CN106914288B - 一种微流控高频声聚焦芯片及其制备方法 - Google Patents
一种微流控高频声聚焦芯片及其制备方法 Download PDFInfo
- Publication number
- CN106914288B CN106914288B CN201710170689.6A CN201710170689A CN106914288B CN 106914288 B CN106914288 B CN 106914288B CN 201710170689 A CN201710170689 A CN 201710170689A CN 106914288 B CN106914288 B CN 106914288B
- Authority
- CN
- China
- Prior art keywords
- micro
- silicon wafer
- silicon
- sample
- focusing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0493—Specific techniques used
- B01L2400/0496—Travelling waves, e.g. in combination with electrical or acoustic forces
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micromachines (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明公开了一种微流控高频声聚焦芯片及其制备方法。其产品由声波换能器、带有波导和聚焦功能的微结构的硅片、PDMS有机高聚物所构成。其中,硅片上的波导结构为45˚镜面结构的硅凹槽,聚焦结构为硅晶片内半圆柱‑垂直反射壁形状的凹槽。在45˚硅镜面凹槽上沉积了金薄膜作为声波阻抗匹配层减。带有孔洞的PDMS有机高聚物覆盖在硅片上,其两个孔洞与硅片微沟道内进、出样处的位置相对应,且有机高聚物与硅片紧密封装使得芯片不漏液。声波换能器为氧化锌薄膜组分并耦合在硅片底部。换能器正反面用铂层作为电极。本发明将高频体声波集成到微流体芯片内,可对细胞、微颗粒等生物活体样品进行快速捕获并保证样品活性。
Description
技术领域
本发明属于微全分析系统领域。特别涉及一种微流控高频声聚焦芯片及其制备方法。
背景技术
微流控芯片是通过微机电加工工艺(MEMS)在特定基底上加工微沟道,使其可通入皮升至纳升的流体,从而对流体以及流体内的生物样品进行研究的微芯片。微流控芯片技术可将整个实验室的功能包括样片预处理、反应、分离、检测等集成在一块芯片上,具有高集成度,低试剂消耗,灵敏度高,分析效率高等特点,具有极为广泛的适用性和应用前景。微流控芯片可作为高度交叉的学科平台,集成声、光、电、磁等技术手段在小型化的器件上。
超声波对小范围内的流体以及流体内的小颗粒能进行有效的免接触式的操控。通过控制输入功率的大小,声波能无损地控制活性生物体在微沟道中定向移动。因此,声波集成的微流控操作平台成为在微流系统中研究的新热点。目前,在声微流操控芯片的研究中,主要是基于驻波共振的低频的体波操控和声表面波操控(<20MHz)。这些方法通过在沟道中产生有波节和波腹的声场,从而用声学力将样品聚集到相应的节点实现操控。然而,这些声学器件的共振驱动频率难以很高,其关联的限制有沟道最小尺寸,样品的通量和密度等。另一方面,高频的声波驱动频率则有着更高的操控精度和更小的控制范围。频率越高,波长越小,从而特别适合对单个细胞大小的样品进行捕获、筛选、定向排列等操作。目前,现有的高频声波微流驱动技术主要基于声表面波引起的声流现象来操控液滴和颗粒(386MHz)。但就产业化而言,相比于体波技术,声表面波微流芯片难以与常用的半导体材料(硅,玻璃等)集成,并且在样本通量上容易达到瓶颈。
发明内容
本发明所要解决的技术问题是提供一种工作在高频区间(500MHz~800MHz),响应快,功率低的微流控高频声聚焦芯片及其制备方法。
实现本发明采用的技术方案是:
一种微流控高频声聚焦芯片结构,由声波换能器、带有波导和聚焦功能微结构的硅片,带孔洞的PDMS(polydimethylsiloxane)有机高聚物组成;
所述的声波换能器用于声波信号的产生,由氧化锌薄膜组成并与硅片下表面耦合,硅片下表面沉积铂金属薄膜作为氧化锌换能器上表面的上电极,氧化锌薄膜的下表面再次沉积铂金属薄膜作为氧化锌薄膜的下电极;
所述的带有波导和聚焦功能微结构的硅片,波导结构由45˚硅镜面和硅镜面上的金薄膜组成,聚焦功能微结构由半圆柱-垂直反射壁凹槽和凹槽两端的用于进出样的微沟道组成;
所述的PDMS有机高聚物封装在硅片表面上,PDMS有机高聚物上有两个孔口作为样品的进出样口,并分别连通于硅片上的微沟道的端口。
本发明的上述装置,可用于的体声波共振频率为高频(500MHz~800MHz),波导面为45˚硅镜面;声阻匹配层为单层金薄膜。
聚焦结构为半圆柱-垂直反射壁凹槽。
氧化锌薄膜耦合在硅片底部,其上下电极分别为铂电极薄膜。
本发明的微流控高频声聚焦芯片的制备方法,由下述步骤所构成:
1)利用湿法刻蚀方法在硅片上形成45˚硅镜面;
2)利用磁控溅射方法在45˚硅镜面上沉积金薄膜;
3)利用深度反应离子刻蚀(DRIE)法在硅片上部制备聚焦功能的半圆柱-垂直反射壁凹槽和微沟道;
4)在硅片下表面用热蒸镀法沉积铂薄膜作为声波换能器的上电极;
5)用磁控溅射方法在硅片下表面的铂薄膜上沉积氧化锌薄膜形成声波换能器;
6)用热蒸镀法沉积铂薄膜在氧化锌薄膜下表面作为换能器的下电极;
7)在有机高分子聚合物PDMS上打孔形成样品的进出样孔位,并将其键合到有微结构的硅片上表面,同时孔口的位置对应硅片上微沟道的两端。
本发明超声波换能器的声源来自耦合在硅片底部的氧化锌压电薄膜,其工作频率由其薄膜的厚度与形状决定。通过调节输入信号的强度和频率,可以产生高频超声波能量传输至芯片内。
本发明波导结构来自硅片上加工出的45˚硅镜面及其上的金薄膜,使竖直方向传播的声波被反射成平行于硅片表面方向的声波。金薄膜作为声阻抗匹配层减少声波反射过程能量损失。
本发明聚焦结构来自硅片上加工出的半圆柱-垂直反射壁凹槽。在换能器产生的声波被波导结构反射成平行于硅片表面方向的声波后,当该声波传播到聚焦结构时,声波能量会被汇聚到硅片的垂直反射壁上,从而在微沟道的液体内产生强声流现象,进而操控液体内的微颗粒。
本发明采用的方法与现有方法相比,具有如下的优点:此器件首次将高频体波(500MHz~800MHz)集成到微流控芯片内,并实现了低输入功率下(-10dBm)对微颗粒的混合与分离。该芯片成功实现了将竖直传播的声波波导并聚焦,使得局部流体区域内的样品被有效操控。利用本发明能够很容易地实现对细胞等生物活体样品的混合、捕获等操纵。据此,本发明可广泛应用于生命科学、药物科学和医学等领域。
附图说明
图1 是本发明的侧面结构图。
图2 是本发明芯片内声波波导、聚焦和声流产生的示意图 。
图3 是本发明整体结构示意图。
图4 是本发明的应用效果图。
图中:1—下电极,2—氧化锌压电薄膜,3—上电极,4—硅片,5—45˚硅面,6—金薄膜,7—PDMS有机高聚物,8—聚焦微沟道,9—PDMS孔口,10—微沟道的两端,11—竖直方向的声波,12—水平方向的声波,13—声流线。
具体实施方式
下面结合附图所示实施例对本发明的具体实施方式作进一步的介绍。
一、制备本发明的产品的过程如下:
1、采用深湿法刻蚀法在硅片4内制备45˚硅面。
2、采用反应离子刻蚀(DRIE)法在硅片4制备聚焦微沟道8以及沟道的两端10。
3、采用磁控溅射法在45˚硅面5上沉积单层金薄膜。
4、采用热蒸镀法在硅片4下表面上沉积铂薄膜3。
5、采用磁控溅射法在铂薄膜3上制备氧化锌压电薄膜2。
6、采用热蒸镀法在氧化锌压电薄膜2上制备铂薄膜1。
7、在PDMS有机高聚物 7上用打孔器打出孔口9,然后将PDMS7与硅片4上表面用等离子体键合法键合并密封,同时将孔口9与微沟道的两端10对齐,即得到高频聚焦超声体波集成的微流控驱动芯片。
二、本发明产品与效果图:
图2是本发明的平面示意图,图3是本发明的立体示意图。由图2从压电薄膜产生的竖直方向的声波11进由45˚硅面5反射后,变为水平方向的声波12,通过聚焦微沟道8聚焦后产生声流线13。从而可操控流体和微颗粒。
图4是本发明的应用效果图。图(a),未加声场时微颗粒静止在沟道里的液体中;图(b),声场开启时,微颗粒随着声流线的轨迹快速运动。颗粒为9 μm的聚苯乙烯微球并悬浮在沟道的去离子水中。换能器的输入功率为5 dBm,换能器的激励声波频率为650 MHz。
Claims (1)
1.一种微流控高频声聚焦芯片的制备方法,所述微流控高频声聚焦芯片结构,由声波换能器、带有波导和聚焦功能微结构的硅片,带孔洞的PDMS有机高聚物组成;
所述的声波换能器用于声波信号的产生,由氧化锌薄膜组成并与硅片下表面耦合,硅片下表面沉积铂金属薄膜作为氧化锌换能器上表面的上电极,氧化锌薄膜的下表面再次沉积铂金属薄膜作为氧化锌薄膜的下电极;
所述的带有波导和聚焦功能微结构的硅片,波导结构由45˚硅镜面和硅镜面上的金薄膜组成,聚焦功能微结构由半圆柱-垂直反射壁凹槽和凹槽两端的用于进出样的微沟道组成;
所述的PDMS有机高聚物封装在硅片表面上,PDMS有机高聚物上有两个孔口作为样品的进出样口,并分别连通于硅片上的微沟道的端口;
其特征在于由下述步骤所构成:
1)利用湿法刻蚀方法在硅片上形成45˚硅镜面;
2)利用磁控溅射方法在45˚硅镜面上沉积金薄膜;
3)利用深度反应离子刻蚀法在硅片上部制备聚焦功能的半圆柱-垂直反射壁凹槽和微沟道;
4)在硅片下表面用热蒸镀法沉积铂金属薄膜作为声波换能器的上电极;
5)用磁控溅射方法在硅片下表面的铂薄膜上沉积氧化锌薄膜作为声波换能器;
6)用热蒸镀法沉积铂金属薄膜在氧化锌薄膜下表面作为换能器的下电极;
7)在有机高分子聚合物PDMS上打孔形成样品的进出样孔位,并将其键合到有微结构的硅片上表面,同时孔口的位置对应硅片上微沟道的两端。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710170689.6A CN106914288B (zh) | 2017-03-21 | 2017-03-21 | 一种微流控高频声聚焦芯片及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710170689.6A CN106914288B (zh) | 2017-03-21 | 2017-03-21 | 一种微流控高频声聚焦芯片及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106914288A CN106914288A (zh) | 2017-07-04 |
CN106914288B true CN106914288B (zh) | 2019-01-29 |
Family
ID=59460547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710170689.6A Active CN106914288B (zh) | 2017-03-21 | 2017-03-21 | 一种微流控高频声聚焦芯片及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106914288B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111318218B (zh) * | 2018-12-14 | 2022-01-28 | 深圳先进技术研究院 | 一种微流体装置及其制造和使用方法 |
CN109482121B (zh) * | 2018-12-27 | 2024-02-23 | 苏州纳葛诺斯生物科技有限公司 | 基于声表面波的微纳米粒子高效反应微流控芯片 |
US20220347687A1 (en) * | 2019-06-13 | 2022-11-03 | Savelife Biotechnology Co. Limited | Separation method and apparatus for microvesicles |
CN112076808B (zh) * | 2019-06-13 | 2024-06-28 | 安行生物技术有限公司 | 利用超高频声波控制溶液中的微粒移动的方法及设备 |
CN114177960B (zh) * | 2021-12-15 | 2023-04-28 | 天津大学 | 基于超高频体声波谐振器的微液滴操纵方法以及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966473A (zh) * | 2010-10-26 | 2011-02-09 | 武汉大学 | 基于超声驻波的微流控筛选芯片及其制备方法 |
WO2015107014A1 (en) * | 2014-01-15 | 2015-07-23 | Eth Zurich | Acoustophoretic droplet handling in bulk acoustic wave devices |
CN105283753A (zh) * | 2013-03-14 | 2016-01-27 | 塞通诺米/St有限责任公司 | 流体动力聚焦设备和方法 |
-
2017
- 2017-03-21 CN CN201710170689.6A patent/CN106914288B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966473A (zh) * | 2010-10-26 | 2011-02-09 | 武汉大学 | 基于超声驻波的微流控筛选芯片及其制备方法 |
CN105283753A (zh) * | 2013-03-14 | 2016-01-27 | 塞通诺米/St有限责任公司 | 流体动力聚焦设备和方法 |
WO2015107014A1 (en) * | 2014-01-15 | 2015-07-23 | Eth Zurich | Acoustophoretic droplet handling in bulk acoustic wave devices |
Non-Patent Citations (4)
Title |
---|
Controlling the transmission of ultrahigh frequency bulk acoustic waves in silicon by 45° mirrors;Shengxiang Wang等;《Ultrasonics》;20110731;第51卷(第5期);第532-538页 |
Lab-on-a-chip for high frequency acoustic characterization;Jiaming Gao等;《Sensors and Actuators B》;20130228;第177卷;第754-760页 |
基于声表面波技术的微流体混合及仿真;郑利等;《传感技术学报》;20110815;第24卷(第8期);第1098-1101页 |
声钳在微流控芯片中的发展和应用;李思哲等;《现代物理知识》;20110218;第30-34页 |
Also Published As
Publication number | Publication date |
---|---|
CN106914288A (zh) | 2017-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106914288B (zh) | 一种微流控高频声聚焦芯片及其制备方法 | |
CN108432132B (zh) | 微流体颗粒操纵 | |
Ma et al. | Mechanical properties based particle separation via traveling surface acoustic wave | |
Collins et al. | Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting | |
US9733171B2 (en) | Acoustic concentration of particles in fluid flow | |
JP4309131B2 (ja) | 集束音響排出細胞分類システムおよび方法 | |
CN107505249B (zh) | 用于稀有细胞筛选的微流控芯片系统 | |
US8865003B2 (en) | Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended | |
US8573060B2 (en) | Particle focusing within a microfluidic device using surface acoustic waves | |
US8991614B2 (en) | Microfluidic ultrasonic particle separators with engineered node locations and geometries | |
JP4572973B2 (ja) | マイクロチップ及びマイクロチップにおける送流方法 | |
EP2191895B1 (en) | Microparticle analysis device, microfluidic chip for microparticle analysis, and microparticle analysis method | |
CN108823065B (zh) | 基于间歇式倾斜声表面波的微颗粒分选装置 | |
CN109012771B (zh) | 一种全透明的微流控声学体波芯片及其制备方法 | |
CN101301990A (zh) | 用于芯片实验室的声表面波微流体驱动器及其制造方法 | |
CN104726331A (zh) | 基于声表面波的微流控血浆分离芯片及方法 | |
CA2827825A1 (en) | Fluidics apparatus for surface acoustic wave manipulation of fluid samples, use of fluidics apparatus and process for the manufacture of fluidics apparatus | |
Ota et al. | Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device | |
Ohiri et al. | An acoustofluidic trap and transfer approach for organizing a high density single cell array | |
Zhou et al. | based acoustofluidics for separating particles and cells | |
Wang et al. | Sheathless acoustic based flow cell sorter for enrichment of rare cells | |
Han et al. | Optimization analysis of particle separation parameters for a standing surface acoustic wave acoustofluidic chip | |
CN210215391U (zh) | 细胞分选装置 | |
CN111495098A (zh) | 一种微米颗粒二维聚集方法和聚集装置 | |
Chen et al. | Microfluidic particle separation and detection system based on standing surface acoustic wave and lensless imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |