CN106899348A - 一种光信号传输方法及系统 - Google Patents

一种光信号传输方法及系统 Download PDF

Info

Publication number
CN106899348A
CN106899348A CN201710047205.9A CN201710047205A CN106899348A CN 106899348 A CN106899348 A CN 106899348A CN 201710047205 A CN201710047205 A CN 201710047205A CN 106899348 A CN106899348 A CN 106899348A
Authority
CN
China
Prior art keywords
node
wavelength
remittance
poly
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710047205.9A
Other languages
English (en)
Inventor
冯勇华
周伟强
罗亚丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fiberhome Telecommunication Technologies Co Ltd
Original Assignee
Fiberhome Telecommunication Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiberhome Telecommunication Technologies Co Ltd filed Critical Fiberhome Telecommunication Technologies Co Ltd
Priority to CN201710047205.9A priority Critical patent/CN106899348A/zh
Publication of CN106899348A publication Critical patent/CN106899348A/zh
Priority to PCT/CN2017/109843 priority patent/WO2018133503A1/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光信号传输方法及系统,该系统包括电汇聚交叉节点和全光交叉节点;电汇聚交叉节点通过汇聚或反向复用、映射,将业务数据封装为OTU2/OTU2e;并将封装的数据调制到带宽为2.5GHz~12.5GHz的光载波通道上;或,通过解调、解复用从带宽为2.5GHz~12.5GHz的光载波通道上的光信号中提取业务数据;全光交叉节点上设有与载波带宽匹配的窄带波长选择开关,利用窄带波长选择开关对接收的不同波长光信号进行选择过滤,进行分离,并将每种波长光信号分别发送给对应电汇聚交叉节点或全光交叉节点。本发明有效避免了城域网普遍存在的小颗粒业务与大容量需求之间的矛盾,减小了网络时延和供电散热需求,降低了网络成本。

Description

一种光信号传输方法及系统
技术领域
本发明涉及光信息传输技术,具体涉及一种光信号传输方法及系统。
背景技术
随着社会信息化进程的不断推进,现有的光传输系统无法满足日益增长的互连速率需求,迫切要求进一步提升光传输系统的传输容量。实际上,随着网络传输容量需求的激增,光传输系统其单通道传输速率在经历了从2.5Gbit/s到10Gbit/s到40Gbit/s到100Gbit/s的提升,并正在酝酿超100G的下一代光传输系统。
在光传输系统中,单根光纤传输容量仅取决于可用频谱带宽、调制格式和复用方法,与单通道的传输速率没有必然的关系。以目前主流商用基于PM-QPSK调制、通道带宽为50GHz、单通道传输速率为100Gbit/s的光传输系统为例,C波段80个波的传输容量为8Tbit/s;若采用相同的调制格式和复用方法,单通道传输速率分别提升到200Gbit/s和400Gbit/s,此时,通道带宽分别为100GHz和200GHz,C波段可容纳的波道数量分别减少为40个和20个,C波段传输容量保持不变,仍为8Tbit/s。
由此可见,若不提高频谱效率、增加频谱资源,仅提升单通道速率无法增加单根光纤的传输容量。而在当前城域及城乡网络中客户业务颗粒大多集中在10Gbit/s以下,若要充分利用100Gbit/s以及以上速率的通道传输能力,必须采用电交叉节点设备进行调度、复用汇聚和解复用,来化解大通道速率与小业务颗粒的矛盾;随着电交叉容量的提升,不仅导致设备的复杂度提高,电交叉节点设备的运行维护成本也将迅速增加,在典型配置的情况下,容量25Tbit/s的100G电交叉节点设备,且不论与之配套的散热设备功耗,自身功耗将超过10000W,大容量的电交叉节点设备供电和散热功耗就更高;因此,在解决光传输网络大容量需求和业务颗粒小的矛盾问题时,需另辟蹊径。
发明内容
本发明所要解决的技术问题是目前采用大容量电交叉节点设备解决光传输网络大容量需求和小业务颗粒之间的矛盾的方案,存在电交叉节点设备复杂度高以及运行维护成本、功耗、时延不断增加的问题。
为了解决上述技术问题,本发明所采用的技术方案是提供一种光信号传输系统,包括网络边缘层的电汇聚交叉节点和网络核心层的全光交叉节点;
所述电汇聚交叉节点通过汇聚或反向复用、映射,将业务数据封装为OTU2或OTU2e;并将封装的数据调制到带宽为2.5GHz~12.5GHz的光载波通道上;或,通过解调、解复用从带宽为2.5GHz~12.5GHz的光载波通道上的光信号中提取业务数据;
所述全光交叉节点上设有与载波带宽匹配的窄带波长选择开关,利用窄带波长选择开关对接收的不同波长光信号进行选择过滤,进行分离,并将每种波长光信号分别发送给对应电汇聚交叉节点或全光交叉节点。
在上述系统中,当光载波信号严重恶化时通过电再生方式对其进行补偿和恢复。
在上述系统中,由网络核心层的第一全光交叉节点以及分别在第一全光交叉节点四个方向与之相连的电汇聚交叉节点构成;四个方向上的电汇聚交叉节点按东、南、西、北依次为东电汇聚交叉节点TR_E、南电汇聚交叉节点TR_S、西电汇聚交叉节点TR_W和北电汇聚交叉节点TR_N;
西电汇聚交叉节点TR_W发出的光信号中波长λ1通道的光信号经过波长选择第一全光交叉节点选择调度到北电汇聚交叉节点TR_N;波长λ2通道和波长λ3通道的光信号经过波长选择第一全光交叉节点选择调度到东电汇聚交叉节点TR_E,波长λ4通道的光信号经过波长选择第一全光交叉节点选择调度到南电汇聚交叉节点TR_S。
在上述系统中,网络核心层的全光交叉节点包括用于波长选择的第一全光交叉节点和第二全光交叉节点;
其中,第一全光交叉节点的东侧端和第二全光交叉节点的西侧端相互连接;第一个全光交叉节点的西侧连接西电汇聚交叉节点TR_W、北侧连接第一北电汇聚交叉节点TR_N1、南侧连接第一南电汇聚交叉节点TR_S1;第二全光交叉节点的东侧连接东电汇聚交叉节点TR_E、北侧连接第二北电汇聚交叉节点TR_N2、南侧连接第二南电汇聚交叉节点TR_S2;
西电汇聚交叉节点TR_发出的光信号中的波长λ1通道的光信号经过波长选择第一全光交叉节点选择调度到第一北电汇聚交叉节点TR_N1;波长λ2通道和波长λ3通道的光信号经过波长选择第一全光交叉节点选择调度传送给波长选择第二全光交叉节点;波长λ4通道的光信号经过波长选择第一全光交叉节点选择调度到第一南电汇聚交叉节点TR_S1;波长λ2通道的光信号经过波长选择第二全光交叉节点选择调度到第二北电汇聚交叉节点TR_N2,第二南电汇聚交叉节点TR_S2发出的光信号中的波长λ4通道的光信号和西电汇聚交叉节点TR_W所发出的光信号中的波长λ3通道的光信号经过波长选择第二全光交叉节点选择调度到东电汇聚交叉节点TR_E。
本发明还提供了一种光信号传输方法,包括以下步骤:
步骤S10、采用带宽为2.5GHz~12.5GHz,所承载数据速率为10Gbit/s的光载波通道;
步骤S20、业务数据通过汇聚或反向复用、映射封装到OTU2或OTU2e,并调制到带宽为2.5GHz~12.5GHz的光载波通道进行传输;
步骤S30、在全光交叉节点上设有与光载波带宽匹配、具有波长滤波选择功能的窄带波长选择开关,利用窄带波长选择开关对接收的不同波长光信号进行选择过滤,进行分离,并将每种波长光信号分别发送给对应交叉节点,实现不同波导空间上的交叉调度。
在上述方法中,所述光载波通道的带宽选择取决于网络系统频谱使用的规划和收发机采用的调制格式。
在上述方法中,光载波通道的带宽典型值为6.25GHz或12.5GHz。
在上述方法中,
采用偏振复用正交相移键控调制或16级正交幅度调制,光信号的基带带宽为5GHz,置于6.25GHz带宽的通道中承载;
采用偏振复用16级正交幅度调制,光信号的基带带宽为2.5GHz,置于3.125GHz带宽的通道中承载;
采用差分正交相移键控调制,光信号的基带带宽为10GHz,置于12.5GHz带宽的通道中承载。
在上述方法中,在传输性能指标允许的情况下,采用奈奎斯特滤波对上述光载波通道的带宽进行压缩。
本发明利用窄带全光传输,在不牺牲光纤传输容量的前提下,有效避免了城域网普遍存在的小颗粒业务与大容量需求之间的矛盾,无需采用复杂耗电的电交叉设备对小颗粒业务进行业务梳理调度,减小了网络时延和供电散热需求,降低了网络成本。
附图说明
图1为本发明提供的一种光信号传输系统结构示意图;
图2为本发明中实施例一的结构示意图;
图3为本发明中实施例二的结构示意图;
图4为本发明提供的一种光信号传输方法的流程图。
具体实施方式
下面结合说明书附图和具体实施例对本发明做出详细的说明。
如图1所示,本发明提供的一种光信号传输系统由网络边缘层的电汇聚交叉节点和网络核心层的全光交叉节点构成。
电汇聚交叉节点通过汇聚或反向复用、映射,将业务数据封装为OTU2/OTU2e或其他封装格式,并将封装的数据调制到带宽为2.5GHz~12.5GHz的光载波通道上;或,通过解调、解复用从带宽为2.5GHz~12.5GHz的光载波通道上的光信号中提取业务数据。
全光交叉节点上设有与载波带宽匹配的窄带波长选择开关,利用窄带波长选择开关对接收的不同波长光信号进行选择过滤,进行分离,并将每种波长光信号分别发送给对应电汇聚交叉节点或全光交叉节点,实现不同波导空间上的交叉调度。在本发明中,光载波信号严重恶化时可采用电再生方式进行补偿和恢复。
实施例一。
如图2所示的一种光信号传输系统由核心层的用于波长选择的第一全光交叉节点X1和在第一全光交叉节点X1东、南、西、北四个方向与之相连的四组边缘层的电汇聚交叉节点(窄带光收发机组)构成,四个电汇聚交叉节点分别为东电汇聚交叉节点TR_E、南电汇聚交叉节点TR_S、西电汇聚交叉节点TR_W和北电汇聚交叉节点TR_N。业务数据通过边缘层电汇聚交叉节点实现汇聚或反向复用、映射、封装、调制;或解调、解复用和提取。窄带光收发机组TR_N、TR_S、TR_W和TR_E单个波长光信号带宽为5GHz,通道数率为10Gbit/s。
西窄带光收发机组TR_W(包括窄带光收发机TR_W1、TR_W2、……TR_Wn)所发出的光信号中的波长λ1通道的光信号经过波长选择第一全光交叉节点X1选择调度到北窄带光收发机组TR_N,波长λ2通道和波长λ3通道的光信号经过波长选择第一全光交叉节点X1选择调度到东窄带光收发机组TR_E,波长λ4通道的光信号经过波长选择第一全光交叉节点X1选择调度到南窄带光收发机组TR_S。
实施例二。
所图3所示的一种光信号传输系统的核心层包括两个用于波长选择的全光交叉节点(X1和X2),分别为第一全光交叉节点X1和第二全光交叉节点X2,第一全光交叉节点X1的东侧端和第二全光交叉节点X2的西侧端相互连接,第一全光交叉节点X1和第二全光交叉节点X2的其余三个方向上分别连接对应的边缘层电汇聚交叉节点(窄带光收发机组),即第一个全光交叉节点X1的西侧连接西电汇聚交叉节点TR_W、北侧连接第一北电汇聚交叉节点TR_N1、南侧连接第一南电汇聚交叉节点TR_S1,第二全光交叉节点X2的东侧连接东电汇聚交叉节点TR_E、北侧连接第二北电汇聚交叉节点TR_N2、南侧连接第二南电汇聚交叉节点TR_S2。业务数据通过边缘层电汇聚交叉节点实现汇聚或反向复用、映射、封装、调制;或解调、解复用和提取。窄带光收发机组(TR_N1、TR_N2、TR_S1、TR_S2、TR_W和TR_E)单个波长光信号带宽为5GHz,通道数率为10Gbit/s。
西窄带光收发机组TR_W(TR_W1,TR_W2,……TR_Wn)所发出的光信号中的波长λ1通道的光信号经过波长选择第一全光交叉节点X1选择调度到第一北窄带光收发机组TR_N1,波长λ2通道和波长λ3通道的光信号经过波长选择第一全光交叉节点X1选择调度传送给波长选择第二全光交叉节点X2,波长λ4通道的光信号经过波长选择第一全光交叉节点X1选择调度到第一南窄带光收发机组TR_S1;波长λ2通道的光信号经过波长选择第二全光交叉节点X2选择调度到第二北窄带光收发机组TR_N2,第二南窄带光收发机组TR_S2所发出的光信号中的波长λ4通道的光信号和西窄带光收发机组TR_W所发出的光信号中的波长λ3通道的光信号经过波长选择第二全光交叉节点X2选择调度到东窄带光收发机组TR_E。
如图4所示,本发明提供的一种光信号传输方法,包括以下步骤:
步骤S10、采用带宽为2.5GHz~12.5GHz,所承载数据速率为10Gbit/s的光载波通道。
由于,在承载的数据率相同时,光载波通道越窄,单位带宽所承载数据的效率(频谱效率)越高。因此,在光纤可用频谱带宽资源受限的情况下,频谱效率越高,单根光纤所能承载的数据容量越大,单位比特数据传输的线路成本越低。而光载波通道可允许的频谱带宽很大程度上依赖光器件技术和工艺水平限制,随着光器件技术和工艺水平的提升,波分复用系统的最小频谱宽度已经由原来的100GHz、50GHz逐步向25GHz、12.5G过渡,向更小的6.25Ghz、3.125GHz、2.5GHz带宽发展,因此本发明采用带宽为2.5GHz~12.5GHz的窄带光载波通道,解决在光纤可用频谱带宽资源受限的情况下,达到数据容量增大的效果;此外,针对城域及城乡网络的具体应用场景,客户业务颗粒大多集中在10Gbit/s及以下且传输距离在100km左右,可采用高谱效的调制格式将10Gbit/s业务数据颗粒直接调制到2.5GHz~12.5GHz的带宽中,不仅便于光交换设备在光层直接进行调度,而且避免复杂昂贵耗时的电层交叉调度转换过程,同时提高了网络链路中光纤频谱资源的利用效率和传输容量。
在本发明中,光载波通道带宽的选择,取决于网络系统频谱使用的规划和收发机所采用的调制格式。根据当前光器件技术和工艺水平,并充分考虑与业界现行光载波通道带宽(100GHz/50GHz/25GHz)的兼容性,光载波通道带宽的选择典型值(最佳值)约为6.25GHz或12.5GHz;例如:
(1)采用偏振复用正交相移键控调制(PM-QPSK)或16级正交幅度调制(16QAM),光信号的基带带宽约为5GHz,可置于6.25GHz带宽的通道中承载;
(2)采用偏振复用16级正交幅度调制(PM-16QAM),光信号的基带带宽约为2.5GHz,可置于3.125GHz带宽的通道中承载;
(3)采用差分正交相移键控调制(DQPSK),光信号的基带带宽约为10GHz,可置于12.5GHz带宽的通道中承载。
在传输性能指标允许的情况下,可以采用奈奎斯特滤波对上述光载波通道的带宽进行压缩,以提高频谱效率。
步骤S20、业务数据通过汇聚或反向复用、映射封装到OTU2或OTU2e,并调制到带宽为2.5GHz~12.5GHz的光载波通道进行传输。
步骤S30、在全光交叉节点上设有与光载波带宽匹配、具有波长滤波选择功能的窄带波长选择开关(Narrow Band Wavelength Selective Switch,NBWSS),全光交叉节点利用窄带波长选择开关实现不同波导空间上的交叉调度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (9)

1.一种光信号传输系统,其特征在于,包括网络边缘层的电汇聚交叉节点和网络核心层的全光交叉节点;
所述电汇聚交叉节点通过汇聚或反向复用、映射,将业务数据封装为OTU2或OTU2e;并将封装的数据调制到带宽为2.5GHz~12.5GHz的光载波通道上;或,通过解调、解复用从带宽为2.5GHz~12.5GHz的光载波通道上的光信号中提取业务数据;
所述全光交叉节点上设有与载波带宽匹配的窄带波长选择开关,利用窄带波长选择开关对接收的不同波长光信号进行选择过滤,进行分离,并将每种波长光信号分别发送给对应电汇聚交叉节点或全光交叉节点。
2.如权利要求1所述的系统,其特征在于,当光载波信号严重恶化时通过电再生方式对其进行补偿和恢复。
3.如权利要求1所述的系统,其特征在于,由网络核心层的第一全光交叉节点以及分别在第一全光交叉节点四个方向与之相连的电汇聚交叉节点构成;四个方向上的电汇聚交叉节点按东、南、西、北依次为东电汇聚交叉节点TR_E、南电汇聚交叉节点TR_S、西电汇聚交叉节点TR_W和北电汇聚交叉节点TR_N;
西电汇聚交叉节点TR_W发出的光信号中波长λ1通道的光信号经过波长选择第一全光交叉节点选择调度到北电汇聚交叉节点TR_N;波长λ2通道和波长λ3通道的光信号经过波长选择第一全光交叉节点选择调度到东电汇聚交叉节点TR_E,波长λ4通道的光信号经过波长选择第一全光交叉节点选择调度到南电汇聚交叉节点TR_S。
4.如权利要求1所述的系统,其特征在于,网络核心层的全光交叉节点包括用于波长选择的第一全光交叉节点和第二全光交叉节点;
其中,第一全光交叉节点的东侧端和第二全光交叉节点的西侧端相互连接;第一个全光交叉节点的西侧连接西电汇聚交叉节点TR_W、北侧连接第一北电汇聚交叉节点TR_N1、南侧连接第一南电汇聚交叉节点TR_S1;第二全光交叉节点的东侧连接东电汇聚交叉节点TR_E、北侧连接第二北电汇聚交叉节点TR_N2、南侧连接第二南电汇聚交叉节点TR_S2;
西电汇聚交叉节点TR_发出的光信号中的波长λ1通道的光信号经过波长选择第一全光交叉节点选择调度到第一北电汇聚交叉节点TR_N1;波长λ2通道和波长λ3通道的光信号经过波长选择第一全光交叉节点选择调度传送给波长选择第二全光交叉节点;波长λ4通道的光信号经过波长选择第一全光交叉节点选择调度到第一南电汇聚交叉节点TR_S1;波长λ2通道的光信号经过波长选择第二全光交叉节点选择调度到第二北电汇聚交叉节点TR_N2,第二南电汇聚交叉节点TR_S2发出的光信号中的波长λ4通道的光信号和西电汇聚交叉节点TR_W所发出的光信号中的波长λ3通道的光信号经过波长选择第二全光交叉节点选择调度到东电汇聚交叉节点TR_E。
5.一种光信号传输方法,其特征在于,包括以下步骤:
步骤S10、采用带宽为2.5GHz~12.5GHz,所承载数据速率为10Gbit/s的光载波通道;
步骤S20、业务数据通过汇聚或反向复用、映射封装到OTU2或OTU2e,并调制到带宽为2.5GHz~12.5GHz的光载波通道进行传输;
步骤S30、在全光交叉节点上设有与光载波带宽匹配、具有波长滤波选择功能的窄带波长选择开关,利用窄带波长选择开关对接收的不同波长光信号进行选择过滤,进行分离,并将每种波长光信号分别发送给对应交叉节点,实现不同波导空间上的交叉调度。
6.如权利要求5所述的方法,其特征在于,所述光载波通道的带宽选择取决于网络系统频谱使用的规划和收发机采用的调制格式。
7.如权利要求6所述的方法,其特征在于,光载波通道的带宽典型值为6.25GHz或12.5GHz。
8.如权利要求6所述的方法,其特征在于,
采用偏振复用正交相移键控调制或16级正交幅度调制,光信号的基带带宽为5GHz,置于6.25GHz带宽的通道中承载;
采用偏振复用16级正交幅度调制,光信号的基带带宽为2.5GHz,置于3.125GHz带宽的通道中承载;
采用差分正交相移键控调制,光信号的基带带宽为10GHz,置于12.5GHz带宽的通道中承载。
9.如权利要求5所述的方法,其特征在于,在传输性能指标允许的情况下,采用奈奎斯特滤波对上述光载波通道的带宽进行压缩。
CN201710047205.9A 2017-01-22 2017-01-22 一种光信号传输方法及系统 Pending CN106899348A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710047205.9A CN106899348A (zh) 2017-01-22 2017-01-22 一种光信号传输方法及系统
PCT/CN2017/109843 WO2018133503A1 (zh) 2017-01-22 2017-11-08 一种光信号传输方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710047205.9A CN106899348A (zh) 2017-01-22 2017-01-22 一种光信号传输方法及系统

Publications (1)

Publication Number Publication Date
CN106899348A true CN106899348A (zh) 2017-06-27

Family

ID=59198838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710047205.9A Pending CN106899348A (zh) 2017-01-22 2017-01-22 一种光信号传输方法及系统

Country Status (2)

Country Link
CN (1) CN106899348A (zh)
WO (1) WO2018133503A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133503A1 (zh) * 2017-01-22 2018-07-26 烽火通信科技股份有限公司 一种光信号传输方法及系统
CN112099148A (zh) * 2020-09-25 2020-12-18 烽火通信科技股份有限公司 一种光信号选择调度装置及方法
CN115037378A (zh) * 2022-06-09 2022-09-09 烽火通信科技股份有限公司 一种基于光蜂窝的光互连方法和系统
CN112865914B (zh) * 2021-02-24 2024-05-07 中国联合网络通信集团有限公司 光波分传送系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040141746A1 (en) * 2001-03-09 2004-07-22 Magnus Oberg Flexible wdm ring network
CN101707730A (zh) * 2009-11-05 2010-05-12 中兴通讯股份有限公司 一种光传送体系节点设备及光信号传送的方法
CN104869480A (zh) * 2015-04-29 2015-08-26 国网智能电网研究院 一种具有业务疏导功能的roadm交换节点装置和方法
CN105634649A (zh) * 2014-10-31 2016-06-01 中国移动通信集团公司 无色可重构光分插复用器及光信号的接收方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176392C (zh) * 2002-09-29 2004-11-17 上海交通大学 可调谐波长选择2×2光开关
CN100356716C (zh) * 2003-12-19 2007-12-19 杨淑雯 基于光码标志交换的全光网
WO2005064834A1 (en) * 2003-12-30 2005-07-14 Universita' Degli Studi 'roma Tre' Optical device for simultaneously generating and processing optical codes
CN101834793A (zh) * 2010-04-29 2010-09-15 电子科技大学 基于mpls/ops的虚拟专用网的实现方法
CN106899348A (zh) * 2017-01-22 2017-06-27 烽火通信科技股份有限公司 一种光信号传输方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040141746A1 (en) * 2001-03-09 2004-07-22 Magnus Oberg Flexible wdm ring network
CN101707730A (zh) * 2009-11-05 2010-05-12 中兴通讯股份有限公司 一种光传送体系节点设备及光信号传送的方法
CN105634649A (zh) * 2014-10-31 2016-06-01 中国移动通信集团公司 无色可重构光分插复用器及光信号的接收方法
CN104869480A (zh) * 2015-04-29 2015-08-26 国网智能电网研究院 一种具有业务疏导功能的roadm交换节点装置和方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133503A1 (zh) * 2017-01-22 2018-07-26 烽火通信科技股份有限公司 一种光信号传输方法及系统
CN112099148A (zh) * 2020-09-25 2020-12-18 烽火通信科技股份有限公司 一种光信号选择调度装置及方法
CN112099148B (zh) * 2020-09-25 2021-08-31 烽火通信科技股份有限公司 一种光信号选择调度装置及方法
CN112865914B (zh) * 2021-02-24 2024-05-07 中国联合网络通信集团有限公司 光波分传送系统及方法
CN115037378A (zh) * 2022-06-09 2022-09-09 烽火通信科技股份有限公司 一种基于光蜂窝的光互连方法和系统
CN115037378B (zh) * 2022-06-09 2023-06-09 烽火通信科技股份有限公司 一种基于光蜂窝的光互连方法和系统
WO2023236536A1 (zh) * 2022-06-09 2023-12-14 烽火通信科技股份有限公司 一种基于光蜂窝的光互连方法和系统

Also Published As

Publication number Publication date
WO2018133503A1 (zh) 2018-07-26

Similar Documents

Publication Publication Date Title
Rommel et al. High-capacity 5G fronthaul networks based on optical space division multiplexing
Kanonakis et al. An OFDMA-based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence
CN106899348A (zh) 一种光信号传输方法及系统
Jinno et al. Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies
CN102025478B (zh) 数据传送、接收的方法及装置
CN102187604B (zh) 光网络中的调制的改进或者与光网络中的调制相关的改进
CN102687475B (zh) 用于在光学网络部件中处理数据的方法以及光学网络部件
CN103457902B (zh) 一种wdm-pon有线/无线可选择接入系统和方法
US11012187B1 (en) Error correction in optical networks with probabilistic shaping and symbol rate optimization
CN106304420B (zh) 面向5g功率复用的模拟光传输的无线前传系统
US10511388B1 (en) Reducing variance in reach of WDM channels in an optical network
CN110266387B (zh) 基于弱模群耦合与概率整形的多波段光载射频系统及方法
CN102098105A (zh) 一种自适应调制的光纤通信的方法及系统
KR100539926B1 (ko) 다중 반송파를 이용한 코드 분할 다중화 방식의 수동형 광가입자망
López et al. Differentiated quality of protection to improve energy efficiency of survivable optical transport networks
CN101090299A (zh) 采用双臂调制器同时产生无线和有线信号的方法及系统
CN106888513B (zh) 前传网络及数据传输方法
CN102238127A (zh) 一种基于相干光正交频分复用系统降低峰均比的方法
US20150256258A1 (en) Data mapping method and device for optical transport network
WO2019062950A1 (zh) 光模块及信号处理方法
CN116347275A (zh) 一种多维复用的超大容量自相干数字模拟光载无线接入网
CN103780327B (zh) 数据传送方法及装置
CN105721130A (zh) 弹性光网络中基于子频带虚拟级联技术的频谱分配方法
Revathi et al. Performance analysis of wave length division and sub carrier multiplexing using different modulation techniques
CN104935383A (zh) 基于滤波器多载波调制的副载波复用光网络上行传输系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170627

RJ01 Rejection of invention patent application after publication