CN106908140A - 加性制造过程的实时振动监测 - Google Patents

加性制造过程的实时振动监测 Download PDF

Info

Publication number
CN106908140A
CN106908140A CN201611016428.0A CN201611016428A CN106908140A CN 106908140 A CN106908140 A CN 106908140A CN 201611016428 A CN201611016428 A CN 201611016428A CN 106908140 A CN106908140 A CN 106908140A
Authority
CN
China
Prior art keywords
manufacturing process
vibration signal
signal section
recoating
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611016428.0A
Other languages
English (en)
Inventor
S.A.戈德
P.M.肯尼
R.W.莱文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN106908140A publication Critical patent/CN106908140A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/048Marking the faulty objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0672Imaging by acoustic tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种监测加性制造过程的方法,在加性制造过程中,在重涂过程中沉积一层粉末材料,以便于限定构建表面,并且定向能源用来在构建表面中创建熔池,并且选择地熔合粉末材料以形成工件。该方法包括:测量通过重涂过程所生成的振动信号剖面;并且响应于所测量的振动信号剖面而控制加性制造过程的至少一个方面。

Description

加性制造过程的实时振动监测
发明背景
本发明一般涉及加性制造,并且更具体地,涉及用于提供加性制造中的实时振动监测的设备和方法。
加性制造是其中将材料逐层地建立(build up)以形成组件的过程。加性制造仅由机器的位置分辨率限制,而不由对于如由浇铸所要求的提供拔模角度、避免悬垂等的要求来限制。加性制造也通过诸如“分层制造”、“反向加工”、“直接金属激光熔融”(DMLM)和“3-D印刷”的术语来参考。为了本发明的目的,这类术语被看作是同义词。
加性制造机器的一个常见的类型包括在激光熔合之前,将粉末材料施加在构建表面之上的叶片状重涂器。
这种机器中的构建碰撞的常见的原因是重涂器叶片与正在构建的工件之间的接触,因为内应力建立引起工件翘曲或从支撑构建板提起。关于这类机器的一个问题是,目前不存在监测构建过程期间的该应力建立或工件与重涂器之间的接触的严重程度的简单的手段。
另一问题是,现有技术的加性制造过程通常要求构建后的检查过程,例如计算机化断层扫描(“CT”),以验证构建的完整性。虽然有效,但这要求不合需要的额外的时间和成本,并且,消除在构建期间进行校正动作的可能性。
发明内容
通过在加性制造构建过程期间监测振动的方法而解决这些问题中的至少一个。
根据本文中所描述的技术的一个方面,提供用于监测加性制造过程的方法,在该加性制造过程中,在重涂过程中沉积一层粉末材料,以便限定构建表面,并且,定向能源用来选择地熔合粉末材料以形成工件。该方法包括:测量通过重涂过程所生成的振动信号剖面(profile);并且响应于所测量的振动信号剖面而控制加性制造过程的至少一个方面。
根据本文中所描述的技术的一个方面,制作工件的方法包括:使用移动式重涂器来沉积粉末材料,以便限定构建表面;定向来自定向能源的聚焦的能量束,以选择地以与工件的截面层对应的图案熔合粉末材料;测量通过重涂器所生成的振动信号剖面;以及响应于所测量的振动信号剖面而控制制作工件的至少一个方面。
本发明提供一组技术方案,如下:
1.一种监测加性制造过程的方法,在加性制造过程中,在重涂过程中沉积一层粉末材料,以便限定构建表面,并且定向能源用来选择地熔合所述粉末材料以形成工件,所述方法包含:
测量通过所述重涂过程所生成的振动信号剖面;以及
响应于所测量的振动信号剖面而控制所述加性制造过程的至少一个方面。
2.如技术方案1所述的方法,进一步包含将所测量的振动信号剖面与基线振动信号剖面比较。
3.如技术方案2所述的方法,其中,所述基线信号剖面表示已知良好的工件。
4.如技术方案2所述的方法,其中,控制的步骤包括响应于所述振动信号剖面偏离基线剖面而进行离散的动作。
5.如技术方案4所述的方法,其中,所述离散的动作停止所述加性制造过程。
6.如技术方案1所述的方法,进一步包含将所测量的振动信号剖面与基线振动信号剖面比较和基于比较而识别工件中的缺陷。
7.如技术方案6所述的方法,进一步包含通过使用所述定向能源来熔融材料并且准许所述材料流入所述缺陷中并且填充所述缺陷来修复所述缺陷。
8.如技术方案7所述的方法,其中,所述材料是所述工件的先前熔合的部分。
9.如技术方案1所述的方法,其中,控制的步骤包括改变所述加性制造过程的至少一个过程参数。
10.如技术方案9所述的方法,其中,控制的过程参数包括如下中的至少一个:定向能源功率级、束扫描速度、束扫描图案、束脉冲长度以及束脉冲频率。
11.如技术方案1所述的方法,其中,通过重涂器臂在工作表面之上移动而沉积所述粉末,通过所述重涂器臂与所述粉末材料的相互作用而生成所述振动信号。
12.如技术方案1所述的方法,其中,使用安装到用来执行所述加性制造过程的机器的振动传感器来测量所述振动信号剖面。
13.如技术方案1所述的方法,其中:
使用移动式重涂器臂来沉积所述粉末材料;以及
通过所述重涂器臂与所述粉末材料的相互作用而生成所述振动信号。
14.如技术方案1所述的方法,进一步包含以循环方式重复沉积和熔合的步骤来以逐层的方式建立所述工件。
附图说明
可以通过参考结合附图进行的下面的描述而最好理解本发明,其中:
图1是示范性的加性制造设备的示意截面图;
图2是图1的一部分的放大图;
图3是通过图1的设备而构建的翘曲的工件的放大图;
图4是通过图1的设备而构建的翘曲的工件的放大图;
图5是“已知良好的”工件构建过程的基线振动信号剖面;
图6是示出构建过程期间的工件中的小的或刚出现的缺陷的振动信号剖面;以及
图7是示出构建过程期间的工件中的大的缺陷的振动信号剖面。
具体实施方式
参考附图,其中相同参考数字在各个视图中通篇表示相同元件,图1示意图示用于执行加性制造方法的设备10。基本组件是工作台12、粉末供应装置14、刮板或重涂器(recoater)16、溢出容器18、由构建室22所包围的构建平台20、定向能源24和束导引设备26,全部由外壳28包围。下面将更详细描述这些组件的每个。
工作台12是限定平面工作表面30的刚性结构。工作表面30与虚拟工作平面是共面的并且限定虚拟工作平面。在所图示示例中,它包括:构建开口32,与构建室22进行通信,并且暴露构建平台20;供应开口34,与粉末供应装置14进行通信;以及溢出开口36,与溢出容器18进行通信。
重涂器16是刚性的横向延长结构,其位于工作表面30上。它连接到致动器38,其可操作以选择地沿工作表面30移动重涂器16。以诸如气动或液压缸、滚珠丝杠或线性电致动器等的装置可用于此目的的理解在图1中示意描绘致动器38。
粉末供应装置14包含在供应开口34下面并且与其进行通信的供应容器40以及升降机42。升降机42是板状结构,其在供应容器40内是可垂直滑动的。它连接到致动器44,其可操作以选择地向上或向下移动升降机42。以诸如气动或液压缸、滚珠丝杠或线性电致动器等的装置可用于此目的的理解在图1中示意描绘致动器44。当升降机42降低时,预期组成(例如金属、陶瓷和/或有机粉末)的粉末“P”的供应可装载到供应容器40中。当升降机42升高时,它将粉末P暴露在工作表面30上方。应当领会,可以使用其他合适的形式和/或类型的粉末供应装置14。例如,粉末供应装置14可以定位于工作表面30上方,并且,包括使粉末以预定的流速下落至工作表面30上的粉末容器。
构建平台20是板状结构,其在构建开口32下面是可垂直滑动的。它连接到致动器46,其可操作以选择地向上或向下移动构建平台20。以诸如气动或液压缸、滚珠丝杠或线性电致动器等的装置可用于此目的的理解在图1中示意描绘致动器46。当构建平台20在构建过程期间降低到构建室22中时,构建室22和构建平台20共同包围和支承大量粉末P连同被构建的任何组件。这种大量粉末通常称作“粉末层”,以及这种特定类别的加性制造过程可称作“粉末层过程”。
溢出容器18在溢出开口36下面并且与其通信,并且用作过量粉末P的贮存器。
定向能源24可包含任何已知装置,其可操作以生成适当功率和其他操作特性的束,以便在构建过程期间熔融和熔合金属粉末,下面更详细描述。例如,定向能源24可以是激光器。其他定向能源、例如电子束枪是激光器的适当备选方案。
束导引设备26可包括一个或多个电磁体、反射镜、棱镜和/或透镜,并且提供有适当致动器,以及被布置,使得来自定向能源24的束“B”能够聚焦成预期光点大小并且导引到与工作表面30一致的平面中的预期位置。为了方便的描述的目的,这个平面可称作X-Y平面,以及与X-Y平面垂直的方向表示为Z方向(X、Y和Z是三个相互垂直的方向)。束B在本文中可称作“构建束”。
外壳28用来隔离和保护设备10的其他组件。它可提供有例如氮、氩或其他气体或者气体混合物的适当屏蔽气体“G”的流(flow)。气体G可作为静态加压体积或者作为动态流来提供。外壳28可分别提供有入口和出口端口48、50用于此目的。
使用上述设备的工件W的基本构建过程如下。将构建平台20移动到初始高位置。构建平台20降低低于工作表面30所选层增量。层增量影响加性制造过程的速度和工件W的分辨率。作为示例,层增量可以为大约10至50微米(0.0003至0.002英寸)。粉末“P”然后沉积在例如构建平台20之上,供应容器40的升降机42可升高以经过供应开口34来推送粉末,从而将它暴露在工作表面30上方。重涂器16跨工作表面移动,以便在构建平台20之上水平地散布升高的粉末P(被称为"重涂过程")。当重涂器16从左到右通过时,任何过量粉末P经过溢出开口36落入溢出容器18中。随后,重涂器16可移回到起始位置。弄平的粉末P可称作“构建层”52,并且其暴露的上表面可称作“构建表面”54(参见图2)。
定向能源24用来熔融被构建的工件W的二维截面或层。定向能源24发射束“B”,以及束导引设备26用来按照适当图案在暴露的粉末表面之上导引构建束B的焦点“S”。包围焦点S的粉末P的暴露层的小部分(在本文中称作“熔池”56(在图2中最好地看到))通过构建束B加热到允许它熔融、流动以及固结的温度。作为示例,熔池56可以是大约100微米(0.004英寸)宽。这个步骤可称作熔合粉末P。
构建平台20垂直向下移动层增量,以及按照类似厚度来施加另一层粉末P。定向能源24再次发射构建束B,以及束导引设备26用来按照适当图案在暴露的粉末表面之上导引构建束B的焦点S。粉末P的暴露层通过构建束B加热到允许它在顶层内并且与先前凝固的下层融合的温度。
重复移动构建平台20、施加粉末P并且然后定向能量熔融粉末P的这个循环,直到整个工件W完成。
图3更详细地示出在上述的类型的粉末层中构成的工件W。示范性的工件W包括通过水平壁62而互相连接的一对间隔开的垂直壁58、60。空腔64存在于垂直壁58、60之间,并且填充有粉末P;附加的粉末P存在于垂直壁58、60与构建室22的侧壁之间。工件W示为具有示范性的缺陷66(具体地,由高应力区域引起的升高的部分和/或伸出部)。能够使用该方法来检测的缺陷的类型的非限制的示例包括工件W的翘曲、工件W从构建平台20的提起以及通过定向能源24而进行不均匀的熔融。该特定的缺陷66由翘曲(高应力区域)引起,翘曲引起一部分的工件W位于构建表面54上方。
可以将实时振动监测过程合并至上述的构建过程中。一般来说,振动监测过程包括在重涂过程期间使用振动传感器68(例如换能器或麦克风)来生成振动信号和监测指示工件W中的缺陷的不规则的那些信号。振动传感器68可以安装在重涂器16(图3)和/或工作台12(图4)或设备10的底盘上和/或安装于其中,以便在重涂过程期间测量并且记录振动信号。
在典型的重涂过程期间,重涂器16跨工作台12的工作表面30而滑动,从而在构建平台20之上推动粉末,以形成将通过定向能源24而熔融的粉末的层增量。如果适当地形成工件W,则重涂过程是平稳的,并且在由重涂过程所引起的振动的量中发生非常小的变化。然而,如果工件W经历翘曲,则工件W的部分可以向上地伸出,由此引起由重涂过程所引起的振动的量中的变化。
如图3中所图示,在最严重的情况下,工件W翘曲至一部分的工件W在构建表面54上方在Z方向上伸出的程度。当重涂器16使粉末跨构建平台20而散布时,重涂器16与工件W接触。在严重的情况下,这种接触可能引起对工件W、重涂器16以及/或设备10的损伤。在工件W具有较小的翘曲程度时,或在定向能源24提供粉末的不均匀的熔融时,可能出现更微妙的情况。在这些情况下,当重涂器16使粉末跨构建平台20而散布时,工件W的上表面的起伏和/或突出部能够引起由重涂过程所引起的振动中的变化。由于润滑流,即使在工件W的上表面位于一层粉末下方时,这也是真的。用户能够通过监测这些振动而确定是否未适当地形成工件W。
振动监测过程使用“已知良好的”工件振动信号剖面作为比较以便提供振动信号分析。对于每个具体的构建(不同的定大小和成形的工件),能够形成新的信号剖面,用于比较。因而,可以针对构建的每个增量层而形成基线信号剖面。进行这个操作,使得与缺陷相对的由于工件的具体的剖面而导致的振动中的变化被纳入考虑。示出振动幅度与时间的已知良好的信号剖面的非限制的示例在图5中示出。
当进行工件W的构建过程时,振动传感器68针对构建的每个增量层而测量将记录的振动信号。然后,针对每个构建层而将这些振动信号与已知良好的信号剖面比较,以确定诸如工件W的翘曲的缺陷是否正在扩散(应当领会,可以以任何合适的预定的层增量间隔记录振动信号剖面)。可以在完成构建过程之后进行比较,作为检查及质量控制的手段。备选地,可以实时地进行比较。
如果缺陷处于其起始阶段中或是微妙的,则可能出现如图6中所示出的信号剖面的示例的信号剖面。如所示,出现小的尖峰或峰70,其指示小的缺陷正在改变振动剖面。备选地,如果出现严重的缺陷(例如,引起与重涂器16接触),则可能出现如图7中所示出信号剖面的示例的信号剖面,表明显著的尖峰或峰72。
通过监测每个构建过程的振动信号剖面,并且将信号剖面与已知良好的信号剖面比较,能够在构建过程的早期阶段检测到构建过程中的缺陷。这实现诸如如下的动作的校正动作的可能性:(1)在由于工件W与重涂器16之间的接触而出现的对工件W、重涂器16和/或设备10的损伤之前,使构建过程停止;(2)允许操作人员通过观察信号尖峰,并且确定尖峰是否低于预定的振动阈值,来执行构建期间的质量控制;以及(3)通过将构建束B定向至工件W在缺陷之上,创建使材料重新熔融并且准许材料流动至缺陷中并且填充缺陷的熔池,使用设备10来修复缺陷。
除了上述的离散的动作之外或作为这些动作的备选方案,振动监测过程可以用来提供能够用来修改加性构建过程的实时反馈。例如,如果检查过程确定构建造成缺陷,则可以改变诸如定向能源功率级、束扫描速度、束扫描图案、束脉冲长度或束脉冲频率的一个或多个过程参数,以使性能恢复标称(nominal)或消除缺陷的来源。
上述的振动监测过程还可以用作统计过程控制的计划的一部分。具体地,检查过程能够用来识别过程中的变化的来源。然后,能够在随后的构建中变更过程参数,以减少或消除变化的来源。
前面描述了用于加性制造过程的实时振动监测过程。本说明书(包括任何所附权利要求书、摘要和附图)中公开的所有特征和/或如此公开的任何方法或过程的所有步骤可组合在任何组合中,除了其中这类特征和/或步骤的至少一些是互斥的组合之外。
本说明书(包括任何所附权利要求书、摘要和附图)中公开的每个特征可通过服务相同、等效或类似目的的备选特征来替代,除非另有明确规定。因而,除非另有明确规定,否则所公开的每个特征只是等效或类似特征的一般系列的一个示例。
本发明并不局限于前面(一个或多个)实施例的细节。本发明扩展本说明书(包括任何所附潜在新颖点、摘要和附图)中公开的特征的任何新颖特征或者任何新颖组合或者扩展到如此公开的任何方法或过程的步骤的任何新颖步骤或者任何新颖组合。
部件列表
10 设备
12 工作台
14 粉末供应装置
16 重涂器
18 溢出容器
20 构建平台
22 构建室
24 定向能源
26 束导引设备
28 外壳
30 工作表面
32 构建开口
34 供应开口
36 溢出开口
38 致动器
40 供应容器
42 升降机
44 致动器
46 致动器
48 入口
50 出口端口
52 构建层
54 构建表面
56 熔池
58 垂直壁
60 垂直壁
62 水平壁
64 空腔
66 缺陷
68. 振动传感器
70. 峰
72. 峰

Claims (9)

1.一种监测加性制造过程的方法,在所述加性制造过程中,在重涂过程中沉积一层粉末材料,以便限定构建表面,并且定向能源(24)用来选择地熔合所述粉末材料以形成工件(W),所述方法包含:
测量通过所述重涂过程所生成的振动信号剖面;以及
响应于所测量的振动信号剖面而控制所述加性制造过程的至少一个方面。
2.如权利要求1所述的方法,进一步包含将所测量的振动信号剖面与基线振动信号剖面比较。
3.如权利要求2所述的方法,其中,所述基线信号剖面表示已知良好的工件(W)。
4.如权利要求2所述的方法,其中,控制的步骤包括响应于所述振动信号剖面偏离基线剖面而进行离散的动作。
5.如权利要求4所述的方法,其中,所述离散的动作停止所述加性制造过程。
6.如权利要求1所述的方法,其中,控制的步骤包括改变所述加性制造过程的至少一个过程参数。
7.如权利要求6所述的方法,其中,控制的过程参数包括如下中的至少一个:定向能源(24)功率级、束扫描速度、束扫描图案、束脉冲长度以及束脉冲频率。
8.如权利要求1所述的方法,其中,通过重涂器臂(16)在工作表面之上移动而沉积所述粉末,通过所述重涂器臂(16)与所述粉末材料的相互作用而生成所述振动信号。
9.如权利要求1所述的方法,其中,使用安装到用来执行所述加性制造过程的机器的振动传感器来测量所述振动信号剖面。
CN201611016428.0A 2015-11-19 2016-11-18 加性制造过程的实时振动监测 Pending CN106908140A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/946278 2015-11-19
US14/946,278 US20170144250A1 (en) 2015-11-19 2015-11-19 Real-time vibration monitoring of an additive manufacturing process

Publications (1)

Publication Number Publication Date
CN106908140A true CN106908140A (zh) 2017-06-30

Family

ID=57354170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611016428.0A Pending CN106908140A (zh) 2015-11-19 2016-11-18 加性制造过程的实时振动监测

Country Status (3)

Country Link
US (1) US20170144250A1 (zh)
EP (1) EP3170591A1 (zh)
CN (1) CN106908140A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316077A (zh) * 2017-11-09 2020-06-19 通用电气公司 用于增材制造的光列监控

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906244B2 (en) * 2015-04-02 2021-02-02 Xerox Corporation Ultrasonic removal methods of three-dimensionally printed parts
US10444110B2 (en) * 2015-11-13 2019-10-15 Honeywell Federal Manufacturing & Technologies, Llc System and method for inspecting parts using frequency response function
US11073501B2 (en) * 2015-11-13 2021-07-27 Honeywell Federal Manufacturing & Technologies, Llc System and method for inspecting parts using dynamic response function
US20180297115A1 (en) * 2017-04-14 2018-10-18 General Electric Company Real Time Detection of Defects during Formation of an Additively Manufactured Component
DE102017124100A1 (de) 2017-10-17 2019-04-18 Carl Zeiss Ag Verfahren und Vorrichtung zur additiven Fertigung
JP6845353B2 (ja) 2017-06-20 2021-03-17 カール・ツアイス・インダストリーエレ・メステクニク・ゲーエムベーハー 付加製造方法及び装置
US10449721B2 (en) 2017-10-11 2019-10-22 Deborah D. L. Chung Systems and method for monitoring three-dimensional printing
US10307823B1 (en) 2017-11-13 2019-06-04 General Electric Company Methods and systems for repairing powder containment structures
FR3077017B1 (fr) * 2018-01-23 2021-01-15 Safran Aircraft Engines Outillage pour la fabrication additive sur lit de poudre equipe d'un systeme permettant d'eviter un endommagement de son moyen d'etalement
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US11052606B2 (en) * 2018-11-27 2021-07-06 Hamilton Sundstrand Corporation Platform drop sensor
US11458681B2 (en) * 2019-01-30 2022-10-04 General Electric Company Recoating assembly for an additive manufacturing machine
EP3761021A1 (en) * 2019-07-03 2021-01-06 The Boeing Company A computer-implemented method and a system for nondestructive inspection
JP2021172863A (ja) * 2020-04-27 2021-11-01 三菱重工業株式会社 造形プロセスの監視方法、積層造形方法、造形プロセスの監視装置及び積層造形装置
US11536671B2 (en) * 2020-08-07 2022-12-27 Sigma Labs, Inc. Defect identification using machine learning in an additive manufacturing system
US20220272207A1 (en) * 2021-02-24 2022-08-25 General Electric Company Automated beam scan calibration, alignment, and adjustment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090210084A1 (en) * 2003-05-01 2009-08-20 Objet Geometries Ltd. Rapid prototyping apparatus
CN202083464U (zh) * 2011-02-17 2011-12-21 克门塔斯特仪器有限公司 用于为振动分析获取振动信号的系统
WO2014106753A1 (en) * 2013-01-07 2014-07-10 Bae Systems Plc Object production using an additive manufacturing process and quality assessment of the object
US20150115490A1 (en) * 2012-04-20 2015-04-30 Eos Gmbh Electro Optical Systems Method and Divice for Producing Components in a Beam Melting Installation
US20150246414A1 (en) * 2014-02-28 2015-09-03 MTU Aero Engines AG Apparatus and method for generative production of a component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286313A (en) * 1991-10-31 1994-02-15 Surface Combustion, Inc. Process control system using polarizing interferometer
US6668654B2 (en) * 2001-08-15 2003-12-30 Lockheed Martin Corporation Method and apparatus for generating specific frequency response for ultrasound testing
US20050173380A1 (en) * 2004-02-09 2005-08-11 Carbone Frank L. Directed energy net shape method and apparatus
US7569174B2 (en) * 2004-12-07 2009-08-04 3D Systems, Inc. Controlled densification of fusible powders in laser sintering
US9527165B2 (en) * 2015-02-05 2016-12-27 Siemens Energy, Inc. Powder deposition process utilizing vibratory mechanical energy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090210084A1 (en) * 2003-05-01 2009-08-20 Objet Geometries Ltd. Rapid prototyping apparatus
CN202083464U (zh) * 2011-02-17 2011-12-21 克门塔斯特仪器有限公司 用于为振动分析获取振动信号的系统
US20150115490A1 (en) * 2012-04-20 2015-04-30 Eos Gmbh Electro Optical Systems Method and Divice for Producing Components in a Beam Melting Installation
WO2014106753A1 (en) * 2013-01-07 2014-07-10 Bae Systems Plc Object production using an additive manufacturing process and quality assessment of the object
US20150246414A1 (en) * 2014-02-28 2015-09-03 MTU Aero Engines AG Apparatus and method for generative production of a component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316077A (zh) * 2017-11-09 2020-06-19 通用电气公司 用于增材制造的光列监控

Also Published As

Publication number Publication date
US20170144250A1 (en) 2017-05-25
EP3170591A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
CN106908140A (zh) 加性制造过程的实时振动监测
CN107037126B (zh) 用于加性制造过程的声学监测方法
CN107037122B (zh) 用于加性制造过程的非接触式声学检查方法
Foster et al. Optical, layerwise monitoring of powder bed fusion
CN114799210A (zh) 添加式制造中的气体流监测
US10307823B1 (en) Methods and systems for repairing powder containment structures
EP3659730B1 (en) System and method for calibrating an acoustic monitoring system of an additive manufacturing machine
CN107101717A (zh) 加性制造中的激光功率监测
EP3689503A1 (en) Recoating assembly for an additive manufacturing machine
US11679548B2 (en) Method for melt pool monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170630

WD01 Invention patent application deemed withdrawn after publication