CN106891018B - 一种纳米多孔金颗粒及其制备方法 - Google Patents

一种纳米多孔金颗粒及其制备方法 Download PDF

Info

Publication number
CN106891018B
CN106891018B CN201710125661.0A CN201710125661A CN106891018B CN 106891018 B CN106891018 B CN 106891018B CN 201710125661 A CN201710125661 A CN 201710125661A CN 106891018 B CN106891018 B CN 106891018B
Authority
CN
China
Prior art keywords
porous
liposome
gold
preparation
gold particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710125661.0A
Other languages
English (en)
Other versions
CN106891018A (zh
Inventor
刘惠玉
张凤荣
汪顺浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201710125661.0A priority Critical patent/CN106891018B/zh
Publication of CN106891018A publication Critical patent/CN106891018A/zh
Application granted granted Critical
Publication of CN106891018B publication Critical patent/CN106891018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Preparation (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种纳米多孔金颗粒及其制备方法。该纳米多孔金颗粒内部为脂质体膜,外层是多孔金。多孔金纳米粒子的尺寸为120~130nm,孔洞的尺寸为30~40nm。所述的纳米多孔金脂质体的制备方法为:将磷脂类化合物与胆固醇溶液均匀分散于氯仿中,在40℃下旋转蒸发去除溶剂,室温下真空干燥,随后加入PBS缓冲溶剂,超声、过膜,加入碳酸钾,氯金酸,避光搅拌4小时后加入10μL盐酸羟胺,即制得纳米多孔金脂质体。本方法操作简易、耗时短、耗材少、需控制的复杂因素少、再现性强。

Description

一种纳米多孔金颗粒及其制备方法
技术领域
本发明属于纳米材料及其制备领域,特别涉及纳米多孔金颗粒及其制备方法。
背景技术
多孔材料因具有高比表面积、低密度、渗透性好、导电性高等特性在针对有机催化、生物大分子检测、药物与基因载体、生物传感等方面有着广阔的应用前景与巨大的潜在价值。金作为典型的贵金属材料,因具有良好的稳定性、生物相容性以及独特的催化特性,在针对有机催化、药物与基因载体、生物传感、癌症治疗等方面有着广阔的应用前景与巨大的潜在价值。多孔纳米金是一种具有纳米级孔和骨架的贵金属材料,其不仅具有多孔材料的丰富特性以及纳米材料特有的小尺寸效应、量子尺寸效应、量子隧道效应等特性,同时也具有贵金属金的荧光增强、生物相容以及催化等特性,使得它能够应用于药物输送和可控释放等领域。纳米多孔金颗粒及其的合成引了科学家们的广泛关注。目前主要基于脱合金法(NanoLett.2007,7:1764-1769)、电化学法(Nano Lett.2008,8:2265-2270)、模板法(Nano Lett.2015,15,:4448-4454)制备纳米多孔金颗粒。但是,这些方法其制备过程皆比较复杂、条件苛刻、成本高;其次,材料本身稳定性差、生物相容性差且在体内可降解性差,代谢周期长;最后,这些方法均难得到金属组成成分较单一且均匀的晶体,这些都极大的限制了多孔纳米金的应用。因此,我们研究了一种利用脂质体作为生物模板来制备形貌可控、尺寸可协调、孔径可调节的多孔纳米金的简易方法。这种生物模板法和传统的制备方法相比,一方面其制备方法简易、耗时短、耗材少、需控制的复杂因素少,无传统的模板法以及去合金法后期的火焰烧结以及化学腐蚀等步骤。另一方面,它借助脂质体这种生物模板,增加其生物相容性以及胶体稳定性,同时避免了由其他无机模板、表面活性剂或稳定剂所引起的高细胞毒性。
发明内容
本发明的目的是提供一种纳米多孔金颗粒;
本发明的另一个目的是提供一种纳米多孔金颗粒的制备方法;
纳米多孔金颗粒具有如下特征:
(1)内部为脂质体膜,外层是多孔金;
(2)具有均一的尺寸,粒径为120~130nm;
(3)具有孔径均一的孔,孔径尺寸为30~40nm;
一种纳米多孔金颗粒的制备方法,其特征在于,该制备方法借助二棕榈酰磷脂酰胆碱和二油酰磷脂酰乙醇胺通过旋蒸、真空干燥、超声水化、过膜后形成的脂质体为生物模板,在其表面利用盐酸羟胺一步还原氯金酸,去离子水洗两遍去除残留溶剂后,即得到纳米多孔金颗粒。
进一步,脂质体生物模板法包括如下步骤:首先将二棕榈酰磷脂酰胆碱和二油酰磷脂酰乙醇胺与胆固醇溶液均匀分散于氯仿中,旋转蒸发去除溶剂则形成脂质体生物膜,室温下真空干燥,去除残留溶剂,随后加入磷酸盐缓冲溶剂进行水化,60~65℃下超声、过膜,制备得到脂质体膜;随后再将上述的脂质体溶液加入到的多孔金生长液中,以所述的脂质体膜为模板,借助所述的多孔金生长液,使得脂质体膜表面沉积生成纳米多孔金颗粒,去离子水洗后,离心即得到纳米多孔金颗粒。
进一步,所述的多孔金生长液的组分包括K2CO3、HAuCl4和盐酸羟胺。
进一步,所述的二棕榈酰磷脂酰胆碱、油酰磷脂酰乙醇胺、胆固醇的浓度分别为:3.6~4.4mg/mL、0.16~0.24mg/mL、1.2mg/mL,K2CO3、HAuCl4和盐酸羟胺的浓度为:10mg/mL、0.16mg/mL、0.3mg/mL。
进一步,所述的分散在室温下进行;
和/或,所述的超声是在水相中进行;所述的超声功率为300W;超声时间为30~40min;
和/或,所述的过膜所用的膜孔径为0.22μm的水膜;
和/或,所述的避光搅拌的转速为300r/s;
和/或,所述的离心的转速为11000r/s。
进一步,旋转蒸发是在40℃下进行的,所在的体系为水相,旋转时间为20min。所述的室温下真空干燥是在真空恒温干燥箱中进行,设定温度为25℃,时间为10~12h。
本发明的纳米多孔金颗粒的制备方法是按照以下步骤进行:
(1)18~22mg二棕榈酰磷脂酰胆碱(DPPC)、0.8~1.2mg油酰磷脂酰乙醇胺(DOPE)和6mg胆固醇溶于5mL氯仿溶剂中,摇晃均匀。于100mL圆底烧瓶中,40℃下,旋转蒸发20~30分钟去除溶剂。在室温下真空干燥10~12小时,去除残留溶剂。然后再加入10mLPBS,选择在50~60℃,即脂质体膜相变温度之上进行水化,功率为300W,水浴条件下超声30~40分钟,后得到澄清透明的脂质体溶液。用0.22μm的微孔过滤水膜过滤,在4℃冰箱保存。
(2)取5mL步骤(1)得到的脂质体溶液,加入0.25mL的碳酸钾,60~100μL氯金酸,10μL盐酸羟胺,避光下,300r/s搅拌4小时,去离子水洗后,11000r/s离心后即得到纳米多孔金颗粒。
本发明的纳米多孔金颗粒的制备方法是以脂质体的为生物模板制备的。该纳米多孔金颗粒的制备方法和传统的制备方法相比,一方面其制备方法简易、耗时短、耗材少、需控制的复杂因素少,无传统的模板法以及去合金法后期的火焰烧结以及化学腐蚀等步骤。另一方面,它借助脂质体这种生物模板,增加其生物相容性以及胶体稳定性,同时避免了由其他无机模板、表面活性剂或稳定剂所引起的高细胞毒性。本发明的纳米多孔金颗粒内部为脂质体膜,外层是多孔金,具有均一的粒径、均一的孔径尺寸和高比表面积。
附图说明
图1:本发明实施例1的TEM图。
图2:本发明实施例1的MTT细胞毒性测试数据柱状图。
具体实施方式
实施例1
(1)18mgDPPC、0.8mgDOPE和6mg胆固醇溶于5mL氯仿溶剂中,摇晃均匀。于100mL圆底烧瓶中,40℃下,旋转蒸发20分钟去除溶剂。在室温下真空干燥10小时,去除残留溶剂。然后再加入10mLPBS,在60℃,功率为300W,水浴条件下超声30分钟,后得到澄清透明的脂质体溶液。用0.22μm的微孔过滤水膜过滤,在4℃冰箱保存。
(2)取5mL步骤(1)得到的脂质体溶液,加入0.25mL的碳酸钾,60μL氯金酸,10μL盐酸羟胺,避光下,300r/s搅拌4小时,去离子水洗后,11000r/s离心后即得到纳米多孔金颗粒。
所得到的纳米多孔金颗粒的平均粒径为122nm,平均孔径为27nm,最大吸收波长为805nm。
实施例2
(1)20mgDPPC、1mgDOPE和6mg胆固醇溶于5mL氯仿溶剂中,摇晃均匀。于100mL圆底烧瓶中,40℃下,旋转蒸发20分钟去除溶剂。在室温下真空干燥11小时,去除残留溶剂。然后再加入10mLPBS,在62℃,功率为300W,水浴条件下超声35分钟,后得到澄清透明的脂质体溶液。用0.22μm的微孔过滤水膜过滤,在4℃冰箱保存。
(2)取5mL步骤(1)得到的脂质体溶液,加入0.25mL的碳酸钾,80μL氯金酸,10μL盐酸羟胺,300r/s避光下搅拌4小时,去离子水洗后,11000r/s离心后即得到纳米多孔金颗粒。
所得到的纳米多孔金颗粒的平均粒径为123nm,平均孔径为26nm。
实施例3
(1)22mgDPPC、1.2mgDOPE和6mg胆固醇溶于5mL氯仿溶剂中,摇晃均匀。于100mL圆底烧瓶中,40℃下,旋转蒸发20分钟去除溶剂。在室温下真空干燥12小时,去除残留溶剂。然后再加入10mLPBS,在65℃,功率为300W,水浴条件下超声35分钟,后得到澄清透明的脂质体溶液。用0.22μm的微孔过滤水膜过滤,在4℃冰箱保存。
(2)取5mL步骤(1)得到的脂质体溶液,加入0.25mL的碳酸钾,100μL氯金酸,10μL盐酸羟胺,避光下,300r/s搅拌4小时,去离子水洗后,11000r/s离心后即得到纳米多孔金颗粒。
所得到的纳米多孔金颗粒的平均粒径为129nm,平均孔径为23nm。

Claims (2)

1.一种纳米多孔金颗粒的制备方法,其特征在于,所述纳米多孔金颗粒内部为脂质体膜,外层是多孔金;多孔金纳米粒子的尺寸为120~130nm,孔洞的尺寸为30~40nm;包括以下步骤:首先将二棕榈酰磷脂酰胆碱和二油酰磷脂酰乙醇胺与胆固醇溶液均匀分散于氯仿中,旋转蒸发去除溶剂则形成脂质体生物膜,室温下真空干燥,去除残留溶剂,随后加入磷酸盐缓冲溶剂进行水化,60~65℃下超声、过膜,制备得到脂质体膜;随后再将上述的脂质体溶液加入到的多孔金生长液中,以所述的脂质体膜为模板,借助所述的多孔金生长液,使得脂质体膜表面沉积生成纳米多孔金颗粒,去离子水洗后,离心即得到纳米多孔金颗粒;
所述的多孔金生长液的组分包括K2CO3、HAuCl4和盐酸羟胺;
所述的二棕榈酰磷脂酰胆碱、油酰磷脂酰乙醇胺、胆固醇的浓度分别为:3.6~4.4mg/mL、0.16~0.24mg/mL、1.2mg/mL,K2CO3、HAuCl4和盐酸羟胺的浓度为:10mg/mL、0.16mg/mL、0.3mg/mL;
旋转蒸发是在40℃下进行的,所在的体系为水相,旋转时间为20min;所述的室温下真空干燥是在真空恒温干燥箱中进行,设定温度为25℃,时间为10~12h。
2.如权利要求1所述的制备方法,其特征在于,所述的分散在室温下进行;
和/或,所述的超声是在水相中进行;所述的超声功率为300W;超声时间为30~40min;
和/或,所述的过膜所用的膜孔径为0.22μm的水膜;
和/或,避光搅拌的转速为300r/s;
和/或,所述的离心的转速为11000r/s。
CN201710125661.0A 2017-03-05 2017-03-05 一种纳米多孔金颗粒及其制备方法 Active CN106891018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710125661.0A CN106891018B (zh) 2017-03-05 2017-03-05 一种纳米多孔金颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710125661.0A CN106891018B (zh) 2017-03-05 2017-03-05 一种纳米多孔金颗粒及其制备方法

Publications (2)

Publication Number Publication Date
CN106891018A CN106891018A (zh) 2017-06-27
CN106891018B true CN106891018B (zh) 2019-10-18

Family

ID=59185528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710125661.0A Active CN106891018B (zh) 2017-03-05 2017-03-05 一种纳米多孔金颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN106891018B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108624B (zh) * 2019-05-08 2020-06-16 中国科学院化学研究所 一种功能化磷脂制备纳米单颗粒的方法及该纳米单颗粒的检测
CN114288247A (zh) * 2021-12-20 2022-04-08 合肥工业大学 一种可控组装的脂质体纳米马达及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805873A (zh) * 2012-05-25 2012-12-05 天津大学 用阳离子脂质体形成金纳米球壳构建基因药物共载体系及制备方法
CN103599070A (zh) * 2013-11-26 2014-02-26 上海交通大学 负载金纳米簇和抗癌药物的脂质体温度荧光探针的制备方法
CN103768600A (zh) * 2014-01-25 2014-05-07 郑州大学 一种磁性热敏脂质体纳米金复合物、制备方法及应用
CN105562715A (zh) * 2016-03-11 2016-05-11 吉林大学 一种多孔金纳米晶的低温水相制备方法
CN106053571A (zh) * 2016-05-25 2016-10-26 辽宁大学 离子液体基聚脂质体‑金纳米粒子复合物的制备及应用
WO2017008059A1 (en) * 2015-07-09 2017-01-12 The Regents Of The University Of California Fusogenic liposome-coated porous silicon nanoparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805870B (zh) * 2012-05-25 2014-04-30 天津大学 具有基因药物时序性释放性能的金纳米球壳载体及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805873A (zh) * 2012-05-25 2012-12-05 天津大学 用阳离子脂质体形成金纳米球壳构建基因药物共载体系及制备方法
CN103599070A (zh) * 2013-11-26 2014-02-26 上海交通大学 负载金纳米簇和抗癌药物的脂质体温度荧光探针的制备方法
CN103768600A (zh) * 2014-01-25 2014-05-07 郑州大学 一种磁性热敏脂质体纳米金复合物、制备方法及应用
WO2017008059A1 (en) * 2015-07-09 2017-01-12 The Regents Of The University Of California Fusogenic liposome-coated porous silicon nanoparticles
CN105562715A (zh) * 2016-03-11 2016-05-11 吉林大学 一种多孔金纳米晶的低温水相制备方法
CN106053571A (zh) * 2016-05-25 2016-10-26 辽宁大学 离子液体基聚脂质体‑金纳米粒子复合物的制备及应用

Also Published As

Publication number Publication date
CN106891018A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
Anik et al. Metal organic frameworks in electrochemical and optical sensing platforms: a review
Van Rie et al. Cellulose–gold nanoparticle hybrid materials
El Jaouhari et al. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin
Zhang et al. Electrospinning design of functional nanostructures for biosensor applications
Bringas et al. Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field
Wang et al. Green and easy synthesis of biocompatible graphene for use as an anticoagulant
Kong et al. Superior effect of TEMPO-oxidized cellulose nanofibrils (TOCNs) on the performance of cellulose triacetate (CTA) ultrafiltration membrane
Peng et al. Micelle-assisted one-pot synthesis of water-soluble polyaniline− gold composite particles
CN103551589B (zh) 花状银微米颗粒的合成方法
CN106891018B (zh) 一种纳米多孔金颗粒及其制备方法
Jakhmola et al. Self-assembly of gold nanowire networks into gold foams: Production, ultrastructure and applications
TW201418040A (zh) 能量儲存裝置、能量儲存裝置之膜與用於印刷薄膜之墨水
CN106141171B (zh) 核壳型超结构纳米材料、其制备方法及应用
CN105800619A (zh) 一种内部亲水外部疏水的氧化硅纳米瓶及其制备方法和应用
Bagherzadeh et al. MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery
TW201536879A (zh) 印刷能量儲存裝置、能量儲存裝置的膜以及用於印刷薄膜的墨水
CN107931628A (zh) 一种负载型花状分级结构纳米贵金属材料及其制备方法
Krichevski et al. Growth of colloidal gold nanostars and nanowires induced by palladium doping
Mo et al. Synthesis of nano-bowls with a Janus template
Luo et al. Synthesis of multi-branched gold nanoparticles by reduction of tetrachloroauric acid with Tris base, and their application to SERS and cellular imaging
CN106882764A (zh) 一种基于主客体作用的水相金纳米棒组装体的制备方法
Andika et al. Organic nanostructure sensing layer developed by AAO template for the application in humidity sensors
Qiu et al. Interfacial engineering of core-shell structured mesoporous architectures from single-micelle building blocks
Yan et al. Carbon dots modified/prepared by supramolecular host molecules and their potential applications: A review
Tódor et al. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant