CN106899402A - 将熵源添加到量子密钥分发系统的装置和方法 - Google Patents

将熵源添加到量子密钥分发系统的装置和方法 Download PDF

Info

Publication number
CN106899402A
CN106899402A CN201611175007.2A CN201611175007A CN106899402A CN 106899402 A CN106899402 A CN 106899402A CN 201611175007 A CN201611175007 A CN 201611175007A CN 106899402 A CN106899402 A CN 106899402A
Authority
CN
China
Prior art keywords
rng
signal
random
processing unit
key distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611175007.2A
Other languages
English (en)
Other versions
CN106899402B (zh
Inventor
马蒂尔·莱格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Id Quantum Technologies Inc
ID Quantique SA
Original Assignee
Id Quantum Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Id Quantum Technologies Inc filed Critical Id Quantum Technologies Inc
Publication of CN106899402A publication Critical patent/CN106899402A/zh
Application granted granted Critical
Publication of CN106899402B publication Critical patent/CN106899402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0855Quantum cryptography involving additional nodes, e.g. quantum relays, repeaters, intermediate nodes or remote nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • G06F7/588Random number generators, i.e. based on natural stochastic processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0618Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
    • H04L9/0631Substitution permutation network [SPN], i.e. cipher composed of a number of stages or rounds each involving linear and nonlinear transformations, e.g. AES algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种量子密钥分发装置(200),用于与另一个量子密钥分发装置交换至少一个量子密钥,所述装置(200)包括:随机数生成器(110),用于生成随机比特信号;电子驱动器(140),用于将数字信号变换为模拟信号;从所述驱动器接收信号的光学平台(150),用于通过量子通道(170)交换所述量子密钥;时钟(120),用于使QKD装置的工作同步,其特征在于,所述装置包括:外部随机数生成器输入端,适于接收由连接到所述量子密钥分发装置的外部随机数生成器(220)生成的外部随机比特;RNG混合器(210),用于从所述随机数生成器和所述外部随机数生成器输入端接收输出,并且基于所述输出的组合生成随机比特信号,所述RNG混合器布置在所述处理单元的下游。

Description

将熵源添加到量子密钥分发系统的装置和方法
技术领域
本发明一般涉及量子密码术领域,更具体地说,涉及一种通过提供添加外部熵源的可能性来增强量子密钥分发系统的安全性的方法。
背景技术
量子密码术或量子密钥分发(QKD)的主要目标是能够在发送器和接收器之间共享其隐私可以用有限的假设集来证明的比特序列。
Bennett和Brassard首先在其文章“Quantum Cryptography:Public keydistribution and coin tossing,”Proceedings of the International Conference onComputers,Systems and Signal Processing,Bangalore,India,1984,pp.175-179(IEEE,New York,1984)中阐述了量子密码术的一般原理。QKD(量子密钥分发)涉及通过使用由单光子或弱(例如,平均0.1个光子)光信号(脉冲)携带的量子状态在发送器(“Alice”)和接收器(“Bob”)之间建立密钥。这些量子状态被称为“量子比特”或“量子信号”,并且通过“量子通道”传输。随机选择生成的“量子比特”的这些状态和用于其分析的基础。与安全性取决于计算不可实行的经典密码术不同,量子密码术的安全性基于量子力学原理,即量子系统的测量将修改其状态。因此,试图拦截或以其他方式测量交换的量子比特的窃听者(“Eve”)在揭示她的存在的该交换的量子比特的列表中引入了错误。
在Bennett的美国专利No.5,307,410(该专利通过引用并入本文)、以及在C.H.Bennett题为“Quantum Cryptography Using Any Two Non-Orthogonal States”,Phys.Rev.Lett.683121(1992)中描述了具体的QKD系统。量子密码学的基础和方法以及历史发展的调查包含在N.Gisin、G.Ribordy、W.TittelandH.Zbinden的““QuantumCryptography”,Reviews of Modern Physics.74,145(2002)中。因此,QKD是众所周知的允许双方以安全的方式交换密钥并且可以从信息理论的角度证明安全性原理的技术。在QKD实现中,发送器和接收器通过量子通道(QC)(量子通道(QC)是交换量子比特的通道)以及用于发送器和接收器之间的所有类型的经典通信的服务通道(SC)链接。这些经典通信的一部分在于对在QC上交换的量子比特序列的后处理。这个后处理步骤通常称为原始密钥的提取(distillation)并且得到秘密密钥。
可以通过图1a描述现有技术中描述的QKD系统的描述。图1a是具有基于在Bennett的US 5,307,410和Townsend的US 5,953,421中公开的技术的QKD系统的现有通信系统的示意图,这些专利通过引用并入本文。在该图中,所示的装置100可以是QKD发送器或QKD接收器。QKD装置100可以分解为至少六个功能块,所述功能块是随机数生成器(RNG)110、时钟120、处理单元130、电子驱动器140、光学平台150和电子读出系统160。RNG 110是QKD装置中的熵源。这里,熵必须被理解为其输出信号的随机因子。它用于为需要随机比特值的所有操作生成随机比特并向QKD系统提供随机比特。RNG 110可以用任何类型的随机数生成器来实现,例如,商用量子随机数生成器QUANTIS[http://www.idquantique.com/random-number-generation/quantis-random-number-generation/],因此它可以以不同于QKD装置的频率的频率生成比特并提供该比特。
QKD装置是需要良好定义的参考时钟以定义其工作频率(例如,生成/检测量子比特的频率)的同步系统。时钟120用作装置100的参考时钟。时钟120可以用生成周期数字信号的任何类型的系统(例如,电子振荡器)来实现。处理单元130对需要可重新配置或可编程的数字数据执行所有操作和处理。具体地,这包括定义和生成驱动不同光学或电气组件的数字信号之间的延迟以用于装置100中的所有组件的同步,密钥的提取,发送器和接收器之间的经典通信,监测装置100中的任何信号(例如,监测一些组件的温度)。该处理单元130连接到RNG 110和时钟120。RNG 110将随机比特流发送到处理单元130。时钟120将周期数字信号发送到处理单元130。由RNG 110和时钟120发送的数字信号可以被实现为通过将110连接到130并且将120连接到130的铜线传播的电子数字信号。处理单元130可以用FPGA或微处理器来实现。电子驱动器140是将由处理单元130生成的逻辑信号转换成能够驱动光学平台的光学或电气组件的模拟信号的电子接口。电子驱动器140连接到处理单元130,并通过该连接接收数字信号。这种数字数据可以分为两种类型。第一类型的数据(D1)是确定性数据,其是处理单元对它接收到的除了来自RNG 110的随机比特之外的所有数据的响应。第二类型的数据(D2)是随机数据,其是处理单元对来自RNG 110的随机比特的响应。由处理单元130发送的数字信号可以实现为通过将130连接到140的铜线传播的电子数字信号。电子驱动器140可以用能够将数字信号转换成模拟信号的任何类型的电气组件(例如数模转换器、脉冲生成器、设置有数字信号的延迟生成器)来实现。光学平台150是具有所有光学组件和相关联的电气组件的平台。该平台用于生成或检测两个光信号:量子比特和经典通信。光学平台150连接到电子驱动器140,电子驱动器140发送用于驱动光学平台150的组件的模拟信号。由电子驱动器140发送的模拟信号可以实现为通过将140连接到150的铜线传播的电子模拟信号。光学平台150还连接到量子通道170和服务通道180。两个通道可以由光纤制成。光学平台150可以由有源光学组件(例如激光器、雪崩光电二极管或相位调制器)、无源光学组件(例如分束器、反射镜或光纤)以及光学组件的正确工作所需的电子组件(例如用于激光器或光电二极管的热致冷器和热敏电阻器)构成。读出系统160是将由光学平台生成的模拟信号转换成可由处理单元处理的数字信号的电子接口。读出系统160连接到光学平台150和处理单元130。读出系统160接收由光学平台150的组件生成的模拟信号。这些模拟信号可以实现为通过将150连接到160的铜线传播的电子模拟信号。模拟信号被转换为数字信号,然后被发送到处理单元130。这些数字信号可以实现为通过将160连接到130的铜线传播的电子数字信号。读出系统160可以由能够将模拟信号转换成数字信号的任何类型的电气组件构成,例如模数转换器、鉴别器、随后是数字脉冲生成器。
·与QKD装置的RNG相关的安全性问题
QKD系统的关键组件之一是熵源,即RNG 110。实际上,任何QKD协议的安全性都是从信息理论的角度(即,对于数字熵源,Shannon熵值为1)在实现中使用的熵源展现出高质量随机性的前提下证明的。因此,通常用于QKD的熵源是真实随机数生成器(T-RNG)。存在基于物理学的高质量随机性生成的解决方案。例如,量子现象,作为要由光学分束器反射或者通过光学分束器传输的单个光子的选择,可以用于生成高质量的随机比特序列。然而,如果QKD系统的内部RNG故障,则整个QKD系统安全级别受到强烈影响,并且在RNG输出恒定的极端情况下可能降低到零。在RNG中熵减少存在至少两个原因:
·其内部熵可能由于老化的设备或组件故障而失效
·它可能已被入侵。
·在现有技术中如何管理随机比特的描述
图1b示出了当在现有技术中执行时QKD装置中的随机比特的管理方法。在该图中,该方法描述了两个QKD装置中的随机比特的管理:发送器和接收器。可以并行地或以任何顺序按顺序执行两个第一步骤。这两个第一步骤之一是步骤310,在步骤310,处理单元130获取由RNG 110生成的随机比特流。这两个步骤中的第二个是步骤311,在步骤311,处理单元根据时钟120发送的信号恢复时钟频率。在第二步骤320中,由处理单元130获取的随机比特流被存储在该处理单元的第一存储器中。在第三步骤230中,该第一存储器被读出并生成两个随机比特数据流。步骤310、320和330的组合允许QKD装置正常工作,即使RNG 110和处理单元130不同步也是如此。实际上,由于通过使用处理单元130中的缓冲器(或存储器)来执行对随机比特流的获取,所以可以以RNG 110的速度写入该缓冲器,并且以处理单元130的工作速度读取该缓冲器。在第四步骤340中,一个随机比特数据流被发送到驱动电子设备140。电子驱动器140将使用该随机比特流来随机选择将要生成什么量子比特值,或者随机选择将用于量子比特分析的基础。并行地,在第五步骤350中,发送到电子驱动器140的随机比特流的副本被存储在处理单元130的第二存储器中。稍后,这些存储的随机比特将由QKD装置用于密钥提取。
该方法示出了在远离随机性由电子驱动器140使用的链的开始处生成随机性。在随机比特从RNG 110到电子驱动器140的过程中,它们是可能故障或被入侵并且显着地减少QKD装置使用的熵的几个组件。QKD用户的关注点之一是如果内部RNG 110故障,则QKD用户不能注意到该情况,这是因为随机比特从来不从QKD装置发出。然后,对于任何QKD用户和/或提供者来说显而易见的是,考虑是否可以提高内部熵源及其在QKD装置(RNG)中的管理的可靠性或信任级别。
·减轻熵源及其管理的潜在故障或入侵的方法
存在可以克服熵失效的多种方法。最常用的一种方法在于混合至少两个独立的RNG的输出。在US 7028059中给出了该方法的一个示例。通过混合,考虑具有至少两个输入并且得到值取决于所有输入的输出的任何操作。两个数字输入的混合的一个示例是逻辑运算,例如AND、OR或XOR。该混合的输出可以被视为基于至少两个主RNG的从RNG的结果。这可以增加所得到的从RNG的随机性的质量,并且这确保了如果主熵源中的一个故障,则以有限方式影响从RNG的熵。在以适当方式执行混合的某些情况下(例如,通过在两个RNG序列之间执行XOR逻辑运算或者任何其它适配的密码处理来混合这两个序列),该熵可能根本不受影响。因此,从RNG的故障概率是所有主RNG的故障概率之积。因此,如果适当地选择主RNG(或熵源)的数量和故障概率,则从RNG的故障概率可以减少到任何给定值。为了降低QKD装置中的熵源的故障概率,可以将RNG 100实现为由两个或更多个主RNG或熵源组成的从RNG。
这种方法可以在窃听者入侵QKD的一个或多个主RNG的情况下保证QKD装置的安全性。然而,这不能保证QKD装置针对恶意供应商或者所有主熵源的故障或入侵的安全性。可以考虑的先前技术的变型是允许QKD用户将外部熵源插入到QKD装置并且使用该外部熵源作为主熵源。在这种情况下,窃听者和QKD供应商无权访问主RNG中的一个,因此它们不能减少从RNG的熵。
然而,如果用基于至少一个外部熵源的从RNG(或外部RNG)替换RNG 110,则该从RNG的随机比特流仍然被发送到处理单元130。在这种情况下,如果处理单元130被入侵或故障,则处理单元130可以将不再随机的比特序列发送到电子驱动器140。例如,处理单元130可以被重新配置,以便总是向电子驱动器140发送零比特值,无论RNG 110发送的值如何。因此,US7028059中提出的解决方案不足以向QKD用户保证QKD装置所使用的随机比特流是真正随机的。
另一个选择是对外部熵源进行关联。在诸如US2015/0058841的文献中公开了这种类型的解决方案,其中管理程序(其可以被认为是处理单元)用于模拟外部熵源。同样对于这种类型的解决方案,不可能向QKD用户保证QKD装置所使用的随机比特流是真正随机的。
为了避免这种情况,一种可能的方法是直接将从RNG的输出发送到电子驱动器140。在这种情况下,随机比特不经过处理单元130。因此,它们不能被QKD中的任何可重新配置或可编程的组件改变。然而,在这种情况下的一个潜在问题是从RNG的输出与由电子驱动器140使用随机比特的适当时间的同步。该任务通常由处理单元执行。避免该问题的一种方式是与至少两个主RNG(内部RNG和至少一个外部RNG)共享时钟信号。这意味着QKD供应商需要向用户提供访问时钟的方法。这是一个相当复杂的解决方案,该解决方案没有被考虑。
·技术问题:
QKD用户既无权访问由内部QKD系统RNG生成的比特值,也不能访问用于生成或分析量子比特的比特值。实际上,在嵌入在QKD装置中的RNG的正确工作方面,QKD用户必须信任他们的供应商及其整个供应商链。当QKD装置处于测试中时,客户可以容易地检查嵌入的RNG输出的随机质量。此外,客户可以检查QKD装置针对每个可能的比特值正确地工作。然而,当QKD装置因为在使用而关闭时,客户不能检查RNG是否仍然提供高质量熵。通过将该混合的结果发送到处理单元,可以向客户提供将他/她自己的外部熵源与内部RNG混合的机会,但是在这种情况下,供应商不能保证用于生成或分析量子比特的比特值的随机性,这是因为可重构且可重新编程的处理单元可能被入侵。因此,可以将从RNG的输出直接发送到电子驱动器,但是在这种情况下,随机输出需要相对于QKD装置的工作同步。
这可以利用发送到外部RNG的同步信号来减轻。本发明的目的是提供一种QKD装置,其中可以在QKD装置中引入外部RNG的输出,使得甚至在处理单元被入侵并且不向QKD用户提供任何时钟信号的情况下,用于生成和分析量子比特的比特的熵至少与用户RNG的熵一样高。
非专利文献包括:
-C.H.Bennett and G.Brassard.″Quantum cryptography:Public keydistribution and coin tossing″.In Proceedings of IEEE InternationalConference on Computers,Systems and Signal Processing,volume 175,page 8.NewYork,1984.
-C.H.Bennett,1992,“Quantum Cryptography Using Any T wo Non-OrthogonalStates”,Phys.Rev.Lett.68 3121;
-N.Gisin,G.Ribordy,W.Tittel and H.Zbinden,2002,“QuantumCryptography”,Reviews of Modern Physics.74,145.
-P.D.,Townsend,1998,″Quantum cryptography on optical fiber networks″SPIE Conference on Photonic Quantum CompuLing II,SPIE vol.3385,(Orlando,FL).(Apr.1998),12pgs;
-P.D.,Townsend,1997,″Simultaneous quantum cryptographic keydistribution and conventional data transmission over installed fiber usingtransmission over installed fiber using wavelength-division multiplexing″,Electronics Letters,33(3),2pgs
发明内容
在本发明中,提出了允许QKD客户在他/她的QKD装置中的可重新配置且可编程的处理单元的下游级引入他/她自己的熵。这通过添加适配于QKD应用的RNG混合器来实现,RNG混合器负责将嵌入的RNG的输出与至少一个外部RNG进行混合。该RNG混合器位于可编程逻辑之后,因此避免了它生成的比特值中的任何修改或干扰。如果正确选择了混合函数,则通过RNG混合器得到的熵(其是嵌入的RNG和外部RNG的熵的函数)可以等于或高于外部RNG的熵。将RNG混合器适配于QKD应用包括两个步骤:1、将用于生成或分析量子比特的随机比特值发送到处理单元以用于密钥提取,以及2、使得该RNG混合器的输出与QKD装置的同步工作兼容。第一步骤通过复制发送到电子驱动器的随机比特并将该副本发送到处理单元来执行。第二步骤是通过将QKD装置的时钟发送到RNG混合器,并通过处理单元对复制的随机比特流进行的时钟恢复操作使处理单元同步来实现的。
本发明的第一方面涉及一种量子密钥分发装置,用于与另一个量子密钥分发装置交换至少一个量子密钥,所述量子密钥分发装置包括:随机数生成器,用于生成随机比特信号;电子驱动器,用于将数字信号变换为模拟信号;从所述驱动器接收信号的光学平台,用于通过量子通道交换所述量子密钥;时钟,用于使QKD装置的工作同步,其特征在于,所述装置包括:外部随机数生成器输入端,适于接收由连接到所述量子密钥分发装置的外部随机数生成器生成的外部随机比特;RNG混合器,用于从所述随机数生成器和所述外部随机数生成器输入端接收输出,并且基于所述输出的组合生成随机比特信号,所述RNG混合器布置在所述处理单元的下游。因此,可以提高所述装置的随机性/熵。
优选地,RNG混合器包括采样和保持功能,用于使RNG混合器的输出与QKD装置同步;以及组合功能,用于将逻辑函数应用于两个随机比特信号,使得混合器的输出取决于在混合器中输入的来自两个RNG的随机比特信号。因此,混合器能够对各种信号进行同步和组合。
优选地,逻辑函数是AND、OR、XOR或AES加密函数。因此,随机属性(也称为随机性)甚至更好。
优选地,在组合功能之前执行采样和保持功能。因此,当组合时,比特流已经被同步。
优选地,RNG直接连接到RNG混合器。因此,可以加速该过程。
优选地,RNG连接到处理单元,所述处理单元接收随机比特信号并将随机比特信号存储在存储器中,处理随机比特信号并将处理后的信号发送到RNG混合器。因此,当比特流到达混合器时比特流已经被同步,并且处理单元已经知道其信息。
优选地,RNG混合器通过信息通道连接到处理单元,以将组合的随机比特信号拷贝发送到处理单元。因此,容易执行筛分和提取处理。
优选地,时钟连接到RNG混合器,并且信息通道还适于向处理单元发送信号时钟。因此,处理单元和混合器容易同步。
优选地,所述装置包括所述外部随机数生成器。因此,它更容易使用。
本发明的第二方面涉及一种适于管理上述第一方面的量子密钥分发装置的量子密钥分发装置管理方法,包括以下步骤:在RNG中生成第一随机比特信号,并通过外部RNG输入端接收第二随机比特信号,在时钟中生成时钟信号,将所述第一随机比特信号和所述第二随机比特信号以及所述时钟信号发送到RNG混合器,对第一随机信号和第二随机信号进行混合,以生成通过所述时钟信号同步的混合随机信号,将所述组合的随机比特信号发送到电子驱动器,将组合的随机比特流的副本发送到处理单元,由处理单元通过信息通道恢复所述时钟。
优选地,混合步骤包括:采样和保持步骤,用于对随机数即将到来比特流进行采样和保持,以使外部RNG的随机比特与QKD装置的工作正确地同步;以及组合步骤,用于利用诸如异或或者AES加密函数的预定义组合函数将来自外部RNG和内部RNG的随机比特流进行组合。
优选地,将时钟信号与组合的随机比特流的副本一起发送到处理单元。因此,容易执行筛分和提取处理。
优选地,第一随机比特信号通过处理单元(130)发送到RNG混合器。因此,随机比特信号被提前同步。
附图说明
在下文中参照附图描述本发明的优选实施例,附图示出了本发明的优选实施例,但不限制本发明。在附图中:
图1a是量子密钥分发装置(发送器或接收器)的现有装置。
图1b是与量子密钥分发系统中的随机比特的管理相关的现有方法。
图2a是基于本发明的装置的量子密钥分发系统,其中内部RNG连接到处理单元。
图2b是基于本发明的装置的量子密钥分发系统,其中内部RNG连接到RNG混合器。
图3a是包括本发明的装置的量子密钥分发中的随机比特管理的方法,其中内部RNG连接到处理单元。
图3b是包括装置发明的量子密钥分发中的随机比特管理的方法,其中内部RNG不连接到处理单元。
具体实施方式
本发明的描述基于以下附图。
图2a使用本发明的装置的功能块表示该装置。本发明的装置在于QKD装置200,其适于对外部熵源(即,RNG)120的输出与内部RNG 110的输出进行混合,外部熵源120将由QKD系统的用户提供。该混合在混合器210中在可编程单元130的下游对随机比特流执行,混合器210适于对这两个随机信号进行混合并且相对于QKD装置100的所有其他信号来同步混合器输出。为了获得这一点,本发明装置由添加到现有的QKD装置的六个块的两个功能块(RNG混合器210和适于连接到外部RNG 220的外部RNG输入端)构成。外部RNG输入端是外部RNG220和RNG混合器210之间的接口。
如先前在背景技术部分中所呈现的,一般的QKD系统装置通过处理单元130利用从内部RNG 110输出的随机比特、由时钟120生成的时钟信号和读出系统160的输出,以生成两个比特流D1(确定性的)和D2(随机的)。然后,电子驱动器140利用D1和D2以控制模拟信号并将模拟信号发送到光学平台150,光学平台150通过QC 170发送量子比特并通过SC 180实现提取。
在这里公开的具体系统中,适配依赖于这样的事实,即在QKD操作时可以添加外部熵源。在没有更多可编程电子设备的级别进行添加。这样做是为了向QKD客户提供关于在由内部RNG生成的随机比特的管理中没有失败风险的保险和保证。
因此:
1-需要修改QKD系统的可编程处理设备下游的随机比特流管理的实现。这样做是为了确保该管理的失败只能是由于分立组件的故障或对分立组件的入侵导致的。这些组件通常比可编程设备更可靠和安全。
2-需要向QKD用户提供插入外部RNG 220的可能性,该外部RNG 220的输出将影响所生成的量子比特值或用于量子比特分析的基础的选择。这在用户想要使用符合其要求的特定熵源的专用应用中可能是需要的。
3-RNG混合器210位于处理单元130和电子驱动器140(由不可编程组件构成)之间。该RNG混合器210的功能在于对来自内部RNG 110的输出比特与来自外部RNG 220的输出比特进行同步组合。
4-时钟设备120连接到RNG混合器210,以便确保由内部RNG和外部RNG输出之间的混合得到的随机比特的同步。
更精确地,RNG混合器210基于与随机比特组合功能212相关联的采样和保持功能211。采样和保持功能211旨在使RNG混合器210的输出同步使得该输出可以由电子驱动器140使用。这意味着与由处理单元130生成的所有确定性数字信号相比,由混合器210生成的随机比特应当在适当的时刻到达电子驱动器。此外,这些随机比特的值应该在至少与携带量子比特的光子的时间持续时间一样长的时间段期间保持恒定。例如,如果QKD系统在相位编码中实现,则利用对光脉冲施加的明确定义的相位值来定义量子比特。这些相位值必须至少在每个光脉冲的持续时间期间保持恒定。这就是为了使RNG混合器相对于QKD装置的其余部分的适当同步,RNG混合器需要能够在适当的时间对其输出进行采样并且在给定时间段内使该值保持恒定的功能的原因。
作为示例,可以利用采样和保持组件实现该功能,该采样和保持组件在由时钟定义的时间对数字输入信号进行采样,并且在由相同时钟的周期定义的时间段期间保持该采样值。在本发明中,RNG混合器的采样和保持功能211使用QKD装置的时钟,以便使混合器210的输出相对于装置的其他信号(其相对于相同参考时钟同步)同步。可以利用时钟信号本身或利用在处理该时钟信号之后获得的信号(例如,在用于同步之前时钟120的频率可以除以2)来实现采样和保持功能211的同步。保持时间段可以是由关于例如RC电路的设计定义的固定值。组合功能212是对两个随机比特信号进行混合使得组合器的输出取决于两个输入的逻辑函数。该函数可以是简单的逻辑运算,如AND、OR或XOR(异或)运算。它也可以基于非常复杂的密码函数,例如对一个比特流加密,第二个比特流是加密密钥。
关于RNG混合器210的两个子功能的顺序,采样和保持功能211和随机比特组合可以被置换。需要考虑来自内部RNG 110的随机比特由处理单元130同步。因此,只有来自外部RNG的可能异步的随机信号需要同步。因此,采样和保持功能211可以被放置在RNG混合器210的用于外部RNG 220的输入端处。然后,外部RNG 220的采样和保持信号可以与内部RNG110的随机比特流组合。因为两个输入是同步的,所以组合器212的输出将针对QKD装置的工作正确地同步。另一方面,可以首先放置组合功能212。在这种情况下,组合器212的输出可能与外部RNG 220异步。如果该输出通过采样和保持功能211,则其可以相对于QKD装置同步。因此,采样和保持功能211可以在组合功能212之前或之后。RNG混合器210的结果在两种情况下都是相同的。
RNG混合器210具有三个输入端,第一个输入端是来用于自处理单元130的D2的数字输入端,第二个输入端是用于来自时钟210的时钟信号的数字输入端,最后一个输入端是用于由外部RNG 220提供的随机比特流的数字输入端。时钟120定义了通过外部RNG 220的输出与处理单元130的输出的组合(混合)得到的随机比特的同步的频率。由RNG混合器210接收的数字信号可以被实现为通过将210连接到120(时钟)、连接到130(处理单元)或连接到220(外部RNG)的铜线传播的电子数字信号。
RNG混合器具有两个输出。第一个输出将通过内部RNG和外部RNG(110、220)的组合得到的随机比特传送到电子驱动器140。然后,如在任何通常的QKD系统中一样,通过光学平台150和电子读出器160利用随机比特。来自RNG混合器210的第二输出去往处理单元130。该通道(也称为信息通道)是RNG混合器210和处理单元130之间的反馈环路。信息通道使RNG混合器210能够将通过外部比特流(来自外部RNG 220)和内部比特流(来自内部RNG 110)的组合得到的随机比特流的副本发送到处理单元130。通过RNG混合器210得到的随机比特的这个副本用于实现原始密钥的筛分和其他提取操作。此外,RNG混合器210和处理单元130之间的这种连接用于将时钟发送到处理单元130。可以通过发送与由时钟120发送的时钟信号类似的时钟信号或者通过对从RNG混合器210发送到处理单元130的随机比特流使用时钟恢复功能来执行时钟传送。以这些方式,处理单元130和RNG混合器210彼此同步。RNG混合器210是处理单元130的时钟参考。
图2b-该图基于图2a使用本发明的装置的功能块表示该装置,其中内部RNG 110未连接到处理单元130。备选地,内部RNG 110可以直接连接到RNG混合器210。
图3a-是在包括本发明的QKD系统装置中使用的随机比特的管理方法400的一般描述,其中内部RNG 110连接到处理单元130。
在第一步骤310中,由内部RNG 110生成的随机比特由处理单元130获取。在第二步骤320中,该随机数据比特流以内部RNG输出的频率F1存储在处理单元130的第一存储器中。在第三步骤330中,以可能不同于F1的频率F2读出该第一存储器。存储器的写入和读出的这种差异允许使内部RNG 110的吞吐量适配于QKD装置200的工作频率。在第四步骤410中,由内部RNG 110生成的随机比特被发送到RNG混合器210。与这四个步骤并行地,执行两个步骤:步骤420和步骤430。在步骤420中,用户可以将外部RNG 220插入到RNG混合器210。在步骤430中,RNG混合器210获取由时钟120发送的时钟信号。该时钟将用于采样和保持功能211的同步。在步骤440中,通过两个子步骤将来自内部RNG 110和外部RNG 220的随机比特流混合并相对于QKD装置的工作同步,所述子步骤在于:
·步骤441:对随机数即将到来比特流进行采样和保持,以便对外部RNG的随机比特与QKD装置200的工作进行正确同步(采样时间和值保持恒定的持续时间)。
·步骤442:使用诸如异或或者AES函数的预定义组合函数将来自外部RNG 220和内部RNG 110的随机比特流进行组合。
步骤440之后是并行实现的两个步骤序列。一方面,在步骤340中,将通过RNG混合器210得到的随机比特流发送到电子驱动器140。另一方面,在步骤350中,将通过RNG混合器210得到并发送到电子驱动器140的随机比特流的副本发送到处理单元130用于步骤350中的提取。接下来,在步骤311中,在获取随机比特流期间,由处理单元130恢复时钟。
图3b是用于包括如图2b所述的本发明的QKD系统装置中使用的随机比特的管理方法500的具体描述。在这种情况下,内部RNG 110不连接到处理单元130。如果内部RNG 110未连接到处理单元130,则替代的情况是内部RNG 110直接连接到RNG混合器210。以下段落旨在描述与该特定设置相关联的方法500。在这种情况下,相对于先前方法400的主要改变是步骤310、320、330和410被步骤510替代。在步骤510中,内部RNG的输出被发送到RNG混合器210。与该步骤并行地,仍然存在步骤420和430。在步骤420中,用户将外部熵源(RNG)220插入内部RNG混合器210。在步骤430中,RNG混合器210恢复来自时钟120的时钟信号。然后,如在方法400中一样,存在步骤440,在步骤440,两个RNG信号被组合并相对于QKD装置的工作同步。步骤440仍然由相同的子步骤441和442构成。与方法400中的步骤440相比,方法500中的步骤440中的唯一区别在于,因为与QKD装置相比,内部RNG可能是异步的,所以其输出需要被同步为外部RNG中的一个。因此,如果采样和保持功能411在组合功能412之前,则功能411必须应用于来自外部RNG 220和内部RNG 220的随机比特流。如果组合功能412在前,则对组合器412的结果仅执行一次采样和保持功能411。如在方法400中一样,步骤440之后是并行实现的两个步骤序列。一方面,在步骤340中,将通过RNG混合器210得到的随机比特流发送到电子驱动器140。另一方面,在步骤350中,将通过RNG混合器210得到并发送到电子驱动器140的随机比特流的副本发送到处理单元130用于步骤350中的提取。接下来,在步骤311中,在获取随机比特流期间,由处理单元130恢复时钟。

Claims (10)

1.一种量子密钥分发QKD装置(200),用于与另一量子密钥分发装置交换至少一个量子密钥,所述QKD装置(200)包括:
随机数生成器(110),用于生成随机比特信号,
电子驱动器(140),用于将数字信号变换为模拟信号,
从所述驱动器接收信号的光学平台(150),用于通过量子通道(170)交换所述量子密钥,
时钟(120),用于使所述QKD装置的工作同步,
其特征在于,所述QKD装置包括:
外部随机数生成器输入端,适于接收由连接到所述量子密钥分发装置的外部随机数生成器(220)生成的外部随机比特,
RNG混合器(210),用于从所述随机数生成器和所述外部随机数生成器输入端接收输出,并且基于所述输出的组合生成随机比特信号,所述RNG混合器设置在所述处理单元的下游。
2.根据权利要求1所述的量子密钥分发装置,其中,所述RNG混合器包括:
采样和保持功能(211),用于使所述RNG混合器(210)的输出与所述QKD装置(200)同步,以及
组合功能(212),用于将逻辑函数应用于两个随机比特信号,使得所述混合器的输出取决于在所述混合器中输入的来自两个RNG(110、220)的随机比特信号。
3.根据权利要求1或2所述的量子密钥分发装置,其中,在所述组合功能(212)之前执行所述采样和保持功能(211)。
4.根据权利要求1至3所述的量子密钥分发装置,其中,所述RNG(110)直接连接到所述RNG混合器(210)或连接到处理单元(130),所述处理单元接收所述随机比特信号并将所述随机比特信号存储在存储器中,处理所述随机比特信号并将处理后的信号发送到所述RNG混合器(210)。
5.根据权利要求1至4所述的量子密钥分发装置,其中,所述RNG混合器(210)通过信息通道连接到处理单元(130),以将组合的随机比特信号副本发送到所述处理单元。
6.根据权利要求5所述的量子密钥分发装置,其中,所述时钟(120)连接到所述RNG混合器(210),并且所述信息通道还适于将信号时钟发送到所述处理单元(130)。
7.根据权利要求1至4所述的量子密钥分发装置,其中,所述装置包括所述外部随机数生成器(220)。
8.一种量子密钥分发装置管理方法,适于管理根据权利要求1至7所述的量子密钥分发装置,所述量子密钥分发装置管理方法包括以下步骤:
-在RNG(110)中生成第一随机比特信号,并通过所述外部RNG输入端接收第二随机比特信号,
-在时钟中生成时钟信号,
-将所述第一随机比特信号和所述第二随机比特信号以及所述时钟信号发送到所述RNG混合器(210),
-对所述第一随机信号和所述第二随机信号进行混合,以生成通过所述时钟信号同步的混合随机信号,
-将所述组合的随机比特信号发送到所述电子驱动器,
-将组合的随机比特流的副本发送到所述处理单元,以及
-由所述处理单元通过所述信息通道恢复所述时钟。
9.根据权利要求8所述的量子密钥分发装置管理方法,其中,所述混合步骤包括:采样和保持步骤,用于对随机数即将到来比特流进行采样和保持,以使所述外部RNG(220)的随机比特与所述QKD装置的工作正确地同步;以及组合步骤,用于利用诸如异或或者AES加密函数之类的预定义组合函数将来自所述外部RNG(220)和所述内部RNG(110)的随机比特流进行组合。
10.根据权利要求8或9所述的量子密钥分发装置管理方法,其中,所述时钟信号与组合的随机比特流的副本一起发送到所述处理单元(130)。
CN201611175007.2A 2015-12-18 2016-12-16 将熵源添加到量子密钥分发系统的装置和方法 Active CN106899402B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15020253.9A EP3182638B1 (en) 2015-12-18 2015-12-18 Apparatus and method for adding an entropy source to quantum key distribution systems
EP15020253.9 2015-12-18

Publications (2)

Publication Number Publication Date
CN106899402A true CN106899402A (zh) 2017-06-27
CN106899402B CN106899402B (zh) 2021-02-23

Family

ID=54850334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611175007.2A Active CN106899402B (zh) 2015-12-18 2016-12-16 将熵源添加到量子密钥分发系统的装置和方法

Country Status (6)

Country Link
US (1) US20180375650A1 (zh)
EP (1) EP3182638B1 (zh)
JP (1) JP6732026B2 (zh)
KR (1) KR20180104294A (zh)
CN (1) CN106899402B (zh)
WO (1) WO2017102797A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217939A (zh) * 2018-06-20 2019-01-15 浙江大学 用于量子比特的可扩展、低延迟反馈调控设备

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333708B1 (en) * 2017-02-03 2019-06-25 Amazon Technologies, Inc. Hybrid random-number generator
CN108737082B (zh) * 2017-04-24 2020-11-17 华为技术有限公司 信号的接收装置和接收方法
CN109412788B (zh) * 2018-09-20 2020-08-11 如般量子科技有限公司 基于公共密钥池的抗量子计算代理云存储安全控制方法和系统
US10333503B1 (en) 2018-11-26 2019-06-25 Quantum Machines Quantum controller with modular and dynamic pulse generation and routing
CN111385090B (zh) * 2018-12-29 2023-03-10 山东量子科学技术研究院有限公司 基于多密钥组合量子密钥中继的密钥分发方法及其系统
US10454459B1 (en) 2019-01-14 2019-10-22 Quantum Machines Quantum controller with multiple pulse modes
IL265075B (en) * 2019-02-26 2021-01-31 Imagesat Int N V An integrated device for quantum imaging and encryption
US10505524B1 (en) 2019-03-06 2019-12-10 Quantum Machines Synchronization in a quantum controller with modular and dynamic pulse generation and routing
CN110113149B (zh) * 2019-04-29 2022-02-22 南通大学 一种用于aes硬件加密系统的量子秘钥扩展模块的实现方法
US11164100B2 (en) 2019-05-02 2021-11-02 Quantum Machines Modular and dynamic digital control in a quantum controller
US10931267B1 (en) 2019-07-31 2021-02-23 Quantum Machines Frequency generation in a quantum controller
US11245390B2 (en) 2019-09-02 2022-02-08 Quantum Machines Software-defined pulse orchestration platform
US10862465B1 (en) 2019-09-02 2020-12-08 Quantum Machines Quantum controller architecture
CN110768780B (zh) * 2019-09-20 2021-04-23 电子科技大学 一种基于宽带物理随机源的密钥分配方法及系统
US11228431B2 (en) * 2019-09-20 2022-01-18 General Electric Company Communication systems and methods for authenticating data packets within network flow
US11569989B2 (en) 2019-10-23 2023-01-31 Bank Of America Corporation Blockchain system for hardening quantum computing security
US11251946B2 (en) * 2019-10-31 2022-02-15 Bank Of America Corporation Quantum key synchronization within a server-cluster
US20220400003A1 (en) * 2019-11-20 2022-12-15 Lg Electronics Inc. Apparatus for generating non-copyable digital value, and method therefor
US11507873B1 (en) 2019-12-16 2022-11-22 Quantum Machines Highly scalable quantum control
US11586418B2 (en) * 2020-01-17 2023-02-21 Macronix International Co., Ltd. Random number generator, random number generating circuit, and random number generating method
CN111327365B (zh) * 2020-03-05 2021-07-09 中国科学技术大学 基于非周期同步光的星地量子密钥分发同步方法与装置
US11043939B1 (en) 2020-08-05 2021-06-22 Quantum Machines Frequency management for quantum control
KR102436948B1 (ko) 2020-12-07 2022-08-25 경희대학교 산학협력단 반사실적 양자 클록 동기화 장치 및 방법
US11671180B2 (en) * 2021-04-28 2023-06-06 Quantum Machines System and method for communication between quantum controller modules
CN113676315B (zh) * 2021-07-04 2024-04-30 河南国科量子通信技术应用研究院 一种星地一体量子网络的切片化应用方法
CN113240123B (zh) * 2021-07-13 2021-11-19 深圳市永达电子信息股份有限公司 数字量子比特制备方法、系统、计算机以及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090248771A1 (en) * 2008-03-28 2009-10-01 Atmel Corporation True random number generator
US20130024490A1 (en) * 2011-07-21 2013-01-24 Vixs Systems, Inc. Random number generator
US20130315395A1 (en) * 2012-05-25 2013-11-28 The Johns Hopkins University Embedded Authentication Protocol for Quantum Key Distribution Systems
CN103890712A (zh) * 2011-09-20 2014-06-25 高通股份有限公司 用于随机数产生器的具有磁阻元件的熵源
CN103975373A (zh) * 2011-11-30 2014-08-06 塞尔蒂卡姆公司 评估密码熵

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307410A (en) 1993-05-25 1994-04-26 International Business Machines Corporation Interferometric quantum cryptographic key distribution system
US5953421A (en) 1995-08-16 1999-09-14 British Telecommunications Public Limited Company Quantum cryptography
US7028059B2 (en) * 2002-06-24 2006-04-11 Sun Microsystems, Inc. Apparatus and method for random number generation
US7181011B2 (en) * 2004-05-24 2007-02-20 Magiq Technologies, Inc. Key bank systems and methods for QKD
JP2006180307A (ja) * 2004-12-24 2006-07-06 Japan Science & Technology Agency 量子暗号通信システム
JP4829628B2 (ja) * 2005-10-31 2011-12-07 富士通株式会社 暗号化方法,暗号復号化方法,暗号化装置,暗号復号化装置および通信システム
JP2007207054A (ja) * 2006-02-03 2007-08-16 Renesas Technology Corp データ処理装置
JP5196093B2 (ja) * 2006-04-20 2013-05-15 日本電気株式会社 光通信装置およびそれを用いた量子暗号鍵配布システム
JP2008234051A (ja) * 2007-03-16 2008-10-02 Ntt Communications Kk 混合乱数生成装置、その方法、そのプログラム、その記録媒体、及び混合乱数生成装置を用いた情報処理システム
US10275268B2 (en) 2013-08-26 2019-04-30 Red Hat, Inc. Providing entropy to a guest operating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090248771A1 (en) * 2008-03-28 2009-10-01 Atmel Corporation True random number generator
US20130024490A1 (en) * 2011-07-21 2013-01-24 Vixs Systems, Inc. Random number generator
CN103890712A (zh) * 2011-09-20 2014-06-25 高通股份有限公司 用于随机数产生器的具有磁阻元件的熵源
CN103975373A (zh) * 2011-11-30 2014-08-06 塞尔蒂卡姆公司 评估密码熵
US20130315395A1 (en) * 2012-05-25 2013-11-28 The Johns Hopkins University Embedded Authentication Protocol for Quantum Key Distribution Systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217939A (zh) * 2018-06-20 2019-01-15 浙江大学 用于量子比特的可扩展、低延迟反馈调控设备

Also Published As

Publication number Publication date
EP3182638B1 (en) 2019-12-25
JP2018537722A (ja) 2018-12-20
US20180375650A1 (en) 2018-12-27
CN106899402B (zh) 2021-02-23
KR20180104294A (ko) 2018-09-20
JP6732026B2 (ja) 2020-07-29
EP3182638A1 (en) 2017-06-21
WO2017102797A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
CN106899402A (zh) 将熵源添加到量子密钥分发系统的装置和方法
Walenta et al. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing
CN110088726B (zh) 量子随机数生成的方法和装置
Scarani et al. The security of practical quantum key distribution
Rosenberg et al. Long-distance decoy-state quantum key distribution in optical fiber
Acín et al. Device-independent security of quantum cryptography against collective attacks
Lunghi et al. Experimental bit commitment based on quantum communication and special relativity
CN104092538B (zh) 多用户波分复用qkd网络系统及其密钥分发与共享方法
Pljonkin Vulnerability of the synchronization process in the quantum key distribution system
Yang et al. Measurement-device-independent entanglement-based quantum key distribution
Pereira et al. Modified BB84 quantum key distribution protocol robust to source imperfections
CN116800420B (zh) 异步配对的测量设备无关量子会议密钥协商方法及系统
Cañas et al. Experimental quantum randomness generation invulnerable to the detection loophole
Liu et al. Practical quantum key distribution with non-phase-randomized coherent states
Glejm et al. Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s
Jingzheng et al. A survey on device-independent quantum communications
Kim et al. Implementation of polarization-coded free-space BB84 quantum key distribution
Cao et al. Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution
Hamburg Understanding intel’s ivy bridge random number generator
Birnie et al. Information rates with non ideal photon detectors in time-entanglement based QKD
Lydersen Practical security of quantum cryptography
Jacak et al. Quantum cryptography: Theoretical protocols for quantum key distribution and tests of selected commercial qkd systems in commercial fiber networks
Walenta et al. A fast and versatile QKD system with hardware key distillation and wavelength multiplexing
Anton Experimental research of the mode of quantum keys distribution
Salih et al. Random signal generation and synchronization in lab-scale measurement device independent–quantum key distribution systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant