CN106897478B - 基于阻力分布包含格架搅混效应的子通道分析方法 - Google Patents

基于阻力分布包含格架搅混效应的子通道分析方法 Download PDF

Info

Publication number
CN106897478B
CN106897478B CN201611179395.1A CN201611179395A CN106897478B CN 106897478 B CN106897478 B CN 106897478B CN 201611179395 A CN201611179395 A CN 201611179395A CN 106897478 B CN106897478 B CN 106897478B
Authority
CN
China
Prior art keywords
subchannel
momentum
mixing
axial
reactor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611179395.1A
Other languages
English (en)
Other versions
CN106897478A (zh
Inventor
杨保文
毛虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao denang Innovation Technology Co., Ltd
Original Assignee
杨保文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨保文 filed Critical 杨保文
Priority to CN201611179395.1A priority Critical patent/CN106897478B/zh
Publication of CN106897478A publication Critical patent/CN106897478A/zh
Application granted granted Critical
Publication of CN106897478B publication Critical patent/CN106897478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

基于阻力分布包含格架搅混效应的子通道分析方法,通过收集包含待分析反应堆堆芯搅混格架在内的多种搅混格架在不同工况下的实验数据,拟合能够反映搅混格架关键部件搅混性能的动量源项关系式,并将该动量源项关系式添加至对应的动量守恒方程中;通过求解质量守恒方程、动量守恒方程和能量守恒方程,获得反应堆堆芯内更准确的局部热工水力参数,从而使得临界热流密度(CHF)值和CHF位置的预测更加准确。本发明不受子通道程序结构和解法的限制,可以广泛应用在各种类型的子通道程序计算中,包括均匀流模型、漂移流模型或两流体模型的子通道程序。

Description

基于阻力分布包含格架搅混效应的子通道分析方法
技术领域
本发明属于反应堆燃料组件流体动力学模拟和分析技术领域,具体涉及一种基于阻力分布包含格架搅混效应的子通道分析方法。
背景技术
在核电站的设计和运行中,临界热流密度(CHF)、临界功率是限制核电站运行的最重要的参数之一。在临界功率以下,反应堆可以最大限度安全地将核能转换成电能。燃料棒束CHF和堆芯的局部热工水力参数密切相关,鉴于反应堆堆芯子通道复杂的几何结构以及宽参数范围的运行工况,并不能在理论上对CHF完全给出解析解。
传统核燃料棒束的CHF关系式是基于棒束实验数据和子通道程序计算出的局部热工水力参数开发得到。而为了获得这些反应堆工况下的实验数据需耗费相当大的财力和较长的时间周期。基于此开发的CHF关系式用来进行核电站运行安全分析并指导核燃料设计。子通道分析方法是目前安审必备的工具,用计算反应堆堆芯的局部热工水力参数并藉以做出安全分析和评估其CHF限值,这是反应堆安全分析的关键步骤。目前除了因为集总参数平均效应产生的不准确性以外,子通道分析主要的弊端之一是缺少对绝大多数反应堆堆芯中所使用格架的搅混性能的模拟和计算。因此,目前所有子通道程序在计算局部热工水力参数时普遍存在很大的不确定性和误差。这种不确定性和误差,在CHF关系式开发拟定时,经常需借助大量棒束CHF实验数据来弥补,并导致其拟定的CHF关系式应用范围的局限性。同时,在安全分析时,这种子通道程序在计算局部热工水力参数时的不确定性也经常导致CHF计算中很大的误差,并因而产生很大的设计限值及设计偏差,使得反应堆运行效率偏低或安全系数降低。
由于对搅混格架功能缺乏认知,目前所有的子通道程序均将搅混格架的模拟简化为普通的形阻系数或总体性的所谓“搅混系数”(β或TDC),完全无法对格架上各个关键部件(如搅混翼、弹簧、刚凸和焊点等)的不同搅混性能进行模拟。此外,有人提出了在子通道分析方法中,采用基于雷诺数开发的形阻系数关系式来代替原来的形阻系数常量。而采用上述方法,因为所用的形阻系数关系式与格架几何结构仍然无关,依旧不能精确地反映格架的搅混特性,无法消除局部热工水力参数计算的不准确性。
发明内容
本发明目的是提供一种基于阻力分布包含格架搅混效应的子通道分析方法,该方法通过拟合能够反映搅混格架关键部件搅混性能的动量源项关系式,并将该动量源项关系式添加至对应的动量守恒方程中,求解新的守恒方程,从而获得反应堆堆芯内更准确的局部热工水力参数,使得CHF值和CHF位置的预测更加准确。
本发明的技术解决方案是:
一种基于阻力分布包含格架搅混效应的子通道分析方法,包括以下步骤:
1)预设待分析的反应堆堆芯的CHF值和CHF位置的预测值的准确度;
2)收集搅混格架在不同工况下的实验数据;
所述搅混格架为待分析的反应堆堆芯的搅混格架,或包含待分析的反应堆堆芯搅混格架在内的多种搅混格架;
所述实验数据包括至少四类:第一类和第二类实验数据为棒束轴向和径向非均匀加热工况下的CHF实验获得的CHF值和CHF位置,其余实验数据是在棒束通道压力分布、棒束通道流速分布、搅混实验获得的出口温度分布以及棒束通道流场温度中任选至少两类;
3)采取以下任一方法建立待分析的反应堆堆芯的搅混格架的动量源项关系式:
方法A)利用待分析的反应堆堆芯的搅混格架在不同工况下的至少四类实验数据直接拟合动量源项关系式;
方法B)利用待分析的反应堆堆芯的搅混格架在不同工况下的至少四类实验数据标定计算流体动力学软件,再用该软件在标定的范围内计算局部热工水力参数,拟合动量源项关系式;
方法C)利用所收集的多种搅混格架在不同工况下的至少四类实验数据拟合与所收集的多种搅混格架相匹配的动量源项通用关系式,再由待分析的反应堆堆芯的搅混格架在不同工况下的实验数据求得动量源项通用关系式的系数,最终获得反映该搅混格架关键部件搅混性能的动量源项关系式;所述关键部件包括搅混翼、条带、刚凸、弹簧和焊点;
4)在子通道程序中添加步骤3)获得的动量源项关系式,再用该子通道程序计算待分析的反应堆堆芯的热工水力参数,从中得到该反应堆堆芯不同工况下CHF值和CHF位置的预测值;
5)分别判断该反应堆堆芯不同工况下CHF值的预测值与步骤2)中所收集的CHF值之间的比值,以及不同工况下CHF位置的预测值与步骤2)中所收集的CHF位置之间的差值是否满足步骤1)中所预设的准确度;若任意一项不满足,则对子通道程序进行优化和/或对CHF关系式进行改进,再重复步骤4)和5);
6)输出待分析反应堆堆芯的CHF值和CHF位置的预测值。
上述步骤3)的方法C)中拟合动量源项关系式的方法具体如下:
C1)将收集的同一类实验数据进行对比,找出与格架搅混性能相关的几何结构参数和局部热工水力参数;
C2)选择搅混格架的多个几何结构参数和局部热工水力参数作为动量源项通用关系式的变量;
C3)结合收集的实验数据和选择的变量,采用最小二乘法拟合动量源项通用关系式;
C4)针对待分析的反应堆堆芯搅混格架的实验数据确定动量源项通用关系式中的系数,最终得到动量源项关系式。
上述步骤C3)中所拟合的动量源项通用关系式包括轴向动量源项通用关系式ΦA和横向动量源项通用关系式ΦL,具体如下:
Figure BDA0001185087130000031
Figure BDA0001185087130000032
式中:
A″W是包含格架时的润湿周长,单位为m;
ρ是流体密度,单位为kg/m3
Vtotal是流场局部速度,单位为m/s;
AR是不包含格架时的润湿周长,单位为m;
θ是流场局部速度与棒束方向的夹角,单位为度;它是流场的局部轴向速度和局部横向速度的函数,其计算式可表达如下:
Figure BDA0001185087130000033
D″V是包含格架时的子通道当量直径,单位为m;
P是子通道的湿周,单位为m;
u是棒束轴向分速度,单位为m/s;
v是棒束横向分速度,单位为m/s;
u1是搅混翼切向分速度,单位为m/s;
v1是搅混翼法向分速度,单位为m/s;
α是搅混翼与棒束方向的夹角,单位为度;
Ku,Kv,Ku1和Kv1是动量源项通用关系式中对应待分析的反应堆堆芯的搅混格架的系数;Ku,Kv,Ku1和Kv1的值跟该搅混格架的几何结构密切相关,由该搅混格架的实验数据来确定。
上述步骤4具体如下:
4.1)在子通道程序中添加步骤3)获得的动量源项关系式;同时,确定待分析的反应堆堆芯的几何条件和计算所要满足的残差要求;所述几何条件包括燃料棒个数、燃料棒直径、燃料棒中心间距、棒束长度和棒束流通面积、格架间距;所述残差要求包括求解质量守恒方程、动量守恒方程或能量守恒方程时所要满足的残差要求;
4.2)在添加了动量源项关系式的子通道程序中,将反应堆堆芯的流场按照其轴向功率分布、横向功率分布以及几何条件划分成以子通道为流通截面的多个轴向控制体;所述子通道如图2所示,是由相邻的燃料棒表面和相邻燃料棒的中心连线围成的最小流通通道A,或者由相邻的燃料棒表面、壁面和相邻燃料棒的中心连线的延伸线围成的最小流通通道B或C;
4.3)求解该反应堆堆芯的燃料模型获得热边界条件,或根据该反应堆堆芯的热流密度获得热边界条件;
4.4)求解能量守恒方程、动量守恒方程和质量守恒方程,得到满足残差要求的所有轴向控制体内的热工水力参数;其中动量守恒方程的求解需要将该搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;
4.5)从求解得到的所有轴向控制体内的热工水力参数中提取局部热工水力参数,从中得到该反应堆堆芯不同工况下CHF值和CHF位置的预测值。
上述步骤4.4)第一种解法具体如下:
4.4.1)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的能量守恒方程,再根据热边界条件求解该能量守恒方程,获得每个轴向控制体的比焓、燃料棒表面温度、流体密度和流体温度;
4.4.2)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的动量守恒方程,并将该反应堆堆芯中的搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;再根据每个轴向控制体的比焓、燃料棒表面温度、流体密度和流体温度,求解该动量守恒方程,获得横向流速和压力;
4.4.3)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的质量守恒方程;根据每个轴向控制体内的横向流速和压力,求解该质量守恒方程,获得轴向流速;
4.4.4)判断质量守恒方程、动量守恒方程和能量守恒方程是否满足残差要求,若不满足,则按照步骤4.4.1)至步骤4.4.3)的顺序进行反复迭代,若满足,则获得每个轴向控制体内的热工水力参数;所述热工水力参数包括燃料棒表面温度、轴向流速、横向流速、压力、流体密度、流体温度、比焓。
上述步骤4.4)第二种解法具体如下:
4.4.1)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的动量守恒方程,并将该反应堆堆芯中的搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;再根据热边界条件求解该动量守恒方程,获得初始的横向流速和轴向流速;
4.4.2)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的质量守恒方程,根据每个轴向控制体的横向流速和轴向流速,求解该质量守恒方程,获得更新后的横向流速、轴向流速和压力;
4.4.3)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的能量守恒方程;再根据每个轴向控制体内更新后的横向流速、轴向流速和压力,求解该能量守恒方程,获得比焓;
4.4.4)判断动量守恒方程、质量守恒方程和能量守恒方程是否满足残差要求,若不满足,则按照步骤4.4.1)至步骤4.4.3)的顺序进行反复迭代,若满足,则获得每个轴向控制体内的热工水力参数;所述热工水力参数包括轴向流速、横向流速、压力、流体密度、流体温度、比焓。
上述步骤4)中添加了动量源项关系式的子通道程序的动量守恒方程具体如下:
轴向动量守恒方程:
Figure BDA0001185087130000051
式中:
下标i和j是子通道编号,其中i表示所要求解的子通道,j表示与子通道i相邻的子通道;
mi是子通道i内的轴向流量,单位为kg/s;
t是时间,单位为s;
Z是单个轴向控制体的轴向高度,单位为m;
ρi是子通道i内的流体密度,单位为kg/m3
Ai是子通道i的流通面积,单位为m2
wij是从子通道i到子通道j的横向流量,单位为kg/(m*s);wij为正值时表示横向流量从子通道i流到子通道j,wij为负值时表示横向流量从子通道j流到子通道i;
u*是施主单元控制体内的轴向流速,单位为m/s;其意义表达如下式:
Figure BDA0001185087130000061
fT是横向湍流搅混摩擦系数,单位为1;
wij′是从子通道i到子通道j的湍流搅混量,单位为kg/(m*s);
wji是从子通道j到子通道i的湍流搅混量,单位为kg/(m*s);
ui′是子通道i的脉动速度,单位为m/s;
uj′是子通道j的脉动速度,单位为m/s;
pi是子通道i内的压力,单位为Pa;
g是重力加速度,单位为m/s2
f是轴向摩擦系数,单位为1;
Dh是子通道的当量直径,单位为m;
ΦA是反映该搅混格架的搅混性能的轴向动量源项关系式;
横向动量守恒方程:
Figure BDA0001185087130000062
式中:
l是横向动量控制体的等效长度,单位为m;
v*是施主单元控制体内的横向流速,单位为m/s;其意义表达如下式:
Figure BDA0001185087130000063
KG是横向流动阻力系数,单位为1;
Sij是子通道i与子通道j之间的间隙宽度,单位为m;
pi和pj分别是子通道i与子通道j内的压力,单位为Pa;
ΦL是反映该搅混格架的搅混性能的横向动量源项关系式。
本发明的优点:
1、本发明通过引入代表搅混格架影响的参数,包括搅混翼长度、搅混翼面积、搅混翼角度以及代表了条带、刚凸、弹簧和焊点对流场影响的系数,从而更准确地反映了搅混格架的几何特征以及其对流场带来的影响,提高了子通道方法预测反应堆堆芯局部热工水力参数的准确性;
2、本发明通过引入代表搅混格架几何结构的参数,包括搅混翼长度、搅混翼面积、搅混翼角度以及代表了条带、刚凸、弹簧和焊点对流场影响的系数,并且收集多个搅混格架的实验数据进行动量源项通用关系式的开发,因此能广泛应用于不同类型搅混格架对流场影响的分析,能够反映不同类型搅混格架对流场的影响,提高了子通道方法的适用性;
3、本发明计算所得到的包含格架搅混效应的局部热工水力参数,比传统方法计算所得到的局部热工水力参数更加准确,而局部热工水力参数是CHF关系式开发的关键因素之一,因此本发明计算所得到的包含格架搅混效应的局部热工水力参数可用于更准确的反映格架效应的CHF关系式的开发;
4、本发明计算所得到的包含格架搅混效应的局部热工水力参数,比传统方法计算所得到的局部热工水力参数更加准确,而局部热工水力参数是CHF值和位置预测的关键因素之一,因此本发明计算所得到的包含格架搅混效应的局部热工水力参数可用于更准确地预测CHF值和CHF位置;
5、本发明能够反映特定类型搅混格架对流场的影响,可提供更可靠的安全分析,提高安全系数,增加经济效益;
6、本发明能够反映不同类型搅混格架对流场的影响,可作为格架设计开发的工具。
附图说明
图1是权利要求3中所述轴向动量源项通用关系式和横向动量源项通用关系式中的部分变量示意图。
图2是本发明中代表核电厂典型反应堆堆芯的小范围(5x5)测试用子通道示意图。
图3和图4是阻力分布(DRM)包含格架搅混效应的子通道分析的两种流程图。
图5是5x5棒束子通道划分和编号示意图。
图6是子通道(2,8)之间的横向流速曲线图。
图7是子通道(9,10)之间的横向流速曲线图。
具体实施方式
本发明是基于阻力分布包含格架搅混效应的子通道分析方法,包括以下步骤:
1)预设待分析的反应堆堆芯的CHF值和CHF位置的预测值的准确度;
所述CHF值的预测值的准确度可用下式表示:
Figure BDA0001185087130000071
式中CHFm是实验获得的CHF值,CHFp是计算得到的CHF预测值,ε是预设的CHF值的预测值的准确度;
所述CHF位置的预测值的准确度可用下式表示:
|Lm-Lp|<δ (9)
式中Lm是实验获得的CHF位置,Lp是计算得到的CHF位置的预测值,δ是预设的CHF位置的预测值的准确度;
2)收集搅混格架在不同工况下的实验数据;
所述搅混格架为待分析的反应堆堆芯的搅混格架,或包含待分析的反应堆堆芯的搅混格架在内的多种搅混格架;
所述实验数据包括至少四类:第一类和第二类实验数据为棒束轴向和径向非均匀加热工况下的CHF实验获得的CHF值和CHF位置,其余实验数据在棒束通道压力分布、棒束通道流速分布、搅混实验获得的出口温度分布以及棒束通道流场温度中任选至少两类;要求收集的每种搅混格架的实验数据至少包含200点以上的实验数据。
3)采取以下任一方法建立待分析的反应堆堆芯的搅混格架的动量源项关系式:
方法A)利用待分析的反应堆堆芯的搅混格架在不同工况下的至少四类实验数据直接拟合动量源项关系式;
方法B)利用待分析的反应堆堆芯的搅混格架在不同工况下的至少四类实验数据标定计算流体动力学软件,再用该软件在标定范围内计算局部热工水力参数,拟合动量源项关系式;标定范围是指实验数据对应工况所包含的压力、温度和流速范围,计算流体动力学软件在标定范围内的计算才是准确可靠的;
方法C)利用所收集的多种搅混格架在不同工况下的至少四类实验数据拟合与所收集的多种搅混格架相匹配的动量源项通用关系式,再由待分析的反应堆堆芯的搅混格架在不同工况下的实验数据求得动量源项通用关系式的系数,最终获得反映该搅混格架关键部件搅混性能的动量源项关系式;所述关键部件包括搅混翼、条带、刚凸、弹簧和焊点;
方法C)中拟合动量源项关系式的方法具体如下:
C1)将收集的同一类实验数据进行对比,根据物理现象找出与格架搅混性能相关的几何结构参数和局部热工水力参数,对找出的参数进行敏感性分析,或根据经验列出重要度排序表;所述与搅混性能相关的格架几何结构参数包括但不限于搅混翼面积、搅混翼弯角、搅混翼扭角、搅混翼长度、搅混翼宽度;与搅混性能相关的局部热工水力参数包括但不限于轴向流速、横向流速、温度、压力、CHF值、CHF位置;
C2)依据敏感性分析结果或者重要度排序表,选择搅混格架的多个几何结构参数和局部热工水力参数作为动量源项通用关系式的变量;所述变量个数取决于所收集的实验数据的多少,所收集的实验数据越多,变量个数越多;变量个数越多,动量源项通用关系式越能够更精确地反映实际的搅混性能;
C3)结合收集的实验数据和选择的变量,采用最小二乘法拟合动量源项通用关系式;所拟合的动量源项通用关系式包括轴向动量源项通用关系式ΦA和横向动量源项通用关系式ΦL,它们都跟选择的变量密切相关,具体如下:
Figure BDA0001185087130000091
Figure BDA0001185087130000092
式中:
A″W是包含格架时的润湿周长,单位为m;
ρ是流体密度,单位为kg/m3
Vtotal是流场局部速度,单位为m/s;
AR是不包含格架时的润湿周长,单位为m;
θ是流场局部速度与棒束方向的夹角,单位为度;它是流场的局部轴向速度和局部横向速度的函数,其计算式可表达如下:
Figure BDA0001185087130000093
D″V是包含格架时的子通道当量直径,单位为m;
P是子通道的湿周,单位为m;
u是棒束轴向分速度,单位为m/s;
v是棒束横向分速度,单位为m/s;
u1是搅混翼切向分速度,单位为m/s;
v1是搅混翼法向分速度,单位为m/s;
α是搅混翼与棒束方向的夹角,单位为度;
Ku,Kv,Ku1和Kv1是动量源项通用关系式中对应待分析的反应堆堆芯的搅混格架的系数。
C4)Ku,Kv,Ku1和Kv1需要结合该搅混格架的实验数据来确定,最终获得该搅混格架的动量源项关系式。Ku,Kv,Ku1和Kv1的值跟搅混格架的几何结构密切相关,包括搅混翼形状和大小,弹簧、刚凸、条带和焊点的大小和排布方式。系数的确定需要根据该搅混格架的实验数据确定其压力范围、流场温度范围、流场速度范围和加热功率范围,并利用最小二乘法确定各个待定系数。确定后的系数只适用于该搅混格架,且只适用于该搅混格架的实验数据所确定的参数范围内。
4)在子通道程序中添加步骤3)获得的动量源项关系式,再用该子通道程序计算待分析的反应堆堆芯的热工水力参数,从中得到该反应堆堆芯不同工况下CHF值和CHF位置的预测值;
具体步骤为:
4.1)在子通道程序中添加步骤3)获得的动量源项关系式;同时,确定待分析的反应堆堆芯的几何条件和计算所要满足的残差要求;所述几何条件包括燃料棒个数、燃料棒直径、燃料棒中心间距、棒束长度和棒束流通面积、格架间距;所述残差要求包括求解质量守恒方程、动量守恒方程或能量守恒方程时所要满足的残差要求;
4.2)在添加了动量源项关系式的子通道程序中,将反应堆堆芯的流场按照其轴向功率分布、横向功率分布以及几何条件划分成以子通道为流通截面的多个轴向控制体;所述子通道如附图2所示,是由相邻的燃料棒表面和相邻燃料棒的中心连线围成的最小流通通道A,或者由相邻的燃料棒表面、壁面和相邻燃料棒的中心连线的延伸线围成的最小流通通道B或C;
4.3)求解该反应堆堆芯的燃料模型获得热边界条件,或根据该反应堆堆芯的热流密度获得热边界条件;反应堆堆芯的燃料模型是工业上应用比较成熟的模块,不是本发明的内容,因此不在此详述;热流密度是由用户根据实际情况自定义的参数;
4.4)求解能量守恒方程、动量守恒方程和质量守恒方程,得到满足残差要求的所有轴向控制体内的热工水力参数;其中动量守恒方程的求解需要将该搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;
4.5)从求解得到的所有轴向控制体内的热工水力参数中提取局部热工水力参数,从中得到该反应堆堆芯不同工况下CHF值和CHF位置的预测值。所有轴向控制体内的热工水力参数中包含热流密度的预测值,热边界条件中包含所有轴向控制体内加热的热流密度;当某个轴向控制体内热流密度的预测值与对应的该轴向控制体内加热的热流密度的比值为1时,对应的该轴向控制体的热流密度的预测值就是CHF值的预测值,对应的该轴向控制体的位置就是CHF位置的预测值。
步骤4.4)具体有多种解法;虽然不同的子通道分析的具体解法各不相同,但是本发明根据实验数据拟合了动量源项通用关系式,并且根据该搅混格架的实验数据,给不同形状的搅混格架的动量源项通用关系式赋予不同的系数,因此可以广泛应用于各种类型的子通道分析中;本发明具体给出了两种解法。
第一种解法:
4.4.1)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的能量守恒方程,示例如下:
Figure BDA0001185087130000111
式中:
i和j是子通道编号,其中i表示所要求解的子通道,j表示与子通道i相邻的子通道;
Ai是子通道i的流通面积,单位为m2
ρi是子通道i内的流体密度,单位为kg/m3
hi和hj分别是子通道i和子通道j内的比焓,单位为kJ/kg;
t是时间,单位为s;
mi是子通道i内的轴向流量,单位为kg/s;
Z是单个轴向控制体的轴向高度,单位为m;
wij是从子通道i到子通道j的横向流量,单位为kg/(m*s);wij为正值时表示横向流量从子通道i流到子通道j,wij为负值时表示横向流量从子通道j流到子通道i;
h*是施主单元控制体内的比焓,单位为kJ/kg;其意义表达如下式:
Figure BDA0001185087130000112
wij′是从子通道i到子通道j的湍流搅混量,单位为kg/(m*s);
wji是从子通道j到子通道i的湍流搅混量,单位为kg/(m*s);
λi是子通道i内的流体导热系数,单位为W/(m*K);
Ti和Tj分别是子通道i和子通道j内的流体温度,单位为℃;
Sij是子通道i与子通道j之间的间隙宽度,单位为m;
LC是几何修正常数,单位为1;
n是与子通道i相邻的加热壁面个数,单位为1;
Figure BDA0001185087130000121
是与子通道i相邻的加热壁面面积,单位为m2
qn是与子通道i相邻的加热壁面的热流密度,单位为J/(m2*s)。
式中左边第一项是每单位轴向长度上子通道i内能量随时间的变化率;第二项是单位轴向长度上子通道i内能量的空间变化;第三项是单位轴向长度上子通道i内全部连接间隙上的横向能量之和,即单位轴向长度上从所有相邻子通道j流至子通道i的横向能量之和;第四项是单位轴向长度上由于湍流搅混引起的子通道i与所有相邻子通道j之间的能量交换;式中右边表示单位轴向长度上子通道i内的总能量变化。上式适用于气相、液相和/或液滴相,对于具体的各相,式中各项的表达式可作进一步细化。
根据热边界条件求解流体气相、液相和/或液滴相的能量守恒方程,获得每个轴向控制体的比焓、燃料棒表面温度、流体密度和流体温度;
4.4.2)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的动量守恒方程,并将反应堆堆芯中该搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;因为动量是标量,有方向性,因此子通道分析方法中一般将动量分解为轴向动量和横向动量两部分,对应的动量守恒方程包括轴向动量守恒方程和横向动量守恒方程,对应的动量源项关系式也包括轴向动量源项关系式和横向动量源项关系式;所述搅混格架的动量源项关系式是由步骤3)中任一方法建立的;所述轴向动量守恒方程和横向动量守恒方程分别示例如下:
轴向动量守恒方程:
Figure BDA0001185087130000122
式中:u*是施主单元控制体内的轴向流速,单位为m/s;其意义表达如下式:
Figure BDA0001185087130000123
fT是横向湍流搅混摩擦系数,单位为1;
ui′和uj′分别是子通道i和子通道道j的脉动速度,单位为m/s;
pi是子通道i内的压力,单位为Pa;
g是重力加速度,单位为m/s2
f是轴向摩擦系数,单位为1;
Dh是子通道的当量直径,单位为m;
ΦA是反映该搅混格架的搅混性能的轴向动量源项关系式。
式中左边第一项是每单位轴向长度上轴向动量随时间的变化,第二项是单位轴向长度上轴向动量的空间变化,第三项是单位轴向长度上全部连接间隙上对轴向动量的贡献,第四项是湍流搅混对轴向动量的贡献;右边第一项至第三项分别是轴向压力梯度、重力和摩擦阻力对轴向动量的影响,最后一项是反映该搅混格架的搅混性能的轴向动量源项对轴向动量的影响。
横向动量守恒方程:
Figure BDA0001185087130000131
式中:
l是横向动量控制体的等效长度,单位为m;
v*是施主单元控制体内的横向流速,单位为m/s;其意义表达如下式:
Figure BDA0001185087130000132
KG是横向流动阻力系数,单位为1;
ΦL是反映该搅混格架的搅混性能的横向动量源项关系式。
式中左边第一项是每单位轴向长度上横向动量随时间的变化,第二项是单位轴向长度上横向动量的空间变化,第三项是单位轴向长度上全部连接间隙上对横向动量的贡献;右边第一项和第二项分别是横向阻力对横向阻力和横向压力梯度对横向动量的影响,第三项是反映该搅混格架的搅混性能的横向动量源项对横向动量的影响。
根据每个轴向控制体的比焓、燃料棒表面温度、流体密度和流体温度,同时联立求解该轴向动量守恒方程和横向动量守恒方程,获得横向流速和压力;
4.4.3)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的质量守恒方程,示例如下:
Figure BDA0001185087130000133
式中第一项是每单位轴向长度上质量随时间的变化,第二项是单位轴向长度上轴向质量流量的空间变化,第三项是单位轴向长度上湍流搅混引起的质量交换。
根据每个轴向控制体内的横向流速和压力,求解该质量守恒方程,获得轴向流速;
4.4.4)判断质量守恒方程、动量守恒方程和能量守恒方程是否满足残差要求,若不满足,则按照步骤4.4.1)至步骤4.4.3)的顺序进行反复迭代,若满足,则获得每个轴向控制体内的热工水力参数;所述热工水力参数包括燃料棒表面温度、轴向流速、横向流速、压力、流体密度、流体温度、比焓。
第二种解法:
4.4.1)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的动量守恒方程,并将该反应堆堆芯中的搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;因为动量是标量,有方向性,因此子通道分析方法中一般将动量分解为轴向动量和横向动量两部分,对应的动量守恒方程包括轴向动量守恒方程和横向动量守恒方程,对应的动量源项关系式也包括轴向动量源项关系式和横向动量源项关系式;所述搅混格架的动量源项关系式是由步骤3)中任一方法建立的;所述轴向动量守恒方程和横向动量守恒方程分别示例如下:
轴向动量守恒方程:
Figure BDA0001185087130000141
横向动量守恒方程:
Figure BDA0001185087130000142
根据热边界条件求解轴向动量守恒方程和横向动量守恒方程,获得初始的横向流速和轴向流速;
4.4.2)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的质量守恒方程,示例如下:
Figure BDA0001185087130000143
根据每个轴向控制体的横向流速和轴向流速,求解该质量守恒方程,获得更新后的横向流速、轴向流速和压力;
4.4.3)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的能量守恒方程,示例如下:
Figure BDA0001185087130000151
上式适用于气相、液相和/或液滴相,对于具体的各相,式中各项的表达式可作进一步细化;根据每个轴向控制体内更新后的横向流速、轴向流速和压力,求解该能量守恒方程,获得比焓;
4.4.4)判断动量守恒方程、质量守恒方程和能量守恒方程是否满足残差要求,若不满足,则按照步骤4.4.1)至步骤4.4.3)的顺序进行反复迭代,若满足,则获得每个轴向控制体内的热工水力参数;所述热工水力参数包括燃料棒表面温度、轴向流速、横向流速、压力、流体密度、流体温度、比焓。
5)分别判断该反应堆堆芯不同工况下CHF值的预测值与步骤2)中所收集的CHF值之间的比值,以及不同工况下CHF位置的预测值与步骤2)中所收集的CHF位置之间的差值是否满足步骤1)中所预设的准确度;若任意一项不满足,则对子通道程序进行优化和/或对CHF关系式进行改进,再重复步骤4)和5);
6)输出待分析反应堆堆芯的CHF值和CHF位置的预测值。
设计思路:
本发明提供一种基于阻力分布包含格架搅混效应的子通道分析方法。鉴于目前的子通道程序未能真正反映搅混格架对流场产生的影响,本发明将搅混格架对流场的影响通过动量源项关系式的形式添加至对应的动量守恒方程中,通过求解新的守恒方程,从而获得搅混翼对子通道内压降、横流和温度分布的影响效应,获得更准确的局部热工水力参数。
本发明的技术路线图如图3和图4所示。首先收集包含待分析反应堆堆芯搅混格架在内的多种搅混格架在不同工况下的实验数据,根据收集到的实验数据拟合与所收集的多种搅混格架相匹配的通用关系式,然后利用待分析的反应堆堆芯的搅混格架的实验数据,求得动量源项通用关系式中的系数,最终获得该搅混格架的动量源项关系式,再列出质量守恒方程、动量守恒方程和能量守恒方程,将动量源项关系式添加至对应的动量守恒方程中,按一定的顺序迭代求解质量、动量和能量守恒方程直到满足残差要求,从而得到更准确的局部热工水力参数,用于更准确的CHF预测或者CHF关系式的开发。
由于本发明通过添加动量源项关系式来反映搅混格架带来的影响,不改变程序的求解流程,因此适用于多种程序解法。本发明适用于目前任何子通道分析程序,包括具有均相流模型、漂移流模型或者两流体模型的子通道分析程序。
图6和图7是带搅混格架的5x5棒束子通道间隙的横向流速的计算结果。其中黑色曲线表示由标定后的流体动力学软件计算的结果,作为对比分析的基准值,蓝色曲线表示由原子通道程序计算的结果,红色曲线表示由本发明的方法改进后的子通道程序计算的结果。5x5棒束的子通道划分和编号如图5所示,图6是子通道(2,8)之间的间隙的横流值,图7是子通道(9,10)之间的间隙的横流值。由图可知,采用本发明的方法改进后的子通道程序显著改善了局部热工水力参数的预测能力,可用于更准确的CHF的预测或者CHF关系式的开发。

Claims (7)

1.基于阻力分布包含格架搅混效应的子通道分析方法,其特征在于,包括以下步骤:
1)预设待分析的反应堆堆芯的CHF值和CHF位置的预测值的准确度;
2)收集搅混格架在不同工况下的实验数据;
所述搅混格架为待分析的反应堆堆芯的搅混格架,或包含待分析的反应堆堆芯搅混格架在内的多种搅混格架;
所述实验数据包括至少四类:第一类和第二类实验数据为棒束轴向和径向非均匀加热工况下的CHF实验获得的CHF值和CHF位置,其余实验数据是在棒束通道压力分布、棒束通道流速分布、搅混实验获得的出口温度分布以及棒束通道流场温度中任选至少两类;
3)采取以下任一方法建立待分析的反应堆堆芯的搅混格架的动量源项关系式:
方法A)利用待分析的反应堆堆芯的搅混格架在不同工况下的至少四类实验数据直接拟合动量源项关系式;
方法B)利用待分析的反应堆堆芯的搅混格架在不同工况下的至少四类实验数据标定计算流体动力学软件,再用该软件在标定的范围内计算局部热工水力参数,拟合动量源项关系式;
方法C)利用所收集的多种搅混格架在不同工况下的至少四类实验数据拟合与所收集的多种搅混格架相匹配的动量源项通用关系式,再由待分析的反应堆堆芯的搅混格架在不同工况下的实验数据求得动量源项通用关系式的系数,最终获得反映该搅混格架关键部件搅混性能的动量源项关系式;所述关键部件包括搅混翼、条带、刚凸、弹簧和焊点;
4)在子通道程序中添加步骤3)获得的动量源项关系式,再用该子通道程序计算待分析的反应堆堆芯的热工水力参数,从中得到该反应堆堆芯不同工况下CHF值和CHF位置的预测值;
5)分别判断该反应堆堆芯不同工况下CHF值的预测值与步骤2)中所收集的CHF值之间的比值,以及不同工况下CHF位置的预测值与步骤2)中所收集的CHF位置之间的差值是否满足步骤1)中所预设的准确度;若任意一项不满足,则对子通道程序进行优化,再重复步骤4)和5);
6)输出待分析反应堆堆芯的CHF值和CHF位置的预测值。
2.根据权利要求1所述的基于阻力分布包含格架搅混效应的子通道分析方法,其特征在于:所述步骤3)的方法C)中拟合动量源项关系式的方法具体如下:
C1)将收集的同一类实验数据进行对比,找出与格架搅混性能相关的几何结构参数和局部热工水力参数;
C2)选择搅混格架的多个几何结构参数和局部热工水力参数作为动量源项通用关系式的变量;
C3)结合收集的实验数据和选择的变量,采用最小二乘法拟合动量源项通用关系式;
C4)针对待分析的反应堆堆芯搅混格架的实验数据确定动量源项通用关系式中的系数,最终得到动量源项关系式。
3.根据权利要求2所述的基于阻力分布包含格架搅混效应的子通道分析方法,其特征在于:所述步骤C3)中所拟合的动量源项通用关系式包括轴向动量源项通用关系式ΦA和横向动量源项通用关系式ΦL,具体如下:
Figure FDA0002221325140000021
Figure FDA0002221325140000022
式中:
A″W是包含格架时的润湿周长,单位为m;
ρ是流体密度,单位为kg/m3
Vtotal是流场局部速度,单位为m/s;
AR是不包含格架时的润湿周长,单位为m;
θ是流场局部速度与棒束方向的夹角,单位为度;它是流场的局部轴向速度和局部横向速度的函数,其计算式可表达如下:
Figure FDA0002221325140000023
D″V是包含格架时的子通道当量直径,单位为m;
P是子通道的湿周,单位为m;
u是棒束轴向分速度,单位为m/s;
v是棒束横向分速度,单位为m/s;
v1是搅混翼法向分速度,单位为m/s;
α是搅混翼与棒束方向的夹角,单位为度;
Ku,Kv,Ku1和Kv1是动量源项通用关系式中对应待分析的反应堆堆芯的搅混格架的系数;Ku,Kv,Ku1和Kv1的值跟该搅混格架的几何结构密切相关,由该搅混格架的实验数据来确定。
4.根据权利要求1所述的基于阻力分布包含格架搅混效应的子通道分析方法,其特征在于:所述步骤4)具体如下:
4.1)在子通道程序中添加步骤3)获得的动量源项关系式;同时,确定待分析的反应堆堆芯的几何条件和计算所要满足的残差要求;所述几何条件包括燃料棒个数、燃料棒直径、燃料棒中心间距、棒束长度和棒束流通面积、格架间距;所述残差要求包括求解质量守恒方程、动量守恒方程或能量守恒方程时所要满足的残差要求;
4.2)在添加了动量源项关系式的子通道程序中,将反应堆堆芯的流场按照其轴向功率分布、横向功率分布以及几何条件划分成以子通道为流通截面的多个轴向控制体;所述子通道是由相邻的燃料棒表面和相邻燃料棒的中心连线围成的最小流通通道A,或者由相邻的燃料棒表面、壁面和相邻燃料棒的中心连线的延伸线围成的最小流通通道B或C;
4.3)求解该反应堆堆芯的燃料模型获得热边界条件,或根据该反应堆堆芯的热流密度获得热边界条件;
4.4)求解能量守恒方程、动量守恒方程和质量守恒方程,得到满足残差要求的所有轴向控制体内的热工水力参数;其中动量守恒方程的求解需要将该搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;
4.5)从求解得到的所有轴向控制体内的热工水力参数中提取局部热工水力参数,从中得到该反应堆堆芯不同工况下CHF值和CHF位置的预测值。
5.根据权利要求4所述的基于阻力分布包含格架搅混效应的子通道分析方法,其特征在于:所述步骤4.4)具体如下:
4.4.1)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的能量守恒方程,再根据热边界条件求解该能量守恒方程,获得每个轴向控制体的比焓、燃料棒表面温度、流体密度和流体温度;
4.4.2)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的动量守恒方程,并将该反应堆堆芯中的搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;再根据每个轴向控制体的比焓、燃料棒表面温度、流体密度和流体温度,求解该动量守恒方程,获得横向流速和压力;
4.4.3)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的质量守恒方程;根据每个轴向控制体内的横向流速和压力,求解该质量守恒方程,获得轴向流速;
4.4.4)判断质量守恒方程、动量守恒方程和能量守恒方程是否满足残差要求,若不满足,则按照步骤4.4.1)至步骤4.4.3)的顺序进行反复迭代,若满足,则获得每个轴向控制体内的热工水力参数;所述热工水力参数包括燃料棒表面温度、轴向流速、横向流速、压力、流体密度、流体温度、比焓。
6.根据权利要求4所述的基于阻力分布包含格架搅混效应的子通道分析方法,其特征在于:所述步骤4.4)具体如下:
4.4.1)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的动量守恒方程,并将该反应堆堆芯中的搅混格架的动量源项关系式添加至对应的流体气相、液相和/或液滴相的动量守恒方程中;再根据热边界条件求解该动量守恒方程,获得初始的横向流速和轴向流速;
4.4.2)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的质量守恒方程,根据每个轴向控制体的横向流速和轴向流速,求解该质量守恒方程,获得更新后的横向流速、轴向流速和压力;
4.4.3)以每个轴向控制体为单元,列出对应的流体气相、液相和/或液滴相的能量守恒方程;再根据每个轴向控制体内更新后的横向流速、轴向流速和压力,求解该能量守恒方程,获得比焓;
4.4.4)判断动量守恒方程、质量守恒方程和能量守恒方程是否满足残差要求,若不满足,则按照步骤4.4.1)至步骤4.4.3)的顺序进行反复迭代,若满足,则获得每个轴向控制体内的热工水力参数;所述热工水力参数包括轴向流速、横向流速、压力、流体密度、流体温度、比焓。
7.根据权利要求1所述的基于阻力分布包含格架搅混效应的子通道分析方法,其特征在于:所述步骤4)中添加了动量源项关系式的子通道程序的动量守恒方程具体如下:
轴向动量守恒方程:
Figure FDA0002221325140000041
式中:
下标i和j是子通道编号,其中i表示所要求解的子通道,j表示与子通道i相邻的子通道;
mi是子通道i内的轴向流量,单位为kg/s;
t是时间,单位为s;
Z是单个轴向控制体的轴向高度,单位为m;
ρi是子通道i内的流体密度,单位为kg/m3
Ai是子通道i的流通面积,单位为m2
wij是从子通道i到子通道j的横向流量,单位为kg/(m*s);wij为正值时表示横向流量从子通道i流到子通道j,wij为负值时表示横向流量从子通道j流到子通道i;
u*是施主单元控制体内的轴向流速,单位为m/s;其意义表达如下式:
Figure FDA0002221325140000051
fT是横向湍流搅混摩擦系数,单位为1;
w′ij是从子通道i到子通道j的湍流搅混量,单位为kg/(m*s);
w′ji是从子通道j到子通道i的湍流搅混量,单位为kg/(m*s);
u′i是子通道i的脉动速度,单位为m/s;
u′j是子通道j的脉动速度,单位为m/s;
pi是子通道i内的压力,单位为Pa;
g是重力加速度,单位为m/s2
f是轴向摩擦系数,单位为1;
Dh是子通道的当量直径,单位为m;
ΦA是反映该搅混格架的搅混性能的轴向动量源项关系式;
横向动量守恒方程:
Figure FDA0002221325140000052
式中:
l是横向动量控制体的等效长度,单位为m;
v*是施主单元控制体内的横向流速,单位为m/s;其意义表达如下式:
Figure FDA0002221325140000053
KG是横向流动阻力系数,单位为1;
Sij是子通道i与子通道j之间的间隙宽度,单位为m;
pi和pj分别是子通道i与子通道j内的压力,单位为Pa;
ΦL是反映该搅混格架的搅混性能的横向动量源项关系式。
CN201611179395.1A 2016-12-19 2016-12-19 基于阻力分布包含格架搅混效应的子通道分析方法 Active CN106897478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611179395.1A CN106897478B (zh) 2016-12-19 2016-12-19 基于阻力分布包含格架搅混效应的子通道分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611179395.1A CN106897478B (zh) 2016-12-19 2016-12-19 基于阻力分布包含格架搅混效应的子通道分析方法

Publications (2)

Publication Number Publication Date
CN106897478A CN106897478A (zh) 2017-06-27
CN106897478B true CN106897478B (zh) 2020-04-10

Family

ID=59198821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611179395.1A Active CN106897478B (zh) 2016-12-19 2016-12-19 基于阻力分布包含格架搅混效应的子通道分析方法

Country Status (1)

Country Link
CN (1) CN106897478B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106844853B (zh) * 2016-12-19 2020-01-14 杨保文 结合阻力和能量分布包含格架搅混效应的子通道分析方法
CN107895095A (zh) * 2017-12-15 2018-04-10 西安交通大学 棒束子通道与临界热流密度机理模型的耦合分析方法
CN108875213B (zh) * 2018-06-19 2022-04-12 哈尔滨工程大学 一种反应堆堆芯热工水力多尺度分析方法
CN108955796B (zh) * 2018-07-11 2020-01-14 西安交通大学 一种子通道流量取样装置及方法
CN109215810A (zh) * 2018-09-17 2019-01-15 中国核动力研究设计院 一种燃料组件定位格架局部阻力系数的精确实验获取方法
CN111723450A (zh) * 2019-03-04 2020-09-29 国家电投集团科学技术研究院有限公司 核电厂安全分析方法及系统
CN111723451B (zh) * 2019-03-04 2023-01-24 国家电投集团科学技术研究院有限公司 一种牛顿-拉弗森算法的子通道求解方法
CN110659447B (zh) * 2019-09-02 2022-10-25 四川腾盾科技有限公司 一种基于影响因子残差排序的隐式解法
CN110705184B (zh) * 2019-09-26 2022-07-15 哈尔滨工程大学 一种反应堆堆芯精细化数值求解的虚拟体积力动量源法
CN110807246B (zh) * 2019-09-29 2022-07-08 哈尔滨工程大学 一种Sub栅元尺度的反应堆热工水力控制体划分方法
CN111581806B (zh) * 2020-04-30 2020-12-04 中国核动力研究设计院 瞬变外力对动态自反馈条件下通道内chf的影响分析方法
CN115130323B (zh) * 2022-07-21 2023-10-13 中国核动力研究设计院 一种适用于棒束通道的相间阻力分析方法及装置
CN115525998B (zh) * 2022-09-23 2023-07-04 西安交通大学 一种螺旋十字型燃料组件子通道热工参数计算方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491733A (en) * 1992-03-13 1996-02-13 Siemens Power Corporation Nuclear fuel rod assembly apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491733A (en) * 1992-03-13 1996-02-13 Siemens Power Corporation Nuclear fuel rod assembly apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Design and analysis of 19 pin annular fuel rod cluster for pressure tube type boiling water reactor;A.P. Deokule et al.;《Nuclear Engineering and Design》;20140930;全文 *
Development of a thermal-hydraulic subchannel analysis code for motion conditions;Rong Cai et al.;《Progress in Nuclear Energy》;20160904;全文 *
IMPROVEMENT OF MIXING VANE CROSSFLOW MODEL IN SUBCHANNEL ANALYSIS;Hu Mao,et al.;《NURETH-16》;20150904;全文 *
新开发的子通道格架模型的验证;毛虎 等;《第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会论文集》;20150923;全文 *

Also Published As

Publication number Publication date
CN106897478A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN106897478B (zh) 基于阻力分布包含格架搅混效应的子通道分析方法
CN106844853B (zh) 结合阻力和能量分布包含格架搅混效应的子通道分析方法
Ozden et al. Shell side CFD analysis of a small shell-and-tube heat exchanger
Andersson et al. Computational fluid dynamics for engineers
Brockmeyer et al. Numerical simulations for determination of minimum representative bundle size in wire wrapped tube bundles
De Amicis et al. Experimental and numerical study of the laminar flow in helically coiled pipes
Balaton et al. Operator training simulator process model implementation of a batch processing unit in a packaged simulation software
Chuang et al. Vertical upward two-phase flow CFD using interfacial area transport equation
Rohde et al. A blind, numerical benchmark study on supercritical water heat transfer experiments in a 7-rod bundle
Blyth et al. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
Abushammala et al. Optimal design of helical heat/mass exchangers under laminar flow: CFD investigation and correlations for maximal transfer efficiency and process intensification performances
Toptan et al. Implementation and assessment of wall friction models for LWR core analysis
Midoux et al. The theory of parallel channels manifolds (Ladder networks) revisited part 1: Discrete mesoscopic modelling
Jeong et al. A semi-implicit numerical scheme for a transient two-fluid three-field model on an unstructured grid
Avramova CTF/STAR-CD off-line coupling for simulation of crossflow caused by mixing vane spacers in rod bundles
Jaeger Empirical models for liquid metal heat transfer in the entrance region of tubes and rod bundles
Valette Analysis of subchannel and rod bundle PSBT experiments with CATHARE 3
Jentz Thermohydraulic and Mechanical Modeling of Printed Circuit Heat Exchangers for Next Generation Nuclear Service
Vegendla et al. Development and validation of a conjugate heat transfer model for the two-phase CFD code NEK-2P
Porter Sensitivity and Uncertainty Study of CTF Using the Uncertainty Analysis in Modeling Benchmark
Facchini et al. Development and Validation of the Two-Phase Flow Analysis Capability of a Drift-flux Model Based Core Thermal-Hydraulics Code ESCOT
Bovati et al. Implementation of a CFD methodology for computing subchannel friction factors and split parameters in wire-wrapped rod bundles
Yildiz et al. Large eddy simulation of 5-tube bundle helical coil steam generator test section
Pointer et al. Solution Verification and Spatial Uncertainty Quantification for CFD Simulations of Nuclear Fuel Bundle Flows
Feng et al. Evaluation of turbulence modeling approaches for the prediction of cross-flow in a helical tube bundle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200707

Address after: Room 413, Chuangye building, No.1, Changjiang Road, Jiaozhou economic and Technological Development Zone, Qingdao, Shandong Province

Patentee after: Qingdao denang Innovation Technology Co., Ltd

Address before: New York State

Patentee before: Yang Baowen