标量磁力计测量该区域的总场值||Ho||;
(2)k=0时刻,对待估参数进行初始化,根据先验概率密度P(X0)产生N个先验粒子集,所有粒子集的权值为1/N;
(3)令k=k+1,载体作改变姿态的机动动作,由捷联于载体的三轴磁力计获得载体干扰磁场存在时的地磁矢量测量值Hmk
(4)将||Hmk||2与||Ho||2作差,其差值作为当前时刻的系统观测值yk;式(1)为系统k时刻的观测方程:
yk=||Hmk||2-||Ho||2=hkk (1)
式中,
hk=2H'pkHmk-||Hpk||2-(Hmk-Hpk)'(B+B'+B'B)(Hmk-Hpk) (2)
νk=2(Hmk-Hpk)'(I3×3+B+B'+B'B)εkk'(I3×3+B+B'+B'B)εk (3)
式中,I3×3为单位矩阵,B为待估参数矩阵,εk为非高斯噪声;
待估计的硬铁磁场和软铁磁场系数写成状态向量:
X=[x1,x2,x3,x4,x5,x6,x7,x8,x9]T (4)
式中,硬铁磁场Hpk=[x1,x2,x3]T,软铁磁场系数矩阵
其中,
由于载体干扰磁场参数都是常量,所以粒子滤波的状态方程为:
X(k)=X(k-1)+ζk (5)
式中,ζk为过程噪声,;
(5)状态预测:根据状态方程从先验粒子中采样抽取N个样本,根据式(2)计算此时的预测值yk|k-1;权值更新:按式(6)进行权值更新;
先验概率作为重要性密度函数:
(6)按式(8),将N个粒子集权值进行归一化处理;
(7)按式(9),计算有效粒子数Neff1,当有效粒子数Neff1≥2N/3时直接进行参数估计;当有效粒子数Neff1<2N/3时进行步骤(8);
有效粒子数的计算公式为:
(8)提高有效粒子数:选大阈值ω1和小阈值ω2作为粒子集的两个权值阈值,选出权值大于ω1的粒子和权值低于ω2的粒子;再将大权值粒子个数和小权值粒子个数进行比较,当小权值粒子个数是大权值粒子的n倍时,将大权值的粒子分割成n个为原来权值的1/n倍的粒子;之后,用分割后的n个粒子替换小权值的粒子;经过粒子分割替换后的N个粒子,粒子的所有粒子权值将集中在ω>ω2区间,存在粒子多样性贫乏的问题;
(9)提高粒子多样性:利用BP神经网络的非线性特征,权值大于ω1的粒子的状态值用于训练输入,该时刻的hk值作为训练BP神经网络的教师信号;然后将权值低于ω1的粒子的M个状态值作为神经网络的预测输入,将此时的输出值利用权值更新公式6计算粒子的权值;将更新后的权值利用熵值作为权值多样性评判函数,当熵D>0.9M进行步骤10;否则重新进行步骤(9);
生物多样性的熵函数为:
式中,S为更新后的权值的种类;
(10)对调整多样性后的粒子集,再次利用式(8)进行归一化;
(11)按式(9)计算有效粒子数Neff2,当有效粒子数Neff2≥2N/3时直接进行参数估计;否则进行步骤(12);
(12)重采样:将原来的带权样本映射为等权样本
(13)参数估计:利用式(11)进行当前时刻的状态参数估计;
(14)将状态参数的估计值代入式(12),对k时刻的地磁矢量测量值进行实时补偿,得到k时刻的地磁矢量补偿值;
Hmkb=(I+B)(Hmk-Hp) (12)
(15)k=k+1,回到步骤(3);
本发明的有益效果在于:本发明将BP神经网络、双阈值切割法和生物多样性熵函数应用于粒子滤波的参数估计,增加了粒子滤波的有效粒子数同时避免了粒子多样性贫乏的问题,提高载体干扰磁场参数估计与补偿精度。
附图说明
图1为本发明的程序流程示意图;
图2为在载体干扰磁场环境下的地磁矢量测量值;
图3为硬铁磁场参数估计结果;
图4为软铁磁场系数矩阵D的主对角线系数估计结果;
图5为软铁磁场系数矩阵D上三角矩阵其余元素的估计结果;
图6为补偿后的地磁矢量测量值;
图7为双阈值切割示意图;
图8为BP神经网络结构示意图。
具体实施方式
下面结合附图对本发明做进一步描述。
本发明将BP神经网络、双阈值切割法和生物多样性函数用于粒子滤波算法的改进,在增加粒子集的有效粒子数的同时避免了粒子集多样性贫乏的现象,从而提高了粒子滤波的参数估计精度,达到地磁矢量测量参数估计和误差补偿的目的。
步骤1,选择一块载体干扰磁场补偿的区域,用标量磁力计测量该区域的总场值||Ho||,在数值仿真时设||Ho||=60000nT。
步骤2,k=0时刻,对待估参数进行初始化,根据先验概率密度P(X0)产生N个先验粒子集,所有粒子集的权值为1/N,将9个参数的初始值设为0。
步骤3,令k=k+1,载体作改变姿态的机动动作,由捷联于载体的三轴磁力计获得载体干扰磁场存在时的地磁矢量测量值Hmk,设硬铁磁场Hp=[3000,4000,2000]T,软磁场系数矩阵εk为方差为
2的非高斯噪声;根据式(1)仿真得到此时的Hmk,Hmk的仿真结果如图2所示。
Hmk=Hok+Hp+Hik=(I3*3+D)Hok+Hpk (1)
步骤4,将||Hmk||2与||Ho||2作差,其差值作为当前时刻的系统观测值yk。式(2)为系统k时刻的观测方程:
yk=||Hmk||2-||Ho||2=hkk (2)
式中:
hk=2H'pkHmk-||Hpk||2-(Hmk-Hpk)'(B+B'+B'B)(Hmk-Hpk) (3)
νk=2(Hmk-Hpk)'(I3×3+B+B'+B'B)εkk'(I3×3+B+B'+B'B)εk (4)
根据此时的测量值Hmk、Hpk和B的估计值,求得噪声νk的均值μk和方差Rk
待估计的载体干扰磁场参数写成如下的向量形式:
X=[x1,x2,x3,x4,x5,x6,x7,x8,x9]T (5)
其中,Hpk=[x1,x2,x3]TB与D的关系为:D=(I3*3+B)-1-I3×3
I3×3为单位矩阵;由于这些参数都是常量,所以粒子滤波的状态方程为:
X(k)=X(k-1)+ζk (6)
式中,ζk为过程噪声。
步骤5,状态预测:根据状态方程从先验粒子中采样抽取N个样本,根据式(3)计算此时的预测值yk|k-1;权值更新:按公式(7)进行权值更新。
先验概率作为重要性密度函数:
具体权值更新公式为:
步骤6,按式(10)将N个粒子集权值进行归一化处理。
步骤7,按式(11)计算有效粒子数Neff1,当有效粒子数Neff1≥2N/3时直接进行步骤13;否则,进行步骤8。
步骤8,提高有效粒子数:选大阈值ω1和小阈值ω2作为粒子集的两个权值阈值,选出权值大于ω1的粒子和权值低于ω2的粒子;再将大权值粒子个数和小权值粒子个数进行比较,当小权值粒子个数是大权值粒子的n倍时,将大权值的粒子分割成n个为原来权值的1/n倍的粒子;之后,用分割后的n个粒子替换小权值的粒子。经过粒子分割替换后的N个粒子,粒子的所有粒子权值将集中在ω>ω2区间,存在粒子多样性贫乏的问题。具体分割方式见图7。
假设40m个粒子分布为:经上述双阈值切割和替换后的粒子分布为全部粒子的权值将大于小阈值ω2,有效粒子数明显提高。但是由于经平均切割后的粒子出现较多权值相同的粒子,存在粒子多样性贫乏的现象。
步骤9,提高粒子多样性:利用BP神经网络的非线性特征,权值大于ω1的粒子的状态值用于训练输入,该时刻的hk值作为训练BP神经网络的教师信号;然后
将权值低于ω1的粒子的M个状态值作为神经网络的预测输入,将此时的输出值利用权值更新公式(9)计算粒子的权值;将更新后的权值利用熵值作为权值多样性评判函数,当熵D>0.9M进行步骤10;否则重新进行步骤9。
生物多样性的熵函数为:
式中,S为更新后的权值的种类。
用BP神经网络和生物多样性熵值来提高粒子的多样性,具体步骤如下:
a.建立一个三层的神经网络结构:由于待估参数是9个,所以将神经网络输入神
经元设为9维,输出神经元的个数为1;根据经验公式,隐层神经元的个数l1为输入神经元个数,l2为输出神经元个数,因此隐层神经元为3个。神经网络的具体结构见附图8。
b.隐含层激活函数为tansig,输出层的函数为purelin;
c.训练好网络后,用小权值的状态做预测输入,得到相应的输出值,再根据此时的观测值用公式(9)得到对应的权值,然后用多样性熵函数检测粒子的多样性;
步骤10,对调整多样性后的粒子集,再次利用式(10)进行归一化。
步骤11,按式(11)计算有效粒子数Neff2,当有效粒子数Neff2≥2N/3时直接进
行参数估计;否则进行步骤12。
步骤12,重采样:将原来的带权样本映射为等权样本
步骤13,参数估计:利用式(13)进行当前时刻的状态参数估计。
步骤14,将状态参数的估计值代入式(14),对k时刻的地磁矢量测量值进行实时补偿,得到k时刻的地磁矢量补偿值。
Hmkb=(I+B)(Hmk-Hp) (14)
步骤15,k=k+1,回到步骤3。

Claims (1)

1.一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法,其特征在于,包括如下步骤:
(1)选择一块载体干扰磁场补偿的区域,用标量磁力计测量该区域的总场值||Ho||;
(2)k=0时刻,对待估参数进行初始化,根据先验概率密度P(X0)产生N个先验粒子集,所有粒子集的权值为1/N;
(3)令k=k+1,载体作改变姿态的机动动作,由捷联于载体的三轴磁力计获得载体干扰磁场存在时的地磁矢量测量值Hmk
(4)将||Hmk||2与||Ho||2作差,其差值作为当前时刻的系统观测值yk;式(1)为系统k时刻的观测方程:
yk=||Hmk||2-||Ho||2=hkk (1)
式中,
hk=2H'pkHmk-||Hpk||2-(Hmk-Hpk)'(B+B'+B'B)(Hmk-Hpk) (2)
νk=2(Hmk-Hpk)'(I3×3+B+B'+B'B)εk-ε'k(I3×3+B+B'+B'B)εk (3)
式中,I3×3为单位矩阵,B为待估参数矩阵,εk为非高斯噪声;
待估计的硬铁磁场和软铁磁场系数写成状态向量:
X=[x1,x2,x3,x4,x5,x6,x7,x8,x9]T (4)
式中,硬铁磁场Hpk=[x1,x2,x3]T,软铁磁场系数矩阵
其中,
由于载体干扰磁场参数都是常量,所以粒子滤波的状态方程为:
X(k)=X(k-1)+ζk (5)
式中,ζk为过程噪声;
(5)状态预测:根据状态方程从先验粒子中采样抽取N个样本,根据式(2)计算此时的预测值yk|k-1;权值更新:按式(6)进行权值更新;
先验概率作为重要性密度函数:
(6)按式(8),将N个粒子集权值进行归一化处理;
(7)按式(9),计算有效粒子数Neff1,当有效粒子数Neff1≥2N/3时直接进行参数估计;当有效粒子数Neff1<2N/3时进行步骤(8);
有效粒子数的计算公式为:
(8)提高有效粒子数:选大阈值ω1和小阈值ω2作为粒子集的两个权值阈值,选出权值大于ω1的粒子和权值低于ω2的粒子;再将大权值粒子个数和小权值粒子个数进行比较,当小权值粒子个数是大权值粒子的n倍时,将大权值的粒子分割成n个为原来权值的1/n倍的粒子;之后,用分割后的n个粒子替换小权值的粒子;经过粒子分割替换后的N个粒子,粒子的所有粒子权值将集中在ω>ω2区间,存在粒子多样性贫乏的问题;
(9)提高粒子多样性:利用BP神经网络的非线性特征,权值大于ω1的粒子的状态值用于训练输入,该时刻的hk值作为训练BP神经网络的教师信号;然后将权值低于ω1的粒子的M个状态值作为神经网络的预测输入,将此时的输出值利用权值更新公式(6)计算粒子的权值;将更新后的权值利用熵值作为权值多样性评判函数,当熵D>0.9M进行步骤(10);否则重新进行步骤(9);
生物多样性的熵函数为:
式中,S为更新后的权值的种类;
(10)对调整多样性后的粒子集,再次利用式(8)进行归一化;
(11)按式(9)计算有效粒子数Neff2,当有效粒子数Neff2≥2N/3时直接进行参数估计;否则进行步骤(12);
(12)重采样:将原来的带权样本映射为等权样本
(13)参数估计:利用式(11)进行当前时刻的状态参数估计;
(14)将状态参数的估计值代入式(12),对k时刻的地磁矢量测量值进行实时补偿,得到k时刻的地磁矢量补偿值;
Hmkb=(I+B)(Hmk-Hpk) (12)
(15)k=k+1,回到步骤(3)。
CN201710050098.5A 2017-01-23 2017-01-23 一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法 Active CN106919785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710050098.5A CN106919785B (zh) 2017-01-23 2017-01-23 一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710050098.5A CN106919785B (zh) 2017-01-23 2017-01-23 一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法

Publications (2)

Publication Number Publication Date
CN106919785A CN106919785A (zh) 2017-07-04
CN106919785B true CN106919785B (zh) 2019-07-16

Family

ID=59454146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710050098.5A Active CN106919785B (zh) 2017-01-23 2017-01-23 一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法

Country Status (1)

Country Link
CN (1) CN106919785B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051761A (zh) * 2017-09-06 2018-05-18 哈尔滨工程大学 一种三轴磁力计自身误差在线校正方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297687A (zh) * 2011-05-13 2011-12-28 北京理工大学 一种电子罗盘的标定方法
CN103869379A (zh) * 2014-03-24 2014-06-18 东南大学 基于遗传算法优化改进bp神经网络的磁力计校正方法
CN103925923A (zh) * 2014-05-07 2014-07-16 南京大学 一种基于自适应粒子滤波器算法的地磁室内定位系统
CN104215259A (zh) * 2014-08-22 2014-12-17 哈尔滨工程大学 一种基于地磁模量梯度和粒子滤波的惯导误差校正方法
CN104884902A (zh) * 2012-08-02 2015-09-02 美新公司 用于三轴磁力计和三轴加速度计的数据融合的方法和装置
CN105393130A (zh) * 2013-03-21 2016-03-09 淡水河谷公司 用于响应于改变第一磁场来补偿磁传感器的输出的磁补偿电路及方法
CN105910601A (zh) * 2016-05-31 2016-08-31 天津大学 一种基于隐马尔科夫模型的室内地磁定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331907B2 (en) * 2003-02-18 2012-12-11 Roamware, Inc. Integrating GSM and WiFi service in mobile communication devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297687A (zh) * 2011-05-13 2011-12-28 北京理工大学 一种电子罗盘的标定方法
CN104884902A (zh) * 2012-08-02 2015-09-02 美新公司 用于三轴磁力计和三轴加速度计的数据融合的方法和装置
CN105393130A (zh) * 2013-03-21 2016-03-09 淡水河谷公司 用于响应于改变第一磁场来补偿磁传感器的输出的磁补偿电路及方法
CN103869379A (zh) * 2014-03-24 2014-06-18 东南大学 基于遗传算法优化改进bp神经网络的磁力计校正方法
CN103925923A (zh) * 2014-05-07 2014-07-16 南京大学 一种基于自适应粒子滤波器算法的地磁室内定位系统
CN104215259A (zh) * 2014-08-22 2014-12-17 哈尔滨工程大学 一种基于地磁模量梯度和粒子滤波的惯导误差校正方法
CN105910601A (zh) * 2016-05-31 2016-08-31 天津大学 一种基于隐马尔科夫模型的室内地磁定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Two-Step Complete Calibration of Magnetic Vector Gradiometer Based on Functional Link Artificial Neural Network and Least Squares》;Yu Huang et al;;《IEEE SENSORS JOURNAL》;20160601;第16卷(第11期);第4230-4236页;
《基于地磁场矢量误差反馈的姿态补偿算法》;赵文杰 等;;《浙江大学学报(工学版)》;20140930;第48卷(第9期);第1704-1709页;
《组合导航中低成本磁航向系统的神经网络补偿》;刘育浩 等;;《传感技术学报》;20081130;第21卷(第11期);第1848-1852页;

Also Published As

Publication number Publication date
CN106919785A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
Deng et al. Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects
US8731987B2 (en) Method and apparatus to automatically recover well geometry from low frequency electromagnetic signal measurements
CN103424780B (zh) 基于感应线圈的载机磁环境补偿方法
CN109633762A (zh) 基于正弦函数的相关性约束条件联合反演重磁数据的方法
CN107994885B (zh) 一种同时估计未知输入和状态的分布式融合滤波方法
WO2015188396A1 (zh) 一种空地一体的地磁场联合观测方法及系统
CN109814163B (zh) 一种基于扩展补偿模型的航磁张量数据抑噪方法及系统
Wang et al. Parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function
Wu et al. A deep learning estimation of the earth resistivity model for the airborne transient electromagnetic observation
CN106919785B (zh) 一种基于地磁矢量及粒子滤波的载体干扰磁场在线补偿方法
CN109521384A (zh) 一种基于原子磁强计的矢量磁补偿方法
Fan et al. Gradient signals analysis of scalar magnetic anomaly using orthonormal basis functions
CN110532517A (zh) 基于改进的arukf的燃气管道参数估计方法
CN107273659A (zh) 一种基于ransac算法改进的用于空间碎片光电跟踪的轨迹预测方法
Zhou et al. Calibration and compensation method of three-axis geomagnetic sensor based on pre-processing total least square iteration
Ji et al. Vehicle magnetic field compensation method using UKF
CN108595749A (zh) 一种使用变异函数单一方向结构分析的资源储量评估方法
Farrell et al. Process-scaling issues for aeolian transport modelling in field and wind tunnel experiments: Roughness length and mass flux distributions
Zhang et al. An aeromagnetic compensation algorithm for aircraft based on fuzzy adaptive Kalman filter
JP2021532352A (ja) 地質構造の温度を計算する方法
Li et al. A novel compensation method for magnetic distortion field with noise uncertainty
Baruah et al. Ground motion parameters of Shillong plateau: one of the most seismically active zones of northeastern India
Zhao et al. A novel aeromagnetic compensation method based on the improved recursive least-squares
You et al. Cooperative parameter identification of advection-diffusion processes using a mobile sensor network
Ge et al. Suppression of the negative effect of abnormal data based on the Hough transform and application to the magnetic compensation of airborne optically-pumped magnetometer data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant