CN106891750B - The control method of electric car and its onboard charger and onboard charger - Google Patents

The control method of electric car and its onboard charger and onboard charger Download PDF

Info

Publication number
CN106891750B
CN106891750B CN201510957049.0A CN201510957049A CN106891750B CN 106891750 B CN106891750 B CN 106891750B CN 201510957049 A CN201510957049 A CN 201510957049A CN 106891750 B CN106891750 B CN 106891750B
Authority
CN
China
Prior art keywords
bridge
control
total time
onboard charger
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510957049.0A
Other languages
Chinese (zh)
Other versions
CN106891750A (en
Inventor
王兴辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201510957049.0A priority Critical patent/CN106891750B/en
Priority to PCT/CN2016/110276 priority patent/WO2017101843A1/en
Publication of CN106891750A publication Critical patent/CN106891750A/en
Application granted granted Critical
Publication of CN106891750B publication Critical patent/CN106891750B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention discloses the control methods of a kind of electric car and its onboard charger and onboard charger, wherein control method includes: when power battery charging, it obtains the charging total time TA for controlling H bridge in the first way and controls the charging total time TB of H bridge in a second manner, and obtain the setting of the charging in each charging cycle time Tx and Ty, the mode controlled when charge initiation H bridge is selected according to the relationship of TA and TB, and H bridge is alternately controlled according to Tx and Ty;When power battery externally discharges, obtains the electric discharge total time TC for controlling H bridge in the first way and control the electric discharge total time TD of H bridge in a second manner, and obtain the setting of the electric discharge in each discharge cycles time Tm and Tn;The mode controlled when externally electric discharge starting H bridge is selected according to the relationship of TC and TD, and H bridge is alternately controlled according to Tm and Tn, so that the fever relative equilibrium of first to fourth switching tube in H bridge, improves the working life of switching tube in H bridge.

Description

The control method of electric car and its onboard charger and onboard charger
Technical field
The present invention relates to electric vehicle engineering field, in particular to a kind of control method of onboard charger of electric car, A kind of onboard charger of electric car and a kind of electric car.
Background technique
Along with electric car be commercialized progress, onboard charger of electric car have become electric car important spare part it One.
Wherein, have much by controlling the method that onboard charger charges to vehicle and vehicle is made externally to discharge, and It mostly uses the control method of single-phase H bridge greatly in the related technology, and the control method of single-phase H bridge is used to generally comprise Bipolar control Method and unipolar control method.
But when using ambipolar control method, 4 switching tubes in H bridge are all in HF switch state, switching loss Higher, the thermal losses of generation is larger;When using unipolar control method, although can solve to use bipolarity control to a certain extent Switching tube thermal losses when method processed, but always controlled according to fixed form in H bridge during vehicle charge or discharge Four switching tubes, partial switch pipe needs belt current to turn off in H bridge, and the problems of excessive heat of the switching tube of belt current shutdown can not obtain It is solved to effective.
Therefore, regardless of using ambipolar control method or unipolar control method, opening in H bridge is not can effectively solve The heating problem for closing pipe, influences the working life of switching tube.
Summary of the invention
The present invention is directed to solve one of the technical problem in above-mentioned technology at least to a certain extent.For this purpose, of the invention First purpose be to propose a kind of control method of onboard charger of electric car, enables to first to fourth in H bridge The fever relative equilibrium of switching tube improves the working life of switching tube in H bridge.
Second object of the present invention is to propose a kind of onboard charger of electric car.Third object of the present invention exists In proposing a kind of electric car.
In order to achieve the above objectives, one aspect of the present invention embodiment proposes a kind of controlling party of onboard charger of electric car Method, the onboard charger include H bridge, and the H bridge is by first switch tube, second switch, third switching tube and the 4th switch Pipe is constituted, and the control method is the following steps are included: when the onboard charger is every time to the power battery of the electric car When being charged, obtains charging total time TA for controlling the H bridge in the first way and control filling for the H bridge in a second manner Electric total time TB, and obtain in the charging process of the power battery in each charging cycle described in first method control The charging setting time Tx of the H bridge and charging setting time Ty that the H bridge is controlled with the second method, and filled described in judgement Relationship between electric total time TA and the charging total time TB;According to charging total time TA and charging total time TB Between relationship select the mode controlled when the onboard charger charge initiation the H bridge, and according to Tx and Ty couples The H bridge alternately control to carry out temperature to the first switch tube, second switch, third switching tube and the 4th switching tube Spend Balance route;When the power battery of the electric car passes through the onboard charger every time externally to be discharged, obtain Electric discharge total time TC of the H bridge is controlled in the first way and controls the electric discharge total time TD of the H bridge in a second manner, and is obtained When taking the electric discharge setting for controlling the H bridge in the discharge process of the power battery in each discharge cycles with the first method Between Tm and time Tn is arranged with the electric discharge that the second method controls the H bridge, and judge electric discharge total time TC and institute State the relationship between electric discharge total time TD;It is selected according to the relationship between the electric discharge total time TC and the electric discharge total time TD The onboard charger externally discharge starting when mode that the H bridge is controlled, and the H bridge is carried out according to Tm and Tn Alternately control is to carry out temperature equalization control to the first switch tube, second switch, third switching tube and the 4th switching tube.
The control method of onboard charger of electric car according to an embodiment of the present invention is obtained when power battery charging The charging total time TA of H bridge is controlled in the first way and controls the charging total time TB of H bridge in a second manner, and obtains power electric It controls the charging setting time Tx of H bridge in the charging process in pond in each charging cycle in the first way and controls in a second manner Time Ty is arranged in the charging of H bridge, then judges the relationship between TA and TB, finally vehicle-mounted according to the relationship selection between TA and TB The mode that H bridge is controlled when charger charge initiation, and H bridge alternately control to first to the according to Tx and Ty Four switching tubes carry out temperature equalization control;When power battery electric discharge, the electric discharge total time TC for controlling H bridge in the first way is obtained Control the electric discharge total time TD of H bridge in a second manner, and obtain in the discharge process of power battery in each discharge cycles with First method controls the electric discharge setting time Tm of H bridge and controls the electric discharge setting time Tn of H bridge in a second manner, and judges TC Relationship between TD, and select onboard charger to control when externally discharging and starting to H bridge according to the relationship between TC and TD The mode of system, and H bridge alternately control to carry out temperature equalization control to first to fourth switching tube according to Tm and Tn.From And make the fever relative equilibrium of each switching tube, the working life of switching tube in H bridge is improved, and then extend onboard charger Life cycle.
In order to achieve the above objectives, a kind of onboard charger of electric car that another aspect of the present invention embodiment proposes, comprising: H bridge, the H bridge are made of first switch tube, second switch, third switching tube and the 4th switching tube;Control module, the control Molding block is obtained when the onboard charger every time charges to the power battery of the electric car and is controlled in the first way It makes charging total time TA of the H bridge and controls the charging total time TB of the H bridge in a second manner, and obtain the power electric Time Tx is arranged and with described in the interior charging for controlling the H bridge with the first method of each charging cycle in the charging process in pond Second method controls the charging setting time Ty of the H bridge, and judges charging total time TA and the charging total time It relationship between TB and vehicle-mounted is filled according to the relationship selection between the charging total time TA and the charging total time TB is described The mode that the H bridge is controlled when electric appliance charge initiation, and the H bridge alternately control to institute according to Tx and Ty It states first switch tube, second switch, third switching tube and the 4th switching tube and carries out temperature equalization control, and described electronic The power battery of automobile passes through to be also used to obtain when the onboard charger is externally discharged every time controls institute in the first way It states electric discharge total time TC of H bridge and controls the electric discharge total time TD of the H bridge in a second manner, and obtain the power battery Time Tm is arranged and with described second in the interior electric discharge for controlling the H bridge with the first method of each discharge cycles in discharge process Mode controls the electric discharge setting time Tn of the H bridge, and judge electric discharge total time TC and electric discharge total time TD it Between relationship and the onboard charger is selected according to the relationship between the electric discharge total time TC and the electric discharge total time TD The mode that externally the H bridge is controlled when electric discharge starting, and the H bridge alternately control to institute according to Tm and Tn It states first switch tube, second switch, third switching tube and the 4th switching tube and carries out temperature equalization control.
Onboard charger of electric car according to an embodiment of the present invention, when power battery charging, control module obtain with First method controls the charging total time TA of H bridge and controls the charging total time TB of H bridge in a second manner, and obtains power battery Charging process in the charging setting time Tx of H bridge controlled in each charging cycle in the first way and control H in a second manner Time Ty is arranged in the charging of bridge, then judges the relationship between TA and TB, and fill according to the relationship selection between TA and TB is vehicle-mounted The mode that H bridge is controlled when electric appliance charge initiation, and H bridge alternately control to first to fourth according to Tx and Ty Switching tube carries out temperature equalization control, and in power battery electric discharge, and control module is also used to obtain controls H in the first way The electric discharge total time TC of bridge and in a second manner the electric discharge total time TD of control H bridge, and obtain in the discharge process of power battery The electric discharge setting time Tm of H bridge is controlled in each discharge cycles in the first way and controls the electric discharge setting of H bridge in a second manner Time Tn, and judge the relationship between TC and TD, and externally discharge according to the relationship selection onboard charger between TC and TD The mode that H bridge is controlled when starting, and according to Tm and Tn to H bridge carry out alternately control with to first to fourth switching tube into Trip temperature Balance route, so that the fever relative equilibrium of each switching tube, improves the working life of switching tube in H bridge, to prolong The life cycle of long onboard charger.
In addition, the embodiment of the present invention also proposed a kind of electric car comprising the vehicle-mounted charging of above-mentioned electric car Device.
The electric car of the embodiment of the present invention, when power battery is charged and discharged by above-mentioned onboard charger When, it can be realized and temperature equalization is carried out to first switch tube, second switch, third switching tube and the 4th switching tube in H bridge Control, so that the fever relative equilibrium of each switching tube, improves the working life of switching tube in H bridge, to extend vehicle-mounted fill The life cycle of electric appliance.
Detailed description of the invention
Figure 1A is the circuit diagram according to the onboard charger of electric car of one embodiment of the invention;
Figure 1B is the circuit diagram according to the onboard charger of electric car of another embodiment of the present invention;
Fig. 1 C is the circuit diagram according to the onboard charger of electric car of another embodiment of the invention;
Fig. 2 is the flow chart according to the control method of the onboard charger of electric car of the embodiment of the present invention;
Fig. 3 is to use first method to control to power battery charging H bridge according to one embodiment of the invention When four switching tubes control waveform diagram;
Fig. 4 is to use second method to control to power battery charging H bridge according to one embodiment of the invention When four switching tubes control waveform diagram;
Fig. 5 be according to the present invention one specific embodiment by onboard charger to power battery charging when control stream Cheng Tu;
Fig. 6 is to be controlled such that power battery is external to H bridge according to the use first method of one embodiment of the invention The control waveform diagram of four switching tubes when electric discharge;
Fig. 7 is to be controlled such that power battery is external to H bridge according to the use second method of one embodiment of the invention The control waveform diagram of four switching tubes when electric discharge;And
Fig. 8 is control when externally being discharged according to the power battery of a specific embodiment of the invention by onboard charger Flow chart.
Specific embodiment
The embodiment of the present invention is described below in detail, examples of the embodiments are shown in the accompanying drawings, wherein from beginning to end Same or similar label indicates same or similar element or element with the same or similar functions.Below with reference to attached The embodiment of figure description is exemplary, it is intended to is used to explain the present invention, and is not considered as limiting the invention.
With reference to the accompanying drawings come describe proposition of the embodiment of the present invention onboard charger of electric car control method, electronic Automobile mounted charger and electric car with the onboard charger.
As shown in figures 1A-c, onboard charger of electric car according to an embodiment of the present invention includes H bridge, and H bridge is by first Switch transistor T 1, second switch T2, third switch transistor T 3 and the 4th switch transistor T 4 are constituted.Wherein, as shown in Figure 1A, the electronic vapour Vehicle onboard charger includes the first inductance L1 and the second inductance L2, and one end or AC network AC of the first inductance L1 and load are just Extreme to be connected, the second inductance L2 is connected with the negative pole end of the other end of load or AC network AC;As shown in Figure 1B, the electronic vapour Vehicle onboard charger only includes an inductance such as the first inductance L1, one end or AC network AC of the first inductance L1 and load Positive terminal is connected;As shown in Figure 1 C, which only includes an inductance such as the first inductance L1, the first electricity Sense L1 is connected with the negative pole end of the other end of load or AC network AC.When onboard charger to the power battery of electric car into When row charging, electric energy can be provided by AC network AC;When power battery is externally discharged by onboard charger, can be Grid-connected electric discharge discharges into AC network AC, is also possible to off-network inversion i.e. inversion powering load.
Also, as shown in Fig. 2, the control method of the onboard charger of electric car of the embodiment of the present invention includes following step It is rapid:
S1, when onboard charger every time charges to the power battery of electric car, acquisition controls H in the first way The charging total time TA of bridge and in a second manner the charging total time TB of control H bridge, and obtain in the charging process of power battery The charging setting time Tx of H bridge is controlled in each charging cycle in the first way and controls the charging setting of H bridge in a second manner Relationship between time Ty, and judgement charging total time TA and the total time TB that charges.
According to one embodiment of present invention, as shown in figure 3, when A controls H bridge in the first way, wherein vehicle-mounted when supplying When the power grid instantaneous voltage of charger is greater than 0, control first switch tube T1 is in opening state always, and controls second switch T2 is in off state always, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, wherein When controlling third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turns on and off, the PWM wave of third switch transistor T 3 is controlled The PWM waveform of shape and the 4th switch transistor T 4 is complementary, and the duty ratio for controlling the PWM waveform of third switch transistor T 3 becomes again from becoming smaller greatly Greatly, the duty ratio for controlling the PWM waveform of the 4th switch transistor T 4 becomes smaller again from small become larger;When the power grid of supply onboard charger is instantaneous When voltage is less than 0, control third switch T3 is in opening state always, and the 4th switch transistor T 4 of control is in and turns off shape always State, and control first switch tube T1 and second switch T2 alternating, complementary turn on and off, wherein in control first switch tube When T1 and second switch T2 alternating, complementary turn on and off, the PWM waveform and second switch T2 of first switch tube T1 are controlled PWM waveform it is complementary, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes larger again from becoming smaller greatly, controls second switch The duty ratio of the PWM waveform of pipe T2 becomes smaller again from small become larger.
Also, as shown in figure 4, when B controls H bridge in a second manner, wherein when the power grid of supply onboard charger is instantaneously electric When pressure is greater than 0, control second switch T2 is in opening state always, and controls first switch tube T1 and be in and turn off shape always State, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, wherein in control third switching tube When T3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, the PWM waveform and the 4th switch transistor T 4 of third switch transistor T 3 are controlled PWM waveform it is complementary, and the duty ratio for controlling the PWM waveform of third switch transistor T 3 becomes smaller again from small become larger, the 4th switch of control The duty ratio of the PWM waveform of pipe T4 becomes larger again from becoming smaller greatly;When supplying the power grid instantaneous voltage of onboard charger less than 0, control It makes the 4th switch transistor T 4 and is in opening state always, and control third switch transistor T 3 and be in off state always, and control the One switch transistor T 1 and second switch T2 alternating, complementary turn on and off, wherein in control first switch tube T1 and second switch When pipe T2 alternating, complementary turns on and off, the PWM waveform of the PWM waveform and second switch T2 that control first switch tube T1 is mutual It mends, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes smaller again from small become larger, controls the PWM wave of second switch T2 The duty ratio of shape becomes larger again from becoming smaller greatly.
S2, according to when the relationship selection onboard charger charge initiation to charge between total time TA and the total time TB that charges couples The mode that H bridge is controlled, and H bridge alternately control to first switch tube, second switch, third according to Tx and Ty Switching tube and the 4th switching tube carry out temperature equalization control.
Wherein, it should be noted that during onboard charger is to power battery charging, if only with first party Formula A controls H bridge, and when network voltage instantaneous value is greater than 0, first switch tube T1 keeps open-minded always, second switch T2 Holding turns off always, and third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, and open in third switch transistor T 3 Induction charging when logical, the 4th switch transistor T 4 turns off in onboard charger is opened in the shutdown of third switch transistor T 3, the 4th switch transistor T 4 Inductive discharge when logical;When network voltage instantaneous value is less than 0, third switch transistor T 3 keeps open-minded always, and the 4th switch transistor T 4 is kept Turn off always, first switch tube T1 and second switch T2 alternating, complementary turn on and off, and open in first switch tube T1, Induction charging when two switch transistor Ts 2 turn off in onboard charger, when first switch tube T1 shutdown, second switch T2 are opened Inductive discharge.To induction charging when being opened due to first switch tube T1 and third switch transistor T 3, it is bigger to open duty, therefore One switch transistor T 1, third switch transistor T 3 can overheat.
Similarly, during onboard charger is to power battery charging, if only with second method B to H bridge into Row control, when network voltage instantaneous value is greater than 0, first switch tube T1 holding is turned off always, and second switch T2 holding is opened always Logical, third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, and open in the 4th switch transistor T 4, third switch Induction charging when pipe T3 is turned off in onboard charger, when the shutdown of the 4th switch transistor T 4, third switch transistor T 3 are opened, inductance is put Electricity;When network voltage instantaneous value is less than 0, the 4th switch transistor T 4 keeps open-minded always, and the holding of third switch transistor T 3 turns off always, the One switch transistor T 1 and second switch T2 alternating, complementary turn on and off, and open in second switch T2, first switch tube T1 Induction charging when shutdown in onboard charger, the inductive discharge when second switch T2 shutdown, first switch tube T1 are opened.By To induction charging when second switch T2 and the 4th switch transistor T 4 are opened, it is bigger to open duty, therefore second switch T2, 4th switch transistor T 4 can overheat.
Therefore, in an embodiment of the present invention, it is controlled such that onboard charger to dynamic on H bridge using first method A When power battery charges, the time that record controls H bridge using first method A, so that available control H bridge in the first way Charging total time TA, then stored;It is controlled such that onboard charger to power electric on H bridge using second method B When pond is charged, the time that record controls H bridge using second method B, so that available control filling for H bridge in a second manner Electric total time TB, is then stored.Then in onboard charger every time to power battery charging when, judge charge total time TA It is finally vehicle-mounted according to the relationship selection between charging total time TA and the total time TB that charges with the relationship between charging total time TB The mode that H bridge is controlled when charger charge initiation.
Specifically, according to one embodiment of present invention, according to the pass between charging total time TA and the total time TB that charges When the mode controlled when system's selection onboard charger charge initiation to H bridge, wherein when to be greater than charging total by charging total time TA When time TB, second method is selected to control H bridge in onboard charger charge initiation, until charging total time TA is equal to Charge total time TB, then carries out alternately control to H bridge further according to Tx and Ty;When charging total time TA is less than charging total time TB When, select first method to control H bridge in onboard charger charge initiation, until charging total time TA is total equal to charging Then time TB carries out alternately control to H bridge further according to Tx and Ty;When the total time TA that charges is equal to charging total time TB, Select first method or second method to carry out alternately control to H bridge according to Tx and Ty when onboard charger charge initiation.
Wherein, alternately control is carried out to H bridge according to Tx and Ty, comprising: when the time using first method control H bridge reaches When Tx, H bridge is controlled using second method, until reaching Ty using the time of second method control H bridge;Or works as and use When the time of second method control H bridge reaches Ty, H bridge is controlled using first method, until controlling H using first method The time of bridge reaches Tx.
That is, being obtained in the first way before onboard charger starts power battery charging from storage region The charging total time TA and the charging total time TB of control H bridge in a second manner for controlling H bridge, then are arranged Tx and Ty, then to filling Electric total time TA and charging total time TB are judged determine it is first to control H bridge using first method according to judging result Still H bridge is first controlled using the second control mode, i.e., the charging total time for controlling H bridge in the first way is obtained from storage region The TA and charging total time TB for controlling H bridge in a second manner, and to the relationship between charging total time TA and the total time TB that charges The purpose judged is the mode to the control of H bridge first selected when confirming onboard charger charge initiation.For example, if obtaining The TA=20 minute, TB=18 minutes arrived then first selects second method B to be controlled such that H bridge vehicle-mounted in this charging Charger is switched to is controlled such that vehicle-mounted charge to H bridge using first method A after the 2 minutes to power battery charging Device until reaching Tx using the time that first method A controls H bridge, then is switched to using second power battery charging Mode B is controlled such that onboard charger to power battery charging, until controlling using second method B H bridge to H bridge Time reach Ty, so complete a charging cycle (i.e. a charge cycle time=Tx+Ty), then be switched to using first Mode A is controlled such that onboard charger to power battery charging, until controlling using first method A H bridge to H bridge Time reach Tx, then switch to and onboard charger, which fills power battery, to be controlled such that H bridge using second method B Electricity carries out repeatedly until reaching Ty using the time that second method B controls H bridge ... ..., realizes and carries out to H bridge It alternately controls, temperature equalization control is carried out to first switch tube, second switch, third switching tube and the 4th switching tube to realize System.And if the TA=18 minute, TB=20 minutes that get, first select first method A to carry out H bridge in this charging It controls so that onboard charger is to power battery charging, and is switched to is controlled using second method B H bridge after the 2 minutes So that onboard charger to power battery charging, until reaching Ty using the time that second method B controls H bridge, then is cut It changes to and onboard charger is controlled such that power battery charging, until using first method A to H bridge using first method A The time controlled H bridge reaches Tx, so completes a charging cycle (i.e. a charge cycle time=Tx+Ty), then It is switched to and onboard charger is controlled such that power battery charging, until using second method to H bridge using second method B The time that B controls H bridge reaches Ty, then switches to and is controlled such that onboard charger to H bridge using first method A To power battery charging, until reaching Tx using the time that first method A controls H bridge ... ..., carry out repeatedly, It realizes and alternately control is carried out to H bridge, to realize to first switch tube, second switch, third switching tube and the 4th switching tube Carry out temperature equalization control.
Certainly, when the charging total time TA got is equal to charging total time TB, in onboard charger charge initiation Onboard charger first directly can be controlled such that power battery charging, until using first party to H bridge using first method A The time that formula A controls H bridge reaches Tx, is switched to and is controlled such that onboard charger pair to H bridge using second method B Power battery charging so completes a charging cycle until reaching Ty using the time that second method B controls H bridge (i.e. a charge cycle time=Tx+Ty), then be switched to and onboard charger is controlled such that H bridge using first method A To power battery charging, until reaching Tx using the time that first method A controls H bridge, then switch to using second Mode B is controlled such that onboard charger to power battery charging, until controlling using second method B H bridge to H bridge Time reach Ty ... ..., carry out repeatedly, realize and alternately control is carried out to H bridge, to realize to first switch tube, the Two switching tubes, third switching tube and the 4th switching tube carry out temperature equalization control.Alternatively, in charging total time TA etc. got In charge total time TB when, directly can also first be used in onboard charger charge initiation second method B to H bridge controlled with Make onboard charger to power battery charging, until reaching Ty using the time that second method B controls H bridge, is switched to Onboard charger is controlled such that power battery charging, until using first method A to H bridge to H bridge using first method A The time controlled reaches Tx, so completes a charging cycle, and be repeated according to such charging cycle, until dynamic Power battery charging complete.
Wherein, mode is chosen in each charging cycle later just according to fixed form i.e. first method or second method control H bridge processed comes to power battery charging, record charging total time when switching mode, for example, controlling H bridge using first method in the ban When, the charging total time for controlling H bridge in the first way that when switching mode records is that this charging obtains when starting from storage region The charging total time for controlling H bridge in the first way taken controls H bridge plus what is recorded in this charging cycle in the first way Charging time.
In one embodiment of the invention, the charging setting time Tx for controlling H bridge in the first way can be equal to second Mode control H bridge charging setting time Ty, thus accurately control first switch tube, second switch, third switching tube and 4th switching tube fever relative equilibrium.
Specifically, according to one embodiment of present invention, as shown in figure 5, above-mentioned onboard charger of electric car Control method the following steps are included:
S501, wave is opened in charging, i.e., when onboard charger is to power battery charging, needs to export control waveform and come to H bridge In switching tube controlled.
S502, read in the first way A control H bridge charging total time TA and in a second manner B control H bridge charging it is total Time TB.
Tx and Ty is arranged in S503.
S504, judges whether TA is greater than TB.If so, executing step S505;If not, executing step S506.
S505 selects second method B to control H bridge, until TA=TB, then executes step S508.
S506, judges whether TA is less than TB.If so, executing step S507;If not, executing step S508 or S509.
S507 selects first method A to control H bridge, until TA=TB, then executes step S509.
S508 is controlled such that onboard charger charges to power battery to H bridge using first method A, and Judge whether this charging terminates in charging process, if so, terminating process, continues to judge if not, returning.
S509 is controlled such that onboard charger charges to power battery to H bridge using second method B, and Judge whether this charging terminates in charging process, if so, terminating process, continues to judge if not, returning.
S510 judges whether reach Tx using the time of first method A control H bridge.If so, executing step S509;Such as Fruit is no, return step S508.
S511 judges whether reach Ty using the time of second method B control H bridge.If so, returning to step S508;If not, return step S509.
Therefore, the control method of the onboard charger of electric car of the embodiment of the present invention can make onboard charger right every time Guarantee that first switch tube, second switch, third switching tube and the fever of the 4th switching tube are relatively flat during power battery charging Weighing apparatus, improves the working life of onboard charger.
S3 is obtained when the power battery of electric car, which passes through onboard charger every time, externally to be discharged with first party Formula controls the electric discharge total time TC of H bridge and controls the electric discharge total time TD of H bridge in a second manner, and obtains the electric discharge of power battery It controls the electric discharge setting time Tm of H bridge in each discharge cycles in the first way in the process and controls putting for H bridge in a second manner Electricity setting time Tn, and the relationship between judgement electric discharge total time TC and the total time TD that discharges.
According to one embodiment of present invention, as shown in fig. 6, when A controls H bridge in the first way, wherein work as vehicle-mounted charge When the external electric discharge instantaneous voltage of device is greater than 0, control first switch tube T1 is in opening state always, and controls second switch T2 is in off state always, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, wherein When controlling third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turns on and off, the PWM wave of third switch transistor T 3 is controlled The PWM waveform of shape and the 4th switch transistor T 4 is complementary, and the duty ratio for controlling the PWM waveform of third switch transistor T 3 becomes again from becoming smaller greatly Greatly, the duty ratio for controlling the PWM waveform of the 4th switch transistor T 4 becomes smaller again from small become larger;When the external electric discharge of onboard charger is instantaneous When voltage is less than 0, control third switch transistor T 3 is in opening state always, and the 4th switch transistor T 4 of control is in and turns off shape always State, and control first switch tube T1 and second switch T2 alternating, complementary turn on and off, wherein in control first switch tube When T1 and second switch T2 alternating, complementary turn on and off, the PWM waveform and second switch T2 of first switch tube T1 are controlled PWM waveform it is complementary, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes larger again from becoming smaller greatly, controls second switch The duty ratio of the PWM waveform of pipe T2 becomes smaller again from small become larger.
Also, as shown in fig. 7, when B controls H bridge in a second manner, wherein when the instantaneous electricity of external electric discharge of onboard charger When pressure is greater than 0, control second switch T2 is in opening state always, and controls first switch tube T1 and be in and turn off shape always State, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, wherein in control third switching tube When T3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, the PWM waveform and the 4th switch transistor T 4 of third switch transistor T 3 are controlled PWM waveform it is complementary, and the duty ratio for controlling the PWM waveform of third switch transistor T 3 becomes smaller again from small become larger, the 4th switch of control The duty ratio of the PWM waveform of pipe T4 becomes larger again from becoming smaller greatly;When the external electric discharge instantaneous voltage of onboard charger is less than 0, control It makes the 4th switch transistor T 4 and is in opening state always, and control third switch transistor T 3 and be in off state always, and control the One switch transistor T 1 and second switch T2 alternating, complementary turn on and off, wherein in control first switch tube T1 and second switch When pipe T2 alternating, complementary turns on and off, the PWM waveform of the PWM waveform and second switch T2 that control first switch tube T1 is mutual It mends, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes smaller again from small become larger, controls the PWM wave of second switch T2 The duty ratio of shape becomes larger again from becoming smaller greatly.
S4 externally discharges starting according to the relationship selection onboard charger between electric discharge total time TC and the total time TD that discharges When mode that H bridge is controlled, and according to Tm and Tn to H bridge alternately control with to first switch tube, second switch, Third switching tube and the 4th switching tube carry out temperature equalization control.
Wherein, it should be noted that during power battery is externally discharged by onboard charger, if only with First method A controls H bridge, and when external discharge voltage instantaneous value is greater than 0, first switch tube T1 keeps open-minded always, the The holding of two switch transistor Ts 2 turns off always, and third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, and in third The shutdown of switch transistor T 3, induction charging of the 4th switch transistor T 4 when opening in onboard charger, are opened in third switch transistor T 3, the 4th Inductive discharge when switch transistor T 4 turns off;When external discharge voltage instantaneous value is less than 0, third switch transistor T 3 keeps open-minded always, the The holding of four switch transistor Ts 4 turns off always, and first switch tube T1 and second switch T2 alternating, complementary turn on and off, and first The shutdown of switch transistor T 1, induction charging of second switch T2 when opening in onboard charger, are opened in first switch tube T1, second Inductive discharge when switch transistor T 2 turns off.To induction charging when being opened due to second switch T2 and the 4th switch transistor T 4, so Two switch transistor Ts 2 and the shutdown of 4 belt current of the 4th switch transistor T, carry out hard switching, therefore second switch T2 and the 4th switch transistor T 4 It will appear superheating phenomenon.
Similarly, during power battery is externally discharged by onboard charger, if only with B pairs of second method H bridge is controlled, and when external discharge voltage instantaneous value is greater than 0, first switch tube T1 holding is turned off always, and second switch T2 is protected To hold open-minded always, third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, and turn off in the 4th switch transistor T 4, Induction charging when third switch transistor T 3 is opened in onboard charger is opened in the 4th switch transistor T 4, third switch transistor T 3 turns off When inductive discharge;When external discharge voltage instantaneous value is less than 0, the 4th switch transistor T 4 keeps open-minded always, and third switch transistor T 3 is protected Hold and turn off always, first switch tube T1 and second switch T2 alternating, complementary turn on and off, and second switch T2 turn off, Induction charging when first switch tube T1 is opened in onboard charger is opened in second switch T2, first switch tube T1 shutdown When inductive discharge.To induction charging when being opened due to first switch tube T1 and third switch transistor T 3, thus first switch tube T1 and The shutdown of 3 belt current of third switch transistor T carries out hard switching, therefore first switch tube T1 and third switch transistor T 3 will appear overheat now As.
Therefore, in an embodiment of the present invention, power battery, which passes through vehicle, to be controlled such that H bridge using first method A When load charger externally discharges, the time that record controls H bridge using first method A, thus available A in the first way The electric discharge total time TC for controlling H bridge, is then stored;Power battery, which passes through, to be controlled such that H bridge using second method B When onboard charger externally discharges, the time that record controls H bridge using second method B, thus available with second party Formula B controls the electric discharge total time TD of H bridge, is then stored.Then pass through onboard charger every time in power battery externally to put When electric, the relationship discharged between total time TC and the total time TD that discharges is judged, finally according to electric discharge total time TC and when discharging total Between relationship selection onboard charger between TD externally discharge the mode that H bridge is controlled when starting.
Specifically, according to one embodiment of present invention, according to the pass between electric discharge total time TC and the total time TD that discharges System's selection onboard charger externally discharge starting when H bridge is controlled mode when, wherein when electric discharge total time TC is greater than putting When electric total time TD, when onboard charger externally discharges starting, selection second method controls H bridge, until when discharging total Between TC be equal to electric discharge total time TD;When the total time TC that discharges is less than electric discharge total time TD, externally discharges and open in onboard charger Selection first method controls H bridge when dynamic, until electric discharge total time TC is equal to electric discharge total time TD;As electric discharge total time TC Equal to electric discharge total time TD when, onboard charger externally discharge starting when selection first method or second method with according to Tm with Tn carries out alternately control to H bridge.
Wherein, alternately control is carried out to H bridge according to Tm and Tn, comprising: when the time using first method control H bridge reaches When Tm, H bridge is controlled using second method, until reaching Tn using the time of second method control H bridge;Or works as and use When the time of second method control H bridge reaches Tn, H bridge is controlled using first method, until controlling H using first method The time of bridge reaches Tm.
That is, before power battery externally discharge and started by onboard charger, from storage region acquisition with the One mode controls the electric discharge total time TC of H bridge and controls the electric discharge total time TD of H bridge in a second manner, then Tm and Tn is arranged, so Judge electric discharge total time TC and electric discharge total time TD determine it is first to control using first method according to judging result afterwards H bridge processed still first controls H bridge using the second control mode, i.e., the electric discharge for controlling H bridge in the first way is obtained from storage region Total time TC and the electric discharge total time TD for controlling H bridge in a second manner, and between electric discharge total time TC and electric discharge total time TD The purpose that is judged of relationship be to confirm the mode to the control of H bridge first selected when onboard charger electric discharge starting.For example, such as The TC=20 minute, TD=18 minutes that fruit gets, then this electric discharge when first select second method B to H bridge controlled with So that power battery is externally discharged by onboard charger, and is switched to H bridge is controlled using first method A after the 2 minutes So that power battery is externally discharged by onboard charger, until being reached using the time that first method A controls H bridge Tm, then be switched to and power battery is externally discharged by onboard charger to be controlled such that H bridge using second method B, until Tn is reached using the time that second method B controls H bridge, so completes a discharge cycles (i.e. when a discharge cycles Between=Tm+Tn), then be switched to and power battery is externally put by onboard charger to be controlled such that H bridge using first method A Electricity, until the time controlled H bridge using first method A reaches Tm, then switch to using second method B to H bridge into Row controls so that power battery is externally discharged by onboard charger, until the time controlled using second method B H bridge Reach Tn ... ..., carry out repeatedly, realize and alternately control is carried out to H bridge, to realize to first switch tube, second switch Pipe, third switching tube and the 4th switching tube carry out temperature equalization control.And if the TC=18 minute got, TD=20 points Clock then first selects first method A to be controlled such that power battery is externally put by onboard charger to H bridge in this electric discharge Electricity, and be switched to power battery is external by onboard charger to be controlled such that H bridge using second method B after the 2 minutes Electric discharge, until the time controlled H bridge using second method B reaches Tn, then be switched to using first method A to H bridge into Row controls so that power battery is externally discharged by onboard charger, until the time controlled using first method A H bridge Reach Tm, so completes a discharge cycles (i.e. a discharge cycles time=Tm+Tn), then be switched to using second method B Power battery is externally discharged by onboard charger to be controlled such that H bridge, until controlling using second method B to H bridge The time of system reaches Tn, then switches to and is controlled such that power battery passes through onboard charger to H bridge using first method A Externally electric discharge carries out repeatedly until reaching Tm using the time that first method A controls H bridge ... ..., realizes to H Bridge carries out alternately control, carries out temperature to first switch tube, second switch, third switching tube and the 4th switching tube to realize Balance route.
Certainly, when the electric discharge total time TC got is equal to electric discharge total time TD, when onboard charger discharges and starts Power battery is externally discharged by onboard charger first directly can be controlled such that H bridge using first method A, until using The time that first method A controls H bridge reaches Tm, is switched to and is controlled such that power electric to H bridge using second method B Pond is externally discharged by onboard charger, until reaching Tn using the time that second method B controls H bridge, is so completed One discharge cycles (i.e. a discharge cycles time=Tm+Tn), then be switched to use first method A to H bridge controlled with Power battery is set externally to discharge by onboard charger, until Tm is reached using the time that first method A controls H bridge, It then switches to and power battery is externally discharged by onboard charger to be controlled such that H bridge using second method B, until adopting Reach Tn with the time that second method B controls H bridge ... ..., carry out repeatedly, realizes and alternately control is carried out to H bridge, Temperature equalization control is carried out to first switch tube, second switch, third switching tube and the 4th switching tube to realize.Alternatively, When the electric discharge total time TC got is equal to electric discharge total time TD, directly can also first be used when onboard charger discharges and starts Second method B is controlled such that power battery is externally discharged by onboard charger to H bridge, until using second method B to H The time that bridge is controlled reaches Tn, is switched to and is controlled such that power battery is filled by vehicle-mounted to H bridge using first method A Electric appliance externally discharges, until reaching Tm using the time that first method A controls H bridge, so completes a discharge cycles, And be repeated according to such discharge cycles, until power battery electric discharge terminates.
Wherein, mode is chosen in each discharge cycles later just according to fixed form i.e. first method or second method control H bridge processed discharges to power battery, record electric discharge total time when switching mode, for example, controlling H bridge using first method in the ban When, the electric discharge total time for controlling H bridge in the first way that when switching mode records is that this electric discharge obtains when starting from storage region The electric discharge total time for controlling H bridge in the first way taken controls H bridge plus what is recorded in this discharge cycles in the first way Discharge time.
In one embodiment of the invention, the electric discharge setting time Tm for controlling H bridge in the first way can be equal to second Mode control H bridge electric discharge setting time Tn, thus accurately control first switch tube, second switch, third switching tube and 4th switching tube fever relative equilibrium.
Specifically, according to one embodiment of present invention, as shown in figure 8, above-mentioned onboard charger of electric car Control method the following steps are included:
Wave is opened in S801, electric discharge, i.e., when power battery is externally discharged by onboard charger, needs to export control waveform Switching tube in H bridge is controlled.
S802, read in the first way A control H bridge electric discharge total time TC and in a second manner B control H bridge electric discharge it is total Time TD.
Tm and Tn is arranged in S803.
S804, judges whether TC is greater than TD.If so, executing step S805;If not, executing step S806.
S805 selects second method B to control H bridge, until TC=TD, then executes step S808.
S806, judges whether TC is less than TD.If so, executing step S807;If not, executing step S808 or S809.
S807 selects first method A to control H bridge, until TC=TD, then executes step S809.
S808 is controlled such that power battery is externally discharged by onboard charger to H bridge using first method A, and Judge whether this electric discharge terminates during discharge, if so, terminating process, continues to judge if not, returning.
S809 is controlled such that power battery is externally discharged by onboard charger to H bridge using second method B, and Judge whether this electric discharge terminates during discharge, if so, terminating process, continues to judge if not, returning.
S810 judges whether reach Tm using the time of first method A control H bridge.If so, executing step S809;Such as Fruit is no, return step S808.
S811 judges whether reach Tn using the time of second method B control H bridge.If so, returning to step S808;If not, return step S809.
Therefore, the control method of the onboard charger of electric car of the embodiment of the present invention can be such that power battery passes through every time Guarantee first switch tube, second switch, third switching tube and the fever of the 4th switching tube in the external discharge process of onboard charger Relative equilibrium improves the working life of onboard charger.
The control method of onboard charger of electric car according to an embodiment of the present invention is obtained when power battery charging The charging total time TA of H bridge is controlled in the first way and controls the charging total time TB of H bridge in a second manner, and obtains power electric It controls the charging setting time Tx of H bridge in the charging process in pond in each charging cycle in the first way and controls in a second manner Time Ty is arranged in the charging of H bridge, then judges the relationship between TA and TB, finally vehicle-mounted according to the relationship selection between TA and TB The mode that H bridge is controlled when charger charge initiation, and H bridge alternately control to first to the according to Tx and Ty Four switching tubes carry out temperature equalization control;When power battery electric discharge, the electric discharge total time TC for controlling H bridge in the first way is obtained Control the electric discharge total time TD of H bridge in a second manner, and obtain in the discharge process of power battery in each discharge cycles with First method controls the electric discharge setting time Tm of H bridge and controls the electric discharge setting time Tn of H bridge in a second manner, and judges TC Relationship between TD, and select onboard charger to control when externally discharging and starting to H bridge according to the relationship between TC and TD The mode of system, and H bridge alternately control to carry out temperature equalization control to first to fourth switching tube according to Tm and Tn.From And make the fever relative equilibrium of each switching tube, the working life of switching tube in H bridge is improved, and then extend onboard charger Life cycle.
As shown in figures 1A-c, onboard charger of electric car according to an embodiment of the present invention includes H bridge and control module Such as MCU (Micro Control Unit, microcontroller).Wherein, H bridge is by first switch tube T1, second switch T2, third Switch transistor T 3 and the 4th switch transistor T 4 are constituted.Control module every time fills the power battery of electric car in onboard charger The charging total time TA for controlling H bridge in the first way is obtained when electric and controls the charging total time TB of H bridge in a second manner, and is obtained Take the charging setting time Tx for controlling H bridge in the charging process of power battery in each charging cycle in the first way and with second Mode controls the charging setting time Ty of H bridge, and relationship and root between judgement charging total time TA and the total time TB that charges H bridge is controlled when according to the relationship selection onboard charger charge initiation to charge between total time TA and the total time TB that charges Mode, and H bridge alternately control to first switch tube T1, second switch T2, third switch transistor T 3 according to Tx and Ty Temperature equalization control is carried out with the 4th switch transistor T 4, and it is external in the power battery of electric car to pass through onboard charger every time It is also used to obtain the electric discharge total time TC for controlling H bridge in the first way when being discharged and controls the electric discharge of H bridge in a second manner Total time TD, and obtain the electric discharge setting for controlling H bridge in the discharge process of power battery in each discharge cycles in the first way Time Tn, and judgement electric discharge total time TC and electric discharge total time TD is arranged in time Tm and the electric discharge for controlling H bridge in a second manner Between relationship and externally discharge and open according to the relationship selection onboard charger between electric discharge total time TC and the total time TD that discharges The mode that H bridge is controlled when dynamic, and H bridge alternately control to open first switch tube T1, second according to Tm and Tn It closes pipe T2, third switch transistor T 3 and the 4th switch transistor T 4 and carries out temperature equalization control.
That is, in an embodiment of the present invention, control module is controlled such that vehicle to H bridge using first method A When carrying charger to power battery charging, the time that record controls H bridge using first method A, thus available with the One mode controls the charging total time TA of H bridge, is then stored;Control module use second method B to H bridge controlled with When making onboard charger to power battery charging, the time that record controls H bridge using second method B, thus available The charging total time TB for controlling H bridge in a second manner, is then stored.Then power battery is filled every time in onboard charger When electric, control module judgement charging total time TA and charge total time TB between relationship, finally according to charging total time TA with Relationship between charging total time TB selects the mode controlled when onboard charger charge initiation H bridge.
Specifically, according to one embodiment of present invention, control module is according to charging total time TA and charging total time TB Between relationship when selecting the mode controlled when onboard charger charge initiation to H bridge, wherein when charging total time TA is big In charge total time TB when, control module selects second method to control H bridge in onboard charger charge initiation, until The total time TA that charges is equal to charging total time TB;When the total time TA that charges is less than charging total time TB, control module is vehicle-mounted First method is selected to control H bridge when charger charge initiation, until charging total time TA is equal to charging total time TB;When When the total time TA that charges is equal to charging total time TB, control module selects first method or the in onboard charger charge initiation Two modes are to carry out alternately control to H bridge according to Tx and Ty.
Also, when control module alternately control to H bridge according to Tx and Ty, wherein when using first method control H bridge Time when reaching Tx, H bridge is controlled using second method, until reaching Ty using the time of second method control H bridge; Or when the time using second method control H bridge reaches Ty, H bridge is controlled using first method, until using the The time that one mode controls H bridge reaches Tx.
That is, being obtained in the first way before onboard charger starts power battery charging from storage region The charging total time TA and the charging total time TB of control H bridge in a second manner for controlling H bridge, then are arranged Tx and Ty, then to filling Electric total time TA and charging total time TB are judged determine it is first to control H bridge using first method according to judging result Still H bridge is first controlled using the second control mode, i.e., the charging total time for controlling H bridge in the first way is obtained from storage region The TA and charging total time TB for controlling H bridge in a second manner, and to the relationship between charging total time TA and the total time TB that charges The purpose judged is the mode to the control of H bridge first selected when confirming onboard charger charge initiation.For example, if obtaining The TA=20 minute, TB=18 minutes arrived then first selects second method B to be controlled such that H bridge vehicle-mounted in this charging Charger is switched to is controlled such that vehicle-mounted charge to H bridge using first method A after the 2 minutes to power battery charging Device until reaching Tx using the time that first method A controls H bridge, then is switched to using second power battery charging Mode B is controlled such that onboard charger to power battery charging, until controlling using second method B H bridge to H bridge Time reach Ty, so complete a charging cycle (i.e. a charge cycle time=Tx+Ty), then be switched to using first Mode A is controlled such that onboard charger to power battery charging, until controlling using first method A H bridge to H bridge Time reach Tx, then switch to and onboard charger, which fills power battery, to be controlled such that H bridge using second method B Electricity carries out repeatedly until reaching Ty using the time that second method B controls H bridge ... ..., realizes and carries out to H bridge It alternately controls, temperature equalization control is carried out to first switch tube, second switch, third switching tube and the 4th switching tube to realize System.And if the TA=18 minute, TB=20 minutes that get, first select first method A to carry out H bridge in this charging It controls so that onboard charger is to power battery charging, and is switched to is controlled using second method B H bridge after the 2 minutes So that onboard charger to power battery charging, until reaching Ty using the time that second method B controls H bridge, then is cut It changes to and onboard charger is controlled such that power battery charging, until using first method A to H bridge using first method A The time controlled H bridge reaches Tx, so completes a charging cycle (i.e. a charge cycle time=Tx+Ty), then It is switched to and onboard charger is controlled such that power battery charging, until using second method to H bridge using second method B The time that B controls H bridge reaches Ty, then switches to and is controlled such that onboard charger to H bridge using first method A To power battery charging, until reaching Tx using the time that first method A controls H bridge ... ..., carry out repeatedly, It realizes and alternately control is carried out to H bridge, to realize to first switch tube, second switch, third switching tube and the 4th switching tube Carry out temperature equalization control.
Certainly, when the charging total time TA got is equal to charging total time TB, in onboard charger charge initiation Onboard charger first directly can be controlled such that power battery charging, until using first party to H bridge using first method A The time that formula A controls H bridge reaches Tx, is switched to and is controlled such that onboard charger pair to H bridge using second method B Power battery charging so completes a charging cycle until reaching Ty using the time that second method B controls H bridge (i.e. a charge cycle time=Tx+Ty), then be switched to and onboard charger is controlled such that H bridge using first method A To power battery charging, until reaching Tx using the time that first method A controls H bridge, then switch to using second Mode B is controlled such that onboard charger to power battery charging, until controlling using second method B H bridge to H bridge Time reach Ty ... ..., carry out repeatedly, realize and alternately control is carried out to H bridge, to realize to first switch tube, the Two switching tubes, third switching tube and the 4th switching tube carry out temperature equalization control.Alternatively, in charging total time TA etc. got In charge total time TB when, directly can also first be used in onboard charger charge initiation second method B to H bridge controlled with Make onboard charger to power battery charging, until reaching Ty using the time that second method B controls H bridge, is switched to Onboard charger is controlled such that power battery charging, until using first method A to H bridge to H bridge using first method A The time controlled reaches Tx, so completes a charging cycle, and be repeated according to such charging cycle, until dynamic Power battery charging complete.
Wherein, the charging that the charging setting time Tx of control H bridge can be equal to control H bridge in a second manner in the first way is set Set time Ty.
According to one embodiment of present invention, when control module controls H bridge in the first way, wherein filled when supply is vehicle-mounted When the power grid instantaneous voltage of electric appliance is greater than 0, control module controls first switch tube T1 and is in opening state always, and controls second Switch transistor T 2 is in off state always, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T are opened and closed It is disconnected, wherein when controlling third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turns on and off, to control third switch transistor T 3 PWM waveform and the 4th switch transistor T 4 PWM waveform it is complementary, and control third switch transistor T 3 PWM waveform duty ratio from big Become smaller and become larger again, the duty ratio for controlling the PWM waveform of the 4th switch transistor T 4 becomes smaller again from small become larger;When supply onboard charger When power grid instantaneous voltage is less than 0, control module controls third switch transistor T 3 and is in opening state always, and controls the 4th switching tube T4 is in off state always, and control first switch tube T1 and second switch T2 alternating, complementary turn on and off, wherein When controlling first switch tube T1 and second switch T2 alternating, complementary turns on and off, the PWM wave of first switch tube T1 is controlled The PWM waveform of shape and second switch T2 are complementary, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes again from becoming smaller greatly Greatly, the duty ratio for controlling the PWM waveform of second switch T2 becomes smaller again from small become larger.
Also, when control module controls H bridge in a second manner, wherein when the power grid instantaneous voltage of supply onboard charger When greater than 0, control module controls second switch T2 and is in opening state always, and controls first switch tube T1 and be in and close always Disconnected state, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, wherein open in control third When pass pipe T3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, the PWM waveform and the 4th switch of third switch transistor T 3 are controlled The PWM waveform of pipe T4 is complementary, and the duty ratio for controlling the PWM waveform of third switch transistor T 3 becomes smaller again from small become larger, control the 4th The duty ratio of the PWM waveform of switch transistor T 4 becomes larger again from becoming smaller greatly;When the power grid instantaneous voltage of supply onboard charger is less than 0 When, control module controls the 4th switch transistor T 4 and is in opening state always, and controls third switch transistor T 3 and be in and turn off shape always State, and control first switch tube T1 and second switch T2 alternating, complementary turn on and off, wherein in control first switch tube When T1 and second switch T2 alternating, complementary turn on and off, the PWM waveform and second switch T2 of first switch tube T1 are controlled PWM waveform it is complementary, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes smaller again from small become larger, and controls second switch The duty ratio of the PWM waveform of pipe T2 becomes larger again from becoming smaller greatly.
In an embodiment of the present invention, control module is controlled such that power battery passes through to H bridge using first method A When onboard charger externally discharges, the time that record controls H bridge using first method A, thus available with first party Formula A controls the electric discharge total time TC of H bridge, is then stored;Power battery is controlled such that H bridge using second method B When externally being discharged by onboard charger, the time that record controls H bridge using second method B, thus available with the Two mode B control the electric discharge total time TD of H bridge, are then stored.Then pass through onboard charger pair every time in power battery When outer electric discharge, the relationship discharged between total time TC and the total time TD that discharges is judged, finally according to electric discharge total time TC and electric discharge Relationship selection onboard charger between total time TD externally discharge the mode that is controlled H bridge when starting.
Specifically, according to one embodiment of present invention, control module is according to electric discharge total time TC and electric discharge total time TD Between relationship selection onboard charger externally discharge starting when H bridge is controlled mode when, wherein when total time of discharging When TC is greater than electric discharge total time TD, control module selection second method when onboard charger externally discharges starting carries out H bridge Control, until electric discharge total time TC is equal to electric discharge total time TD;When the total time TC that discharges is less than electric discharge total time TD, mould is controlled Block selection first method when onboard charger externally discharges starting controls H bridge, puts until electric discharge total time TC is equal to Electric total time TD;When the total time TC that discharges is equal to electric discharge total time TD, control module is externally discharged starting in onboard charger When selection first method or second method with according to Tm and Tn to H bridge carry out alternately control.
Also, when control module alternately control to H bridge according to Tm and Tn, wherein when using first method control H bridge Time when reaching Tm, H bridge is controlled using second method, until reaching Tn using the time of second method control H bridge; Or when the time using second method control H bridge reaches Tn, H bridge is controlled using first method, until using the The time that one mode controls H bridge reaches Tm.
That is, before power battery externally discharge and started by onboard charger, from storage region acquisition with the One mode controls the electric discharge total time TC of H bridge and controls the electric discharge total time TD of H bridge in a second manner, then Tm and Tn is arranged, so Judge electric discharge total time TC and electric discharge total time TD determine it is first to control using first method according to judging result afterwards H bridge processed still first controls H bridge using the second control mode, i.e., the electric discharge for controlling H bridge in the first way is obtained from storage region Total time TC and the electric discharge total time TD for controlling H bridge in a second manner, and between electric discharge total time TC and electric discharge total time TD The purpose that is judged of relationship be to confirm the mode to the control of H bridge first selected when onboard charger electric discharge starting.For example, such as The TC=20 minute, TD=18 minutes that fruit gets, then this electric discharge when first select second method B to H bridge controlled with So that power battery is externally discharged by onboard charger, and is switched to H bridge is controlled using first method A after the 2 minutes So that power battery is externally discharged by onboard charger, until being reached using the time that first method A controls H bridge Tm, then be switched to and power battery is externally discharged by onboard charger to be controlled such that H bridge using second method B, until Tn is reached using the time that second method B controls H bridge, so completes a discharge cycles (i.e. when a discharge cycles Between=Tm+Tn), then be switched to and power battery is externally put by onboard charger to be controlled such that H bridge using first method A Electricity, until the time controlled H bridge using first method A reaches Tm, then switch to using second method B to H bridge into Row controls so that power battery is externally discharged by onboard charger, until the time controlled using second method B H bridge Reach Tn ... ..., carry out repeatedly, realize and alternately control is carried out to H bridge, to realize to first switch tube, second switch Pipe, third switching tube and the 4th switching tube carry out temperature equalization control.And if the TC=18 minute got, TD=20 points Clock then first selects first method A to be controlled such that power battery is externally put by onboard charger to H bridge in this electric discharge Electricity, and be switched to power battery is external by onboard charger to be controlled such that H bridge using second method B after the 2 minutes Electric discharge, until the time controlled H bridge using second method B reaches Tn, then be switched to using first method A to H bridge into Row controls so that power battery is externally discharged by onboard charger, until the time controlled using first method A H bridge Reach Tm, so completes a discharge cycles (i.e. a discharge cycles time=Tm+Tn), then be switched to using second method B Power battery is externally discharged by onboard charger to be controlled such that H bridge, until controlling using second method B to H bridge The time of system reaches Tn, then switches to and is controlled such that power battery passes through onboard charger to H bridge using first method A Externally electric discharge carries out repeatedly until reaching Tm using the time that first method A controls H bridge ... ..., realizes to H Bridge carries out alternately control, carries out temperature to first switch tube, second switch, third switching tube and the 4th switching tube to realize Balance route.
Certainly, when the electric discharge total time TC got is equal to electric discharge total time TD, when onboard charger discharges and starts Power battery is externally discharged by onboard charger first directly can be controlled such that H bridge using first method A, until using The time that first method A controls H bridge reaches Tm, is switched to and is controlled such that power electric to H bridge using second method B Pond is externally discharged by onboard charger, until reaching Tn using the time that second method B controls H bridge, is so completed One discharge cycles (i.e. a discharge cycles time=Tm+Tn), then be switched to use first method A to H bridge controlled with Power battery is set externally to discharge by onboard charger, until Tm is reached using the time that first method A controls H bridge, It then switches to and power battery is externally discharged by onboard charger to be controlled such that H bridge using second method B, until adopting Reach Tn with the time that second method B controls H bridge ... ..., carry out repeatedly, realizes and alternately control is carried out to H bridge, Temperature equalization control is carried out to first switch tube, second switch, third switching tube and the 4th switching tube to realize.Alternatively, When the electric discharge total time TC got is equal to electric discharge total time TD, directly can also first be used when onboard charger discharges and starts Second method B is controlled such that power battery is externally discharged by onboard charger to H bridge, until using second method B to H The time that bridge is controlled reaches Tn, is switched to and is controlled such that power battery is filled by vehicle-mounted to H bridge using first method A Electric appliance externally discharges, until reaching Tm using the time that first method A controls H bridge, so completes a discharge cycles, And be repeated according to such discharge cycles, until power battery electric discharge terminates.
Wherein, the electric discharge that the electric discharge setting time Tm of control H bridge can be equal to control H bridge in a second manner in the first way is set Set time Tn.
According to one embodiment of present invention, when control module controls H bridge in the first way, wherein work as onboard charger External electric discharge instantaneous voltage when being greater than 0, control module controls first switch tube T1 and is in opening state always, and controls second Switch transistor T 2 is in off state always, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T are opened and closed It is disconnected, wherein when controlling third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turns on and off, to control third switch transistor T 3 PWM waveform and the 4th switch transistor T 4 PWM waveform it is complementary, and control third switch transistor T 3 PWM waveform duty ratio from big Become smaller and become larger again, the duty ratio for controlling the PWM waveform of the 4th switch transistor T 4 becomes smaller again from small become larger;It is external when onboard charger When discharging instantaneous voltage less than 0, control module controls third switch transistor T 3 and is in opening state always, and controls the 4th switching tube T4 is in off state always, and control first switch tube T1 and second switch T2 alternating, complementary turn on and off, wherein When controlling first switch tube T1 and second switch T2 alternating, complementary turns on and off, the PWM wave of first switch tube T1 is controlled The PWM waveform of shape and second switch T2 are complementary, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes again from becoming smaller greatly Greatly, the duty ratio for controlling the PWM waveform of second switch T2 becomes smaller again from small become larger.
Also, when control module controls H bridge in a second manner, wherein when the external electric discharge instantaneous voltage of onboard charger When greater than 0, control module controls second switch T2 and is in opening state always, and controls first switch tube T1 and be in and close always Disconnected state, and control third switch transistor T 3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, wherein open in control third When pass pipe T3 and 4 alternating, complementary of the 4th switch transistor T turn on and off, the PWM waveform and the 4th switch of third switch transistor T 3 are controlled The PWM waveform of pipe T4 is complementary, and the duty ratio for controlling the PWM waveform of third switch transistor T 3 becomes smaller again from small become larger, control the 4th The duty ratio of the PWM waveform of switch transistor T 4 becomes larger again from becoming smaller greatly;When the external electric discharge instantaneous voltage of onboard charger is less than 0 When, control module controls the 4th switch transistor T 4 and is in opening state always, and controls third switch transistor T 3 and be in and turn off shape always State, and control first switch tube T1 and second switch T2 alternating, complementary turn on and off, wherein in control first switch tube When T1 and second switch T2 alternating, complementary turn on and off, the PWM waveform and second switch T2 of first switch tube T1 are controlled PWM waveform it is complementary, and the duty ratio for controlling the PWM waveform of first switch tube T1 becomes smaller again from small become larger, and controls second switch The duty ratio of the PWM waveform of pipe T2 becomes larger again from becoming smaller greatly.
In an embodiment of the present invention, as shown in Figure 1A or Figure 1B or Fig. 1 C, first switch tube T1, second switch T2, Third switch transistor T 3 and the 4th switch transistor T 4 are that (Insulated Gate Bipolar Transistor, insulated gate are double by IGBT Bipolar transistor), certainly, in other embodiments of the invention, first switch tube T1, second switch T2, third switching tube T3 and the 4th switch transistor T 4 or metal-oxide-semiconductor.
Onboard charger of electric car according to an embodiment of the present invention, when power battery charging, control module obtain with First method controls the charging total time TA of H bridge and controls the charging total time TB of H bridge in a second manner, and obtains power battery Charging process in the charging setting time Tx of H bridge controlled in each charging cycle in the first way and control H in a second manner Time Ty is arranged in the charging of bridge, then judges the relationship between TA and TB, and fill according to the relationship selection between TA and TB is vehicle-mounted The mode that H bridge is controlled when electric appliance charge initiation, and H bridge alternately control to first to fourth according to Tx and Ty Switching tube carries out temperature equalization control, and in power battery electric discharge, and control module is also used to obtain controls H in the first way The electric discharge total time TC of bridge and in a second manner the electric discharge total time TD of control H bridge, and obtain in the discharge process of power battery The electric discharge setting time Tm of H bridge is controlled in each discharge cycles in the first way and controls the electric discharge setting of H bridge in a second manner Time Tn, and judge the relationship between TC and TD, and externally discharge according to the relationship selection onboard charger between TC and TD The mode that H bridge is controlled when starting, and according to Tm and Tn to H bridge carry out alternately control with to first to fourth switching tube into Trip temperature Balance route, so that the fever relative equilibrium of each switching tube, improves the working life of switching tube in H bridge, to prolong The life cycle of long onboard charger.
In addition, the embodiment of the present invention also proposed a kind of electric car comprising the vehicle-mounted charging of above-mentioned electric car Device.
The electric car of the embodiment of the present invention, when power battery is charged and discharged by above-mentioned onboard charger When, it can be realized and temperature equalization is carried out to first switch tube, second switch, third switching tube and the 4th switching tube in H bridge Control, so that the fever relative equilibrium of each switching tube, improves the working life of switching tube in H bridge, to extend vehicle-mounted fill The life cycle of electric appliance.
In the description of the present invention, it is to be understood that, term " center ", " longitudinal direction ", " transverse direction ", " length ", " width ", " thickness ", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom" "inner", "outside", " up time The orientation or positional relationship of the instructions such as needle ", " counterclockwise ", " axial direction ", " radial direction ", " circumferential direction " be orientation based on the figure or Positional relationship is merely for convenience of description of the present invention and simplification of the description, rather than the device or element of indication or suggestion meaning must There must be specific orientation, be constructed and operated in a specific orientation, therefore be not considered as limiting the invention.
In addition, term " first ", " second " are used for descriptive purposes only and cannot be understood as indicating or suggesting relative importance Or implicitly indicate the quantity of indicated technical characteristic.Define " first " as a result, the feature of " second " can be expressed or Implicitly include at least one this feature.In the description of the present invention, the meaning of " plurality " is at least two, such as two, three It is a etc., unless otherwise specifically defined.
In the present invention unless specifically defined or limited otherwise, term " installation ", " connected ", " connection ", " fixation " etc. Term shall be understood in a broad sense, for example, it may be being fixedly connected, may be a detachable connection, or integral;It can be mechanical connect It connects, is also possible to be electrically connected;It can be directly connected, can also can be in two elements indirectly connected through an intermediary The interaction relationship of the connection in portion or two elements, unless otherwise restricted clearly.For those of ordinary skill in the art For, the specific meanings of the above terms in the present invention can be understood according to specific conditions.
In the present invention unless specifically defined or limited otherwise, fisrt feature in the second feature " on " or " down " can be with It is that the first and second features directly contact or the first and second features pass through intermediary mediate contact.Moreover, fisrt feature exists Second feature " on ", " top " and " above " but fisrt feature be directly above or diagonally above the second feature, or be merely representative of First feature horizontal height is higher than second feature.Fisrt feature can be under the second feature " below ", " below " and " below " One feature is directly under or diagonally below the second feature, or is merely representative of first feature horizontal height less than second feature.
In the description of this specification, reference term " one embodiment ", " some embodiments ", " example ", " specifically show The description of example " or " some examples " etc. means specific features, structure, material or spy described in conjunction with this embodiment or example Point is included at least one embodiment or example of the invention.In the present specification, schematic expression of the above terms are not It must be directed to identical embodiment or example.Moreover, particular features, structures, materials, or characteristics described can be in office It can be combined in any suitable manner in one or more embodiment or examples.In addition, without conflicting with each other, the skill of this field Art personnel can tie the feature of different embodiments or examples described in this specification and different embodiments or examples It closes and combines.
Although the embodiments of the present invention has been shown and described above, it is to be understood that above-described embodiment is example Property, it is not considered as limiting the invention, those skilled in the art within the scope of the invention can be to above-mentioned Embodiment is changed, modifies, replacement and variant.

Claims (19)

1. a kind of control method of onboard charger of electric car, the onboard charger includes H bridge, and the H bridge is opened by first Guan Guan, second switch, third switching tube and the 4th switching tube are constituted, which is characterized in that the control method includes following step It is rapid:
When the onboard charger every time charges to the power battery of the electric car, acquisition controls in the first way Charging total time TA of the H bridge and the charging total time TB for controlling the H bridge in a second manner, and obtain the power battery Charging process in the charging setting time Tx of the H bridge controlled with the first method in each charging cycle and with described the Two modes control the charging setting time Ty of the H bridge, and judge charging total time TA and charging total time TB Between relationship;
The onboard charger charging is selected to open according to the relationship between the charging total time TA and the charging total time TB The mode that the H bridge is controlled when dynamic, and the H bridge alternately control to the first switch according to Tx and Ty Pipe, second switch, third switching tube and the 4th switching tube carry out temperature equalization control;
When the power battery of the electric car passes through the onboard charger every time externally to be discharged, obtain with first party Formula controls electric discharge total time TC of the H bridge and controls the electric discharge total time TD of the H bridge in a second manner, and obtains described dynamic In the discharge process of power battery in each discharge cycles with the first method control the H bridge electric discharge setting time Tm and with The second method controls the electric discharge setting time Tn of the H bridge, and judges that electric discharge total time TC and the electric discharge are total Relationship between time TD;
The onboard charger is selected externally to put according to the relationship between the electric discharge total time TC and the electric discharge total time TD The mode that the H bridge is controlled when electrically activating, and the H bridge alternately control to described first according to Tm and Tn Switching tube, second switch, third switching tube and the 4th switching tube carry out temperature equalization control.
2. the control method of onboard charger of electric car as described in claim 1, which is characterized in that total according to the charging Relationship between time TA and the charging total time TB selects to control the H bridge when onboard charger charge initiation When the mode of system, wherein
When charging total time TA being greater than the charging total time TB, institute is selected in the onboard charger charge initiation It states second method to control the H bridge, until charging total time TA is equal to charging total time TB;
When charging total time TA being less than the charging total time TB, institute is selected in the onboard charger charge initiation It states first method to control the H bridge, until charging total time TA is equal to charging total time TB;
When charging total time TA being equal to the charging total time TB, institute is selected in the onboard charger charge initiation First method or the second method are stated to carry out alternately control to the H bridge according to Tx and Ty.
3. the control method of onboard charger of electric car as described in claim 1, which is characterized in that total according to the electric discharge Relationship between time TC and the electric discharge total time TD select the onboard charger externally discharge when starting to the H bridge into When the mode of row control, wherein
When electric discharge total time TC being greater than the electric discharge total time TD, selected when the onboard charger externally discharges starting It selects the second method to control the H bridge, until electric discharge total time TC is equal to electric discharge total time TD;
When electric discharge total time TC being less than the electric discharge total time TD, selected when the onboard charger externally discharges starting It selects the first method to control the H bridge, until electric discharge total time TC is equal to electric discharge total time TD;
When electric discharge total time TC being equal to the electric discharge total time TD, selected when the onboard charger externally discharges starting The first method or the second method are selected to carry out alternately control to the H bridge according to Tm and Tn.
4. the control method of onboard charger of electric car as claimed in any one of claims 1-3, which is characterized in that described Alternately control is carried out to the H bridge according to Tx and Ty, comprising:
When the time for controlling the H bridge using the first method reaching Tx, the H bridge is carried out using the second method Control, until reaching Ty using the time that the second method controls the H bridge;Or
When the time for controlling the H bridge using the second method reaching Ty, the H bridge is carried out using the first method Control, until reaching Tx using the time that the first method controls the H bridge.
5. the control method of onboard charger of electric car as claimed in any one of claims 1-3, which is characterized in that described Alternately control is carried out to the H bridge according to Tm and Tn, comprising:
When the time for controlling the H bridge using the first method reaching Tm, the H bridge is carried out using the second method Control, until reaching Tn using the time that the second method controls the H bridge;Or
When the time for controlling the H bridge using the second method reaching Tn, the H bridge is carried out using the first method Control, until reaching Tm using the time that the first method controls the H bridge.
6. the control method of onboard charger of electric car as claimed in any one of claims 1-3, which is characterized in that with institute When stating the first method control H bridge, wherein
When the power grid instantaneous voltage for supplying the onboard charger is greater than the instantaneous electricity of external electric discharge of 0 or the onboard charger It when pressure is greater than 0, controls the first switch tube and is in opening state always, and control the second switch and be in and turn off always State, and the control third switching tube and the 4th switching tube alternating, complementary turn on and off;
When supplying the power grid instantaneous voltage of the onboard charger less than 0 or the external electric discharge of the onboard charger is instantaneous electric It when pressure is less than 0, controls the third switching tube and is in opening state always, and control the 4th switching tube and be in and turn off always State, and the control first switch tube and the second switch alternating, complementary turn on and off.
7. the control method of onboard charger of electric car as claimed in any one of claims 1-3, which is characterized in that with institute When stating the second method control H bridge, wherein
When the power grid instantaneous voltage for supplying the onboard charger is greater than the instantaneous electricity of external electric discharge of 0 or the onboard charger It when pressure is greater than 0, controls the second switch and is in opening state always, and control the first switch tube and be in and turn off always State, and the control third switching tube and the 4th switching tube alternating, complementary turn on and off;
When supplying the power grid instantaneous voltage of the onboard charger less than 0 or the external electric discharge of the onboard charger is instantaneous electric It when pressure is less than 0, controls the 4th switching tube and is in opening state always, and control the third switching tube and be in and turn off always State, and the control first switch tube and the second switch alternating, complementary turn on and off.
8. the control method of onboard charger of electric car as described in claim 1, which is characterized in that with the first method The charging setting time Tx for controlling the H bridge, which is equal to, is arranged time Ty with the charging that the second method controls the H bridge.
9. the control method of onboard charger of electric car as described in claim 1, which is characterized in that with the first method The electric discharge setting time Tm for controlling the H bridge, which is equal to, is arranged time Tn with the electric discharge that the second method controls the H bridge.
10. a kind of onboard charger of electric car, including H bridge, the H bridge is switched by first switch tube, second switch, third Pipe and the 4th switching tube are constituted, which is characterized in that further include:
Control module, the control module every time charge to the power battery of the electric car in the onboard charger When obtain and control charging total time TA of the H bridge in the first way and control the charging total time of the H bridge in a second manner TB, and obtain in the charging process of the power battery and filling for the H bridge is controlled with the first method in each charging cycle Electricity setting time Tx and with the second method control the H bridge charging be arranged time Ty, and judge it is described charge it is total when Between TA and it is described charging total time TB between relationship and according between charging total time TA and charging total time TB Relationship select the mode controlled when the onboard charger charge initiation the H bridge, and according to Tx and Ty to the H Bridge alternately control equal to carry out temperature to the first switch tube, second switch, third switching tube and the 4th switching tube Weighing apparatus control, and pass through when the onboard charger is externally discharged every time in the power battery of the electric car and be also used to Acquisition controls electric discharge total time TC of the H bridge in the first way and controls the electric discharge total time TD of the H bridge in a second manner, And it obtains in the discharge process of the power battery and is set in each discharge cycles with the electric discharge that the first method controls the H bridge It sets time Tm and time Tn is arranged with the electric discharge that the second method controls the H bridge, and judge electric discharge total time TC It is described electric discharge total time TD between relationship and according to it is described electric discharge total time TC and it is described electric discharge total time TD between pass System selects the onboard charger externally discharge the mode controlled when starting the H bridge, and according to Tm and Tn to the H Bridge alternately control equal to carry out temperature to the first switch tube, second switch, third switching tube and the 4th switching tube Weighing apparatus control.
11. onboard charger of electric car as claimed in claim 10, which is characterized in that the control module is filled according to Electric total time TA and it is described charging total time TB between relationship select the onboard charger charge initiation when to the H bridge into When the mode of row control, wherein
When charging total time TA being greater than the charging total time TB, the control module charges in the onboard charger The second method is selected to control the H bridge when starting, until when charging total time TA is total equal to the charging Between TB;
When charging total time TA being less than the charging total time TB, the control module charges in the onboard charger The first method is selected to control the H bridge when starting, until when charging total time TA is total equal to the charging Between TB;
When charging total time TA being equal to the charging total time TB, the control module charges in the onboard charger The first method or the second method are selected when starting to carry out alternately control to the H bridge according to Tx and Ty.
12. onboard charger of electric car as claimed in claim 10, which is characterized in that the control module is put according to Relationship between electric total time TC and the electric discharge total time TD selects the onboard charger externally to discharge when starting to the H When the mode that bridge is controlled, wherein
When electric discharge total time TC being greater than the electric discharge total time TD, the control module is external in the onboard charger The second method is selected to control the H bridge when electric discharge starting, until electric discharge total time TC is equal to the electric discharge Total time TD;
When electric discharge total time TC being less than the electric discharge total time TD, the control module is external in the onboard charger The first method is selected to control the H bridge when electric discharge starting, until electric discharge total time TC is equal to the electric discharge Total time TD;
When electric discharge total time TC being equal to the electric discharge total time TD, the control module is external in the onboard charger Select the first method or the second method to carry out alternately control to the H bridge according to Tm and Tn when electric discharge starting.
13. the onboard charger of electric car as described in any one of claim 10-12, which is characterized in that the control mould When root tuber alternately control to the H bridge according to Tx and Ty, wherein
When the time for controlling the H bridge using the first method reaching Tx, the H bridge is carried out using the second method Control, until reaching Ty using the time that the second method controls the H bridge;Or
When the time for controlling the H bridge using the second method reaching Ty, the H bridge is carried out using the first method Control, until reaching Tx using the time that the first method controls the H bridge.
14. the onboard charger of electric car as described in any one of claim 10-12, which is characterized in that the control mould When root tuber alternately control to the H bridge according to Tm and Tn, wherein
When the time for controlling the H bridge using the first method reaching Tm, the H bridge is carried out using the second method Control, until reaching Tn using the time that the second method controls the H bridge;Or
When the time for controlling the H bridge using the second method reaching Tn, the H bridge is carried out using the first method Control, until reaching Tm using the time that the first method controls the H bridge.
15. the onboard charger of electric car as described in any one of claim 10-12, which is characterized in that the control mould When block controls the H bridge with the first method, wherein
When the power grid instantaneous voltage for supplying the onboard charger is greater than the instantaneous electricity of external electric discharge of 0 or the onboard charger When pressure is greater than 0, the control module controls the first switch tube and is in opening state always, and controls the second switch It is turned on and off in off state always, and the control third switching tube and the 4th switching tube alternating, complementary;
When supplying the power grid instantaneous voltage of the onboard charger less than 0 or the external electric discharge of the onboard charger is instantaneous electric When pressure is less than 0, the control module controls the third switching tube and is in opening state always, and controls the 4th switching tube It is turned on and off in off state always, and the control first switch tube and the second switch alternating, complementary.
16. the onboard charger of electric car as described in any one of claim 10-12, which is characterized in that the control mould When block controls the H bridge with the second method, wherein
When the power grid instantaneous voltage for supplying the onboard charger is greater than the instantaneous electricity of external electric discharge of 0 or the onboard charger When pressure is greater than 0, the control module controls the second switch and is in opening state always, and controls the first switch tube It is turned on and off in off state always, and the control third switching tube and the 4th switching tube alternating, complementary;
When supplying the power grid instantaneous voltage of the onboard charger less than 0 or the external electric discharge of the onboard charger is instantaneous electric When pressure is less than 0, the control module controls the 4th switching tube and is in opening state always, and controls the third switching tube It is turned on and off in off state always, and the control first switch tube and the second switch alternating, complementary.
17. onboard charger of electric car as claimed in claim 10, which is characterized in that described in first method control The charging setting time Tx of H bridge, which is equal to, is arranged time Ty with the charging that the second method controls the H bridge.
18. onboard charger of electric car as claimed in claim 10, which is characterized in that described in first method control The electric discharge setting time Tm of H bridge, which is equal to, is arranged time Tn with the electric discharge that the second method controls the H bridge.
19. a kind of electric car, which is characterized in that vehicle-mounted including the electric car as described in any one of claim 10-18 Charger.
CN201510957049.0A 2015-12-18 2015-12-18 The control method of electric car and its onboard charger and onboard charger Active CN106891750B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510957049.0A CN106891750B (en) 2015-12-18 2015-12-18 The control method of electric car and its onboard charger and onboard charger
PCT/CN2016/110276 WO2017101843A1 (en) 2015-12-18 2016-12-16 Electric automobile, on-board charger thereof, and on-board charger control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510957049.0A CN106891750B (en) 2015-12-18 2015-12-18 The control method of electric car and its onboard charger and onboard charger

Publications (2)

Publication Number Publication Date
CN106891750A CN106891750A (en) 2017-06-27
CN106891750B true CN106891750B (en) 2019-03-29

Family

ID=59055707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510957049.0A Active CN106891750B (en) 2015-12-18 2015-12-18 The control method of electric car and its onboard charger and onboard charger

Country Status (2)

Country Link
CN (1) CN106891750B (en)
WO (1) WO2017101843A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155802B (en) 2016-12-02 2020-03-31 比亚迪股份有限公司 Electric vehicle, DC-DC converter thereof and control method of DC-DC converter
CN111251912B (en) * 2018-11-30 2022-04-15 比亚迪股份有限公司 Electric automobile, vehicle-mounted charger and control method and control device thereof
CN111262318B (en) * 2018-11-30 2022-05-13 比亚迪股份有限公司 Electric automobile and vehicle-mounted charger control method and device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116604A (en) * 1994-10-14 1996-05-07 Suzuki Motor Corp Battery charger for motor-driven vehicle
CN202443498U (en) * 2011-09-21 2012-09-19 杜柏鑫 Rental car storage battery intelligent management system
CN103595274A (en) * 2013-11-27 2014-02-19 东南大学 Method for controlling double-direction power flow high-frequency isolated active clamping rectifier
CN104670040A (en) * 2015-02-11 2015-06-03 南京航空航天大学 Charging and driving integration topology structure of electric automobile
CN204835609U (en) * 2015-07-24 2015-12-02 比亚迪股份有限公司 Electric automobile and electric automobile's on -vehicle charger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904388B2 (en) * 2000-12-04 2007-04-11 松下電器産業株式会社 Control device for hybrid vehicle
JP4946749B2 (en) * 2007-09-14 2012-06-06 三菱自動車工業株式会社 Vehicle battery control device
CN104009528A (en) * 2013-02-27 2014-08-27 上海海事大学 Storage battery charging circuit and charging method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116604A (en) * 1994-10-14 1996-05-07 Suzuki Motor Corp Battery charger for motor-driven vehicle
CN202443498U (en) * 2011-09-21 2012-09-19 杜柏鑫 Rental car storage battery intelligent management system
CN103595274A (en) * 2013-11-27 2014-02-19 东南大学 Method for controlling double-direction power flow high-frequency isolated active clamping rectifier
CN104670040A (en) * 2015-02-11 2015-06-03 南京航空航天大学 Charging and driving integration topology structure of electric automobile
CN204835609U (en) * 2015-07-24 2015-12-02 比亚迪股份有限公司 Electric automobile and electric automobile's on -vehicle charger

Also Published As

Publication number Publication date
CN106891750A (en) 2017-06-27
WO2017101843A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
CN106904083B (en) The control method of electric car and its onboard charger and onboard charger
CN106891745B (en) The control method of electric car and its onboard charger and onboard charger
CN106891746B (en) The control method of electric car and its onboard charger and onboard charger
CN106891750B (en) The control method of electric car and its onboard charger and onboard charger
US9083065B2 (en) Self heating battery system
CN106891744B (en) The control method of electric car and its onboard charger and onboard charger
CN106891740A (en) The control method of electric automobile and its onboard charger and onboard charger
CN106891737B (en) The control method of electric car and its onboard charger and onboard charger
CN106891749B (en) The control method of electric car and its onboard charger and onboard charger
CN106891739B (en) The control method of electric car and its onboard charger and onboard charger
CN106891751B (en) The control method of electric car and its onboard charger and onboard charger
CN106891742B (en) The control method of electric car and its onboard charger and onboard charger
CN106891748B (en) The control method of electric car and its onboard charger and onboard charger
CN106891738B (en) The control method of electric car and its onboard charger and onboard charger
CN106891747B (en) The control method of electric car and its onboard charger and onboard charger
CN106891736B (en) The control method of electric car and its onboard charger and onboard charger
CN106891743B (en) The control method of electric car and its onboard charger and onboard charger
CN106891752A (en) The control method of electric automobile and its onboard charger and onboard charger
KR101562196B1 (en) Lead acid battery, control apparatus of the lead acid battery for long life time and method of controling the apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant