CN106908092B - 一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法 - Google Patents

一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法 Download PDF

Info

Publication number
CN106908092B
CN106908092B CN201710235221.0A CN201710235221A CN106908092B CN 106908092 B CN106908092 B CN 106908092B CN 201710235221 A CN201710235221 A CN 201710235221A CN 106908092 B CN106908092 B CN 106908092B
Authority
CN
China
Prior art keywords
graphene film
optical fiber
resonator
interference
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710235221.0A
Other languages
English (en)
Other versions
CN106908092A (zh
Inventor
李成
兰天
余希彧
李雪
樊尚春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710235221.0A priority Critical patent/CN106908092B/zh
Publication of CN106908092A publication Critical patent/CN106908092A/zh
Application granted granted Critical
Publication of CN106908092B publication Critical patent/CN106908092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法。该谐振器基于石墨烯膜和光纤法珀干涉光学原理制成,以石墨烯膜为谐振材料,利用光纤传导激光实现薄膜激振与拾振。所述的激振方法,利用光强调制的激光周期性照射石墨烯膜,石墨烯膜吸收光能并转换为机械能,产生受迫振动,实现石墨烯膜谐振器的激振。所述的拾振方法,基于法珀干涉原理,对采集的干涉信号进行解调,获取干涉光信号的频率变化信息,实现与该频率量相关的被测量检测。该谐振器具有制作简单、高灵敏度、体积小、功耗低、准数字信号输出、在线测量、抗电磁干扰等优点,可进行压力、温度、湿度等物理量以及气体量、生物量等参数检测,并应用于航空航天、生物医学、工业控制等领域。

Description

一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法
技术领域
本发明涉及光纤干涉型谐振器及光纤传感的技术领域,尤其涉及一种石墨烯膜光纤法珀谐振器及其光纤干涉激振/拾振检测方法。
背景技术
谐振式微机械传感器除具有普通微传感器的优点外,还具有准数字信号输出、抗干扰能力强、分辨力和测量精度高的优点。因此,性能稳定可靠、精度高,直接输出频率量的谐振式微结构传感器是当今微机械传感器研究的重点,近年来国内外对谐振式微机械压力传感器的研究多集中于硅膜。自2004年英国曼彻斯特大学K.S.Novoselov等人发现石墨烯以来,围绕该材料的机械、光学、电学与热学等性能的研究受到人们密切关注,为传统微机械谐振器因材料限制遇到的瓶颈问题带来了新的突破,从而明显提高谐振频率和品质因数。
石墨烯是目前已知最薄的材料,其单层厚度仅为0.335nm(参见:Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbonfilms[J].Science,2004,306(5696):666-669.),也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。目前,通常采用硅微加工方法制作石墨烯微谐振器。例如,2007年J.Scott Bunch等人首次将石墨烯膜应用于机械谐振器(参见:J Scott B,Zande A M V D,Verbridge S S,etal.Electromechanical resonators from graphene sheets[J].Science,2007,315(5811):490-493.),在设有凹槽的SiO2上两端固支石墨烯,用电驱动使其振动,采用空间光学装置拾取其机械振动;2010年美国A.M.van der Zande等人利用CVD方法制作了两边固支和四边固支的石墨烯谐振器(参见:Am V D Z,Barton R A,Alden J S,et al.Large-scalearrays of single-layer graphene resonators[J].Nano Letters,2010,10(12):4869-4873.),实验结果表明,四边固支的正方形谐振器可获得两倍于基频的高阶共振膜,且比两边固支具有更高的品质因数;2013年韩国J.W.Kang等人利用分子动力学方法对石墨烯膜谐振器进行了仿真分析(参见:Kang J W,Kim H W,Kim K S,et al.Molecular dynamicsmodeling and simulation of a graphene-based nanoelectromechanical resonator[J].Current Applied Physics,2013,13(4):789-794.),结果表明,谐振器的基频和作用在两边的平均张力密切相关,初始应变引起的张力可通过石墨烯的负热膨胀系数和基底的正热膨胀系数进行调整。2014年加拿大M.A.N.Dewapriya等人利用分子动力学仿真研究了温度以及边缘效应对石墨烯膜谐振特性的影响(参见:Dewapriya M A N,Phani AS,Rajapakse R K N D.Influence of temperature and free edges on the mechanicalproperties of graphene[J].Modelling&Simulation in Materials Science&Engineering,2013,21(6):2848-2855.)。总之,相关研究表明,国内外将新型材料石墨烯膜用于谐振器的研究尚处于理论仿真与特性实验阶段,所采用的谐振器加工制作难度大、工艺设备要求高,且多基于电学激振/拾振方法。因此,本发明基于以石墨烯膜为敏感材料的谐振器,利用石墨烯超薄的厚度和良好的机械力学特性,引入光纤干涉方法,提出了一种石墨烯膜光纤FP谐振器及其激振/拾振检测方法,具有制作简单、高灵敏度、体积小、功耗低、准数字信号输出、抗电磁干扰等优点。
发明内容
本发明的内容是提出一种制作方法能够制作出简单、性能优良的石墨烯膜光纤FP谐振器,并提出相应的光纤干涉激振/拾振检测方法。该谐振器由石墨烯膜、单模光纤、光纤插芯、插芯匹配套管等构成,可解决现有方法中石墨烯膜MEMS/NEMS谐振器的加工制作难度大、成本高问题,同时光纤干涉激振/拾振检测方法具有可靠性高、在线测量、抗电磁干扰等优点,并可解决现有基于空间光学的激振/拾振检测存在的测试装置复杂、不利于现场在线测量等实用性问题。
本发明的目的之一在于提出一种石墨烯膜光纤FP谐振器及其制作方法;本发明的目的之二在于提出一种石墨烯膜光纤FP谐振器的激振/拾振检测方法。
本发明的目的之一是通过以下技术方案来实现:
一种石墨烯膜光纤法珀(Farbry-Perot,FP)谐振器,该谐振器的制作方法包括以下步骤:
步骤1.谐振器组件选型:选用石墨烯膜、插芯匹配套管、光纤插芯和单模光纤,所述的插芯匹配套管的底面为C型,所述的光纤插芯为氧化锆陶瓷插芯,所述的石墨烯膜的形状为梁式、圆形、方形、异形或上述不同形状的组合;
步骤2.对所述的光纤插芯端面进行超声、丙酮、去离子水清洗;之后,将单模光纤的尾端用光纤切割刀切平,通过端面检测仪或显微镜检测光纤插芯端面和单模光纤尾端切平后端面的平整度;
步骤3.将所述的石墨烯膜转移吸附至处理后的光纤插芯端面;
步骤4.将步骤3所述的吸附有石墨烯膜的光纤插芯与另一裸光纤插芯,分别从插芯匹配套管的两端插入,其中,两个光纤端面的距离相距在1mm左右;
步骤5.将端面处理过的单模光纤插入步骤4所述的裸光纤插芯,则由单模光纤端面和石墨烯膜构成法布里-珀罗干涉腔;
步骤6.可在光纤插芯尾端与单模光纤的连接处涂环氧树脂或利用激光熔接进行固定,完成石墨烯膜谐振器的制作。
其中,所述的石墨烯膜为单层、少层或多层石墨烯膜;所述的光纤插芯的端面为PC抛光端面,所述的单模光纤为带单模尾纤的光纤接头。
其中,所述的插芯及其匹配套管可选用的材料包括但不限于SiO2、ZrO2陶瓷、玻璃和塑料。
其中,所述的干涉腔可为传统的封闭式,或非封闭式,所述的非封闭式干涉腔便于石墨烯膜两侧腔体与真空环境连通,降低空气阻尼。
其中,所述的干涉腔初始腔长的测量方法在于:利用宽带光源、环行器、光谱仪和三维光纤微动平台等对单模光纤端面与石墨烯膜端面间干涉腔长进行检测,并利用光信号相位解调中的双峰法对干涉光谱信号的解调,则腔长L可表示为:
式中,λ1,λ2是干涉光谱的两个相邻的峰峰值或者最小值,即将多光束光干涉近似为双光束光干涉,通过峰值对应波长计算腔长,取干涉对比度K为:
式中,Imax,Imin分别为对应腔长位置的最大光强和最小光强值,K值表征的是干涉场中干涉条纹亮暗的对比程度,通过计算K值接近于1的程度,分析干涉条纹性能,确定最佳干涉腔腔长。
本发明的目的之二是通过以下技术方案来实现:
一种光纤干涉激振/拾振检测方法,由DFB激光器、电光调制器、掺铒光纤放大器、耦合器、环形器、光电探测器、锁相放大器和带通滤波器等搭建而成光纤干涉激振/拾振装置,通过调节光学激振装置的激励频率,引起石墨烯膜谐振器的敏感膜片的受迫振动,利用光学拾振装置获取薄膜的振动频率与幅值比,根据幅值比最大值处的振动频率,则时域内膜片的振动位移δm可表示为:
式中,A为膜片振动位移幅值;f为膜片振动频率;为初始相位角;t表示时间。
该膜片的位移变化导致FP干涉腔的腔长也呈周期性改变,利用带通滤波器滤去激励激光,则获取的检测波长的反射信号Ir近似为:
式中,R1和R2分别为石墨烯膜和光纤端面的反射率,ξ为FP腔损耗,λ为入射光波长,Ii为入射光强度,将信号Ir通过光电探测器馈入锁相放大器以提取石墨烯膜的振动频率变化,实现对石墨烯膜光纤FP谐振器的激振/拾振,从而可基于谐振频率变化获取被测量信息。
本发明的优点在于:本发明采用单层、少层或多层的石墨烯膜制作光纤干涉型谐振器。所用敏感材料——石墨烯膜,相对于目前的石英膜、硅膜等,具有超薄的厚度和优越的机械力学特性;利用法布里-珀罗干涉原理,同时引入插芯匹配套管,在插芯匹配套管中单模光纤端面-空气-石墨烯膜界面形成开放式F-P腔结构,从而提升了谐振器在真空环境工作的谐振性能,具有制作简单、体积小、性价比高、在线测量、抗电磁干扰等优点,可应用于航空航天、生物医学、工业控制等领域。
附图说明
图1为本发明的石墨烯膜光纤FP谐振器结构示意图;
图2为本发明的石墨烯膜光纤FP谐振器制作流程图;
图3为本发明的石墨烯膜光纤FP谐振器的激振/拾振检测方法原理示意图。
图中附图标记含义为:11为石墨烯膜,12为插芯匹配套管,13为光纤插芯,131为光纤插芯13的端面,132为光纤插芯13的另一侧端面,14为光纤插芯,141为氧化锆单模插芯PC端面,142为,15为单模光纤,151为单模光纤尾端,16为谐振器探头部分,17为环氧树脂,18为单模光纤的尾纤,20为石墨烯膜光纤FP谐振器,21为激励DFB激光器,22为检测DFB激光器,23为电光调制器,24为掺铒光纤放大器,25为耦合器,26为环形器,27为光电探测器,28为锁相放大器,29为带通滤波器。
具体实施方式
下面结合附图详细说明本发明,其作为本说明书的一部分,通过实施来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
图1为本发明的石墨烯膜谐振器结构示意图。该谐振器探头部分16主要由石墨烯膜11、插芯匹配套管12、光纤插芯13、光纤插芯14和单模光纤15构成。所述的石墨烯膜11可为单层、少层或多层,其形状可为梁式、圆形、方形、异形或上述不同形状的组合;所述的插芯匹配套管12的底面为C型,其外径3.2±0.02mm、内径2.45±0.02mm,其材质可为SiO2、ZrO2陶瓷、玻璃、塑料或其他材料;所述的光纤插芯13与光纤插芯14的一端为PC抛光端面,其外径2.5mm、内径126±1μm,其材质同插芯匹配套管12,可为氧化锆陶瓷、玻璃、塑料或其他材料;所述的单模光纤15为带单模尾纤18的光纤接头,该单模尾纤18为单模裸光纤,外径为125±0.7μm,纤芯为10.4±0.5μm。
根据图2所示的流程,对所述的光纤插芯、单模光纤的端面进行端面平整度和清洁度处理。所述的光纤插芯14端面的处理为:利用丙酮溶液对氧化锆单模插芯PC端面141进行超声清洗处理,时间约为10min;然后,去离子水进行二次清洗。所述的单模光纤15端面的处理为:利用光纤切割刀将一段单模光纤尾端151切平,预留约为1cm的裸纤,使其端面和光纤轴向传输方向垂直。所述的单模光纤15端面平整度检测为:利用熔接机对光纤端面进行检测或重新切割。
接下来,将石墨烯膜11转移至光纤插芯14的抛光PC端面141,以铜基石墨烯膜为例。所述的转移方法为:首先,利用硫酸铜:盐酸:水的配比为10g:50ml:50ml的溶液腐蚀铜基底,时间约为20min;然后,将腐蚀完铜基的石墨烯转移至去离子水中清洗,约3~5次;之后,在去离子水中翻转石墨烯膜,使其一面朝上,借助石墨烯膜的分子间范德华力,利用氧化锆插芯端面吸附石墨烯膜;最后,将吸附好石墨烯膜的氧化锆插芯转移到丙酮中去除PMMA,将吸附石墨烯膜成功的插芯放入烘箱中干燥约10分钟,控制温度不要超过50℃。
再结合图2,将光纤插芯13与光纤插芯14分别从插芯匹配套管12的两端插入,两个光纤插芯端面相距约1mm。然后,将端面已处理过的单模光纤15从光纤插芯13的端面131插入,利用光谱仪动态检测单模光纤的端面151与石墨烯膜11之间的FP腔长,从而构成光纤15-空气-石墨烯膜11的干涉腔。最后,采用环氧树脂17对单模光纤15和光纤插芯13进行粘接固定,完成石墨烯膜光纤FP谐振器的制作。
图3示出了石墨烯膜光纤FP谐振器激振/拾振检测方法原理示意图。该方法采用基于激励DFB激光器21、检测DFB激光器22、电光调制器23(型号:KG-AMBOX-15-10G-PS-FA)、掺铒光纤放大器24、耦合器25、环形器26、光电探测器27(型号:DET01CFC)、锁相放大器28(型号:HF2LI)和带通滤波器29等搭建而成的光纤式干涉激振/拾振装置。所述锁相放大器28输出扫频信号到电光调制器23,并加载至激励DFB激光器21以调制激励激光的光强呈周期性变化,调制后的激励激光经掺铒光纤放大器24放大,与检测激光在耦合器25中耦合,经过环形器26照射至石墨烯膜光纤FP谐振器20的石墨烯薄膜,使之产生受迫简谐振动,从而周期性改变FP腔的腔长。由于激励DFB激光器21(如,1550.12nm)和检测DFB激光器22(如,1551.72nm)的波长不同,利用带通滤波器29可滤去激励激光,滤波后光电信号馈入光电探测器27,利用锁相放大器28进行信号采集,可提取石墨烯膜的振动频率,实现对石墨烯膜光纤FP谐振器的激振/拾振,进而可基于谐振频率变化获取被测量信息。该测量方法具有安装简单、可靠性高、体积小、在线测量、抗电磁干扰等优点,可应用于航空航天、生物医学、工业控制等领域。

Claims (6)

1.一种石墨烯膜光纤法珀(Farbry-Perot,FP)谐振器,其特征在于:该谐振器的制作方法包括以下步骤:
步骤1.谐振器组件选型:选用石墨烯膜、插芯匹配套管、光纤插芯和单模光纤,所述的插芯匹配套管的底面为C型,所述的光纤插芯为氧化锆陶瓷插芯,所述的石墨烯膜的形状为梁式、圆形、方形或上述不同形状的组合;
步骤2.对所述的光纤插芯端面进行超声、丙酮、去离子水清洗;之后,将单模光纤的尾端用光纤切割刀切平,通过端面检测仪或显微镜检测光纤插芯端面和单模光纤尾端切平后端面的平整度;
步骤3.将所述的石墨烯膜转移吸附至处理后的光纤插芯端面;
步骤4.将步骤3所述的吸附有石墨烯膜的光纤插芯与另一裸光纤插芯,分别从插芯匹配套管的两端插入,其中,两个光纤端面的距离相距在1mm左右;
步骤5.将端面处理过的单模光纤插入步骤4所述的裸光纤插芯,则由单模光纤端面和石墨烯膜构成法布里-珀罗干涉腔;
步骤6.可在光纤插芯尾端与单模光纤的连接处涂环氧树脂或利用激光熔接进行固定,完成石墨烯膜谐振器的制作。
2.根据权利要求1所述的石墨烯膜光纤法珀谐振器,其特征在于:所述的石墨烯膜为单层、少层或多层石墨烯膜;所述的光纤插芯的端面为PC抛光端面,所述的单模光纤为带单模尾纤的光纤接头。
3.根据权利要求1所述的石墨烯膜光纤法珀谐振器,其特征在于:所述的插芯及其匹配套管可选用的材料包括SiO2、ZrO2陶瓷、玻璃和塑料。
4.根据权利要求1所述的石墨烯膜光纤法珀谐振器,其特征在于:所述的干涉腔可为传统的封闭式,或非封闭式,所述的非封闭式干涉腔便于石墨烯膜两侧腔体与真空环境连通,降低空气阻尼。
5.根据权利要求1所述的石墨烯膜光纤法珀谐振器,其特征在于:所述的干涉腔初始腔长的测量方法在于:利用宽带光源、环行器、光谱仪和三维光纤微动平台对单模光纤端面与石墨烯膜端面间干涉腔长进行检测,并利用光信号相位解调中的双峰法对干涉光谱信号的解调,则腔长L可表示为:
式中,λ1,λ2是干涉光谱的两个相邻的峰峰值或者最小值,即将多光束光干涉近似为双光束光干涉,通过峰值对应波长计算腔长,取干涉对比度K为:
式中,Imax,Imin分别为对应腔长位置的最大光强和最小光强值,K值表征的是干涉场中干涉条纹亮暗的对比程度,通过计算K值接近于1的程度,分析干涉条纹性能,确定最佳干涉腔腔长。
6.一种光纤干涉激振或拾振检测方法,其特征在于:该方法对权利要求1所述的石墨烯膜光纤FP谐振器进行激振/拾振检测,所述的检测装置由DFB激光器、电光调制器、掺铒光纤放大器、耦合器、环形器、光电探测器、锁相放大器和带通滤波器搭建而成;锁相放大器输出扫频信号至电光调制器,调制后的激励激光通过掺铒光纤放大器放大,经耦合器、环形器加载至谐振器的石墨烯膜表面,以实现石墨烯膜的受迫简谐振动,则时域内膜片的振动位移δm可表示为:
式中,A为膜片振动位移幅值;f为膜片振动频率;为初始相位角;t表示时间;
该膜片的位移变化导致FP干涉腔的腔长也呈周期性改变,利用带通滤波器滤去激励激光,则获取的检测波长的反射信号Ir近似为:
式中,R1和R2分别为石墨烯膜和光纤端面的反射率,ξ为FP腔损耗,λ为入射光波长,Ii为入射光强度,将信号Ir通过光电探测器馈入锁相放大器以提取石墨烯膜的振动频率变化,实现对石墨烯膜光纤FP谐振器的激振或拾振。
CN201710235221.0A 2017-04-12 2017-04-12 一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法 Active CN106908092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710235221.0A CN106908092B (zh) 2017-04-12 2017-04-12 一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710235221.0A CN106908092B (zh) 2017-04-12 2017-04-12 一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法

Publications (2)

Publication Number Publication Date
CN106908092A CN106908092A (zh) 2017-06-30
CN106908092B true CN106908092B (zh) 2019-01-25

Family

ID=59195513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710235221.0A Active CN106908092B (zh) 2017-04-12 2017-04-12 一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法

Country Status (1)

Country Link
CN (1) CN106908092B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2027244A (en) * 2020-02-14 2021-09-16 Univ Beihang A graphene membrane optical fiber f-p resonator with photothermal stress regulation and control, manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478251B (zh) * 2017-09-18 2019-04-02 北京航空航天大学 一种能够应力调控的石墨烯膜光纤法珀谐振器及其制作方法
CN108375412A (zh) * 2018-01-31 2018-08-07 西北大学 基于微型悬臂梁的高灵敏度光纤超声传感器
CN108426631B (zh) * 2018-02-09 2020-06-26 北京航空航天大学 一种光学回音壁式微型谐振腔的振动测量方法及系统
CN109781625B (zh) * 2019-02-25 2021-01-19 北京航空航天大学 一种高一致性的光声激励与检测一体式光纤探头及其制作方法、测试方法
CN109782022B (zh) * 2019-03-13 2020-09-01 北京航空航天大学 一种基于压力敏感的石墨烯谐振式光纤加速度计
CN110068596B (zh) * 2019-04-18 2021-06-08 成都理工大学 基于石墨烯的气体传感及谐波检测一体化器件及检测方法
CN111998932B (zh) * 2020-08-04 2021-06-29 北京航空航天大学 一种石墨烯波纹膜光纤f-p声压传感器及其制作方法
CN112880887B (zh) * 2021-01-12 2021-10-26 北京航空航天大学 一种真空封装的石墨烯谐振式光纤压力传感器及其制作方法
CN115452215B (zh) * 2022-09-15 2023-07-25 深圳大学 一种纳米腔光机械谐振器的热应力测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279900B2 (en) * 2009-07-24 2012-10-02 Advalue Photonics, Inc. Mode-locked two-micron fiber lasers
CN101852840A (zh) * 2010-06-08 2010-10-06 电子科技大学 一种光纤珐珀磁场传感器及其制备方法
CN202111363U (zh) * 2011-04-21 2012-01-11 北京工业大学 石墨烯被动锁模光纤激光器
LT6006B (lt) * 2012-07-25 2014-03-25 Uab "Ekspla" Įsotinantis sugėriklis, skirtas skaidulinių lazerių modų sinchronizacijai, įsotinančios sugerties skaidulinis brego veidrodis ir skaidulinis sinchronizuotų modų lazeris
CN103557929B (zh) * 2013-11-14 2015-11-11 北京航空航天大学 一种基于石墨烯膜的光纤法珀声压传感器制作方法及其测量方法、装置
CN105044932A (zh) * 2015-07-10 2015-11-11 上海交通大学 基于光子晶体纳米梁谐振腔的石墨烯电光调制装置
CN106289504B (zh) * 2016-08-24 2019-07-19 电子科技大学 一种光纤法珀声波探头装置及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2027244A (en) * 2020-02-14 2021-09-16 Univ Beihang A graphene membrane optical fiber f-p resonator with photothermal stress regulation and control, manufacturing method thereof

Also Published As

Publication number Publication date
CN106908092A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
CN106908092B (zh) 一种石墨烯膜光纤法珀谐振器及其激振/拾振检测方法
Peng et al. Research advances in microfiber humidity sensors
CN106225965B (zh) 一种微型高灵敏度光纤干涉式压力传感器及其制作方法
CN111998932B (zh) 一种石墨烯波纹膜光纤f-p声压传感器及其制作方法
Gong et al. High-sensitivity Fabry-Perot interferometric acoustic sensor for low-frequency acoustic pressure detections
Zhao et al. Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay
CN103557929B (zh) 一种基于石墨烯膜的光纤法珀声压传感器制作方法及其测量方法、装置
Ma et al. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm
Ahmad et al. Humidity sensor based on microfiber resonator with reduced graphene oxide
Wang et al. Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm
Liu et al. Miniature fiber-optic tip pressure sensor assembled by hydroxide catalysis bonding technology
Li et al. Analyzing the applicability of miniature ultra-high sensitivity Fabry–Perot acoustic sensor using a nanothick graphene diaphragm
Tong et al. Relative humidity sensor based on small up-tapered photonic crystal fiber Mach–Zehnder interferometer
Ma et al. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film
CN111239909B (zh) 一种具有光热应力调控的石墨烯膜光纤f-p谐振器及其制作方法
Liang et al. All-SiC fiber-optic sensor based on direct wafer bonding for high temperature pressure sensing
Dong et al. Miniature fiber optic acoustic pressure sensors with air-backed graphene diaphragms
Guo et al. High sensitivity gas pressure sensor based on two parallel-connected Fabry–Perot interferometers and Vernier effect
Zhang et al. The influence of key characteristic parameters on performance of optical fiber Fabry–Perot temperature sensor
Liu et al. Effect of PMMA removal methods on opto-mechanical behaviors of optical fiber resonant sensor with graphene diaphragm
Liu et al. Nano-optomechanical resonators based graphene/Au membrane for current sensing
Sun et al. Diamond MEMS: From classical to quantum
CN107478251B (zh) 一种能够应力调控的石墨烯膜光纤法珀谐振器及其制作方法
Li et al. Measurement of the adhesion energy of pressurized graphene diaphragm using optical fiber Fabry–Perot interference
Ma Miniature fiber-tip Fabry-Perot interferometric sensors for pressure and acoustic detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant