CN106895861A - 一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集方法 - Google Patents

一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集方法 Download PDF

Info

Publication number
CN106895861A
CN106895861A CN201710042001.6A CN201710042001A CN106895861A CN 106895861 A CN106895861 A CN 106895861A CN 201710042001 A CN201710042001 A CN 201710042001A CN 106895861 A CN106895861 A CN 106895861A
Authority
CN
China
Prior art keywords
fiber grating
modules
photodetector
fiber
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710042001.6A
Other languages
English (en)
Other versions
CN106895861B (zh
Inventor
胡元华
万生鹏
曾少航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201710042001.6A priority Critical patent/CN106895861B/zh
Publication of CN106895861A publication Critical patent/CN106895861A/zh
Application granted granted Critical
Publication of CN106895861B publication Critical patent/CN106895861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提出了一种基于多个A/D模块采样的高分辨率光纤光栅反射谱采集方法,用单片机控制多个A/D模块产生时序分别对法珀腔可调谐滤波器扫描到的光纤光栅反射谱进行数据采集,提高光纤光栅反射谱范围内所采集的频谱点数,提高光纤光栅反射谱的分辨率;本发明具体实现步骤如下:搭建实验装置,宽带光源出来的光经F‑P腔可调谐滤波器后经过环形器进入光纤光栅;从光纤光栅反射回来的光经过光环形器后进入光电探测器;经光电探测器出来的电信号分成N路,每路都经过A/D模块转换后进入STM32单片机;由STM32单片机产生每路A/D模块采样的时序;将每路A/D模块采集到的数据按时序组合起来,就可以恢复光纤光栅反射谱数据。

Description

一种基于多个A/D模块采样的高分辨率光纤光栅反射谱采集 方法
技术领域
本发明涉及的是光纤光栅反射谱采集技术,具体为一种基于多个A/D模块采样的高分辨率光纤光栅反射谱采集方法。
背景技术
光纤光栅传感技术在许多领域获得广泛应用。在光纤光栅传感中,为了提高测量精度,必须提高光纤光栅反射谱的测量分辨率,这需要提升解调系统中核心色散部件,如体光栅、F-P腔(珐珀腔)可调谐滤波器的光谱分辨率。然而,这些色散部件的光谱分辨率有限,这导致在每一个光纤光栅反射谱中一般只能采集到几个频谱数据,反射谱峰值位置可能采集不到。因此,在实际应用中往往采用谱线拟合的方法来获取光纤光栅反射谱的峰值,这限制了系统的测量速率。
基于此,本发明提出了一种基于多个A/D模块分时序采集光纤光栅反射谱的快速高分辨率测量方法。
发明内容
本发明采用的技术方案如下:一种基于多个A/D模块采样的高分辨率光纤光栅光谱采集方法,用单片机控制多个A/D模块,由单片机产生时序,按时序分别对法珀腔可调谐滤波器扫描到的光纤光栅反射谱进行数据采集,提高光纤光栅反射谱范围内所采集的频谱点数,提高光纤光栅反射谱的分辨率。
为实现上述目的,本发明具体实现步骤如下:
(1)搭建实验装置,实验装置主要由宽带光源、F-P腔可调谐滤波器、光环形器、光纤光栅、光电探测器、A/D模块、STM32单片机和上位机组成,宽带光源连接F-P腔可调谐滤波器,F-P腔可调谐滤波器连接光环形器,光环形器分别连接光纤光栅、光电探测器,光电探测器分别和若干个A/D模块连接,A/D模块连接STM32单片机,STM32单片机连接上位机;
(2)宽带光源出来的光经F-P腔可调谐滤波器后经过环形器进入光纤光栅;
(3)从光纤光栅反射回来的光经过光环形器后进入光电探测器;
(4)经光电探测器出来的电信号分成N路,每路都经过A/D模块转换后进入STM32单片机;
(5)由STM32单片机产生每路A/D模块采样的时序;
(6)将每路A/D模块采集到的数据按时序组合起来,就可以恢复光纤光栅反射谱数据。
本发明的优点是:通过采用多个A/D模块,由单片机产生时序,用于控制每个A/D模块的采样时间,这样可以用低速A/D模块实现光纤光栅反射谱的高速率采样,从而提高光纤光栅反射谱的分辨率。
附图说明
图1是本发明的系统结构图。
其中,1是宽带光源;2是F-P腔可调谐滤波器;3是光环形器;4是光纤光栅;5是光电探测器;6是第1个A/D模块;7是第2个A/D模块;8是第N个A/D模块;9是STM32单片机;10是上位机。
图2是采用4个A/D模块时采集到的光纤光栅反射谱。
其中,图2中横坐标为波长,纵坐标为归一化功率。
具体实施方式
可以按照图1所示的结构进行。
为实现上述目的,本发明采用图1所示的系统结构。具体实现步骤如下:
(1)按图1搭建实验装置,实验装置主要由宽带光源1、F-P腔可调谐滤波器2、光环形器3、光纤光栅4、光电探测器5、A/D模块(6-8)、STM32单片机9和上位机10组成,宽带光源1连接F-P腔可调谐滤波器2,F-P腔可调谐滤波器2连接光环形器3,光环形器3分别连接光纤光栅4、光电探测器5,光电探测器5分别和若干个A/D模块(6-8)连接,A/D模块(6-8)连接STM32单片机9,STM32单片机9连接上位机10;
(2)宽带光源出来的光经F-P腔(法珀腔)可调谐滤波器后经过环形器进入光纤光栅;
(3)从光纤光栅反射回来的光经过光环形器后进入光电探测器;
(4)经光电探测器出来的电信号分成N路,每路都经过A/D模块转换后进入STM32单片机;
(5)由单片机产生每路A/D模块采样的时序;
(6)将每路A/D模块采集到的数据按时序组合起来,就可以恢复光纤光栅反射谱数据;
在不增加A/D模块速率的情况下,增加A/D模块的数目,就可以增加光纤光栅反射谱中所采集到的频谱数目,采集结果如图2所示。结果显示,采用多个A/D模块,在不提高A/D模块速率的情况下,可以大大提高光纤光栅反射谱的分辨率。
下面结合附图1对本方法作详细阐述。宽带光源1出射的光经F-P腔可调谐滤波器2后变成波长随时间变化的窄带光信号。窄带光信号经光环形器3后进入光纤光栅4,从光纤光栅4反射回来的光经环形器3后进入光电探测器5。从光电探测器5出来的电信号分为N路(N的值取决于所采用的A/D模块数目),由每路A/D模块按时序分别进行采样。第j个A/D模块采样时间为t 0 +iN/R a +(j-1)/R a ,其中,i为采样周期数,t 0为采样的起始时刻,R a N路实现的总采样速率,单路采样速率为R a /N。将所有A/D模块采集到的数据按时序组合,可以采集到图2所示的谱线数据。

Claims (2)

1.一种基于多个A/D模块采样的高分辨率光纤光栅反射谱采集方法,用单片机控制多个A/D模块,由单片机产生时序,按时序分别对法珀腔可调谐滤波器扫描到的光纤光栅反射谱进行数据采集,提高光纤光栅反射谱范围内所采集的频谱点数,提高光纤光栅反射谱的分辨率。
2.根据权利要求1所述的一种基于多个A/D模块采样的高分辨率光纤光栅反射谱采集方法,其特征在于:具体实现步骤如下:
(1)搭建实验装置,实验装置主要由宽带光源、F-P腔可调谐滤波器、光环形器、光纤光栅、光电探测器、A/D模块、STM32单片机和上位机组成,宽带光源连接F-P腔可调谐滤波器,F-P腔可调谐滤波器连接光环形器,光环形器分别连接光纤光栅、光电探测器,光电探测器分别和若干个A/D模块连接,A/D模块连接STM32单片机,STM32单片机连接上位机;
(2)宽带光源出来的光经F-P腔可调谐滤波器后经过环形器进入光纤光栅;
(3)从光纤光栅反射回来的光经过光环形器后进入光电探测器;
(4)经光电探测器出来的电信号分成N路,每路都经过A/D模块转换后进入STM32单片机;
(5)由STM32单片机产生每路A/D模块采样的时序;
(6)将每路A/D模块采集到的数据按时序组合起来,就可以恢复光纤光栅反射谱数据。
CN201710042001.6A 2017-01-20 2017-01-20 一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集方法 Active CN106895861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710042001.6A CN106895861B (zh) 2017-01-20 2017-01-20 一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710042001.6A CN106895861B (zh) 2017-01-20 2017-01-20 一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集方法

Publications (2)

Publication Number Publication Date
CN106895861A true CN106895861A (zh) 2017-06-27
CN106895861B CN106895861B (zh) 2019-05-31

Family

ID=59198658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710042001.6A Active CN106895861B (zh) 2017-01-20 2017-01-20 一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集方法

Country Status (1)

Country Link
CN (1) CN106895861B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763259A (zh) * 2019-11-20 2020-02-07 南昌航空大学 一种具有可变空间分辨率的时域分布式光纤传感方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680489A (en) * 1996-06-28 1997-10-21 The United States Of America As Represented By The Secretary Of The Navy Optical sensor system utilizing bragg grating sensors
JP2000346722A (ja) * 1999-06-07 2000-12-15 Furukawa Electric Co Ltd:The 力学センサ
US7060967B2 (en) * 2004-10-12 2006-06-13 Optoplan As Optical wavelength interrogator
CN102419187A (zh) * 2011-12-13 2012-04-18 上海汉昆光电科技有限公司 一种大容量并行光纤光栅传感分析仪
CN102818531A (zh) * 2012-09-11 2012-12-12 北京航空航天大学 一种基于重叠多光栅的动态应变测量仪
CN102928003A (zh) * 2012-10-31 2013-02-13 西安交通大学 一种具有实时参考的光纤光栅解调系统
CN103162724A (zh) * 2013-03-08 2013-06-19 中北大学 基于动态扫描的光纤光栅传感解调仪及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680489A (en) * 1996-06-28 1997-10-21 The United States Of America As Represented By The Secretary Of The Navy Optical sensor system utilizing bragg grating sensors
JP2000346722A (ja) * 1999-06-07 2000-12-15 Furukawa Electric Co Ltd:The 力学センサ
US7060967B2 (en) * 2004-10-12 2006-06-13 Optoplan As Optical wavelength interrogator
CN102419187A (zh) * 2011-12-13 2012-04-18 上海汉昆光电科技有限公司 一种大容量并行光纤光栅传感分析仪
CN102818531A (zh) * 2012-09-11 2012-12-12 北京航空航天大学 一种基于重叠多光栅的动态应变测量仪
CN102928003A (zh) * 2012-10-31 2013-02-13 西安交通大学 一种具有实时参考的光纤光栅解调系统
CN103162724A (zh) * 2013-03-08 2013-06-19 中北大学 基于动态扫描的光纤光栅传感解调仪及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何彦璋等: "基于FPGA的FBG光纤光栅解调系统", 《计测技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763259A (zh) * 2019-11-20 2020-02-07 南昌航空大学 一种具有可变空间分辨率的时域分布式光纤传感方法

Also Published As

Publication number Publication date
CN106895861B (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN103604446B (zh) 一种基于单探测器的多通道光纤光栅绝对波长解调系统的解调方法
CN103512510B (zh) 基于窄带扫描光源的光纤光栅传感系统及运行方法
CN104457803A (zh) 基于f-p标准具和参考光栅的波长解调系统和方法
CN204594579U (zh) 一种基于微环和阵列波导光栅的片上光谱仪
CN103791937B (zh) 一种分布式光纤传感系统中数据采集的装置与方法
CN104777146A (zh) 一种全光纤拉曼光谱仪
CN106352905A (zh) 一种光纤光栅解调系统及解调仪
CN103308168A (zh) 一种基于法布里-珀罗腔扫描滤波的光谱分辨率增强方法
CN203534538U (zh) 基于窄带扫描光源的光纤光栅传感系统
CN105783951A (zh) 多通道光纤光栅解调仪
CN110048766A (zh) 一种基于窄带光波的快速光纤编码识别系统及识别方法
CN110375781A (zh) 一种ofdr中可变测量范围的自适应数据采集系统
CN1614359A (zh) 实现多通道光纤光栅传感装置高灵敏度测量的方法
CN101271240A (zh) 基于傅立叶域锁模激光器的光纤光栅复用解调方法及设备
CN103033205A (zh) 一种基于数字化可调谐光源的光纤光栅解调仪及其解调方法
CN106895861A (zh) 一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集方法
CN105890779A (zh) 一种用于波长扫描系统的实时波长标定装置及标定方法
CN107270950B (zh) 一种嵌入式段式扫描光纤光栅传感解调系统及方法
CN102419187B (zh) 一种大容量并行光纤光栅传感分析仪
CN106289338A (zh) 光纤光栅解调仪的通道、频率扩展方法及系统
CN206847643U (zh) 一种基于多个a/d模块采样的高分辨率光纤光栅反射谱采集装置
CN110048768B (zh) 一种针对同波长光纤编码组的识别系统及识别方法
CN204388875U (zh) 多通道光纤光栅解调仪
CN102944255B (zh) 数字化光纤光栅解调仪表及方法
CN202067057U (zh) 一种光纤光栅波长的解调装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant