CN106883484A - 一种用于渗流电模拟实验的导电泡沫复合材料制备方法 - Google Patents

一种用于渗流电模拟实验的导电泡沫复合材料制备方法 Download PDF

Info

Publication number
CN106883484A
CN106883484A CN201710115891.9A CN201710115891A CN106883484A CN 106883484 A CN106883484 A CN 106883484A CN 201710115891 A CN201710115891 A CN 201710115891A CN 106883484 A CN106883484 A CN 106883484A
Authority
CN
China
Prior art keywords
carbon black
preparation
density polyethylene
conductive foam
acetylene carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710115891.9A
Other languages
English (en)
Other versions
CN106883484B (zh
Inventor
郝永卯
刘昀晔
陶柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201710115891.9A priority Critical patent/CN106883484B/zh
Publication of CN106883484A publication Critical patent/CN106883484A/zh
Application granted granted Critical
Publication of CN106883484B publication Critical patent/CN106883484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种适用于渗流电模拟实验的乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法及其适用于电模拟实验的切割处理方法。实验设备由双辊筒炼塑机SK—160B型、平板硫化机XLB型、数字万用表、真空干燥箱DZF—6050型、数字温度计TM—902C、分析扫描电子显微镜、数控泡沫切割机JH—2组成。实验材料有高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、乙烯—醋酸乙烯酯(EVA)、乙炔炭黑(CB平均粒度45~68nm)、过氧化二异丙苯(DCP)、偶氮二甲酰胺(AC)、硬脂酸锌(Zn—St)、白油。本发明的制备工艺简单,成本低廉,经过后期电热切割处理可制成适合电模拟实验需要的地层模型。

Description

一种用于渗流电模拟实验的导电泡沫复合材料制备方法
技术领域
本发明关于油气渗流技术,属于油气田开发领域,特别涉及一种适用于渗流电模拟实验的乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法及其适用于电模拟实验的切割处理方法。
背景技术
水电模拟实验是流体流动过程中一种研究流体渗流机理的方法,以水电相似原理作为依据。水电模拟1918年由苏联科学家发明,于1933年应用于油气藏渗流力学问题的实验研究。水电模拟装置简单易操作、实验周期短,在油气渗流领域应用广泛。
目前,油藏渗流机理实验研究方法主要分为岩心实验和水电模拟实验两类。岩心实验可采用实际油藏岩心进行,与实际地质情况较为接近,可直接测得较准确的产量、压力、含水等变化规律,但是岩心、复杂结构井井筒、裂缝模型等制作难度大,实验周期一般较长,费用较高。水电模拟实验是根据水电相似原理而研制的一种模拟实验装置,可任意加工制作各种复杂井筒和裂缝模型,可以直观方便的对复杂结构井渗流过程进行模拟,并测量出油藏生产时的压力、产能等主要参数,实验周期短,费用低。近年来复杂结构井,如水平井、分支井、多底井、鱼骨刺井等广泛应用于油气田开发领域,岩心实验已不能完全呈现这些新技术方法的渗流机理。鉴于电模拟实验相对于岩心实验在模拟复杂渗流规律方面的优势,近年来电模拟实验日益受到人们的重视。
现有电模拟实验以均匀盐水溶液为导电介质,存在以下问题:第一,所模拟的流体层流流动与实际油藏流体在非均质多孔介质中复杂渗流情况差异较大,实验模拟结果与油田实际偏离较大。第二,现有的电模拟装置主要以NaCl等水溶液为导电介质,电化学窗口一般为1~2V,使用这种导电介质在模拟复杂结构井时,由于测量电压较高、测量时间较长(一般为两个小时)、模拟多段复杂裂缝的铜网电极与电解质溶液接触面积较大,铜网电极与电解质溶液不断进行电化学反应从而导致整个模拟电场非常不稳定,电流和电压测量精度较差,这样对测得的等压线分布规律性影响非常大,不能满足渗流机理研究的需要。第三,由于测量时间较长,溶液不断进行电解反应,电能不断转化为热能与化学能,溶液温度缓慢上升,溶液电导率受温度变化而改变,盐溶液电场的不稳定性加剧,模拟误差增大。
近年来,导电性高分子的研究取得了长足的发展。以乙炔炭黑(ACET)为导电填料,聚乙烯(PE)等高聚物为基体,偶氮二甲酰胺(AC)为发泡剂,过氧化二异丙苯(DCP)为交联剂,采用开炼共混—模压发泡制备的聚乙烯导电泡沫复合材料,兼具有机高分子材料的力学性能及半导体和金属的导电性能,受到人们的重视。聚乙烯导电泡沫复合材料的导电性主要是由导电逾渗网络决定,其室温导电机理是导电粒子相互接触而形成三维导电网络和量子隧道效应,体积电阻率可在10Ω~108Ω·cm之间调整。聚乙烯导电泡沫复合材料密度小、强度高、重量轻、易加工成各种复杂的形状,而且发泡倍率可调、化学稳定性好、制作成本低,在电子工业中的应用日趋广泛,引起了学术界和工业界的广泛兴趣。
发明内容
本发明是将聚乙烯导电泡沫复合材料作为导电介质引入电模拟实验中来代替传统的盐水溶液,以解决现有导电介质存在的上述技术问题。本发明的目的在于,提供一种适用于渗流电模拟实验的聚乙烯导电泡沫复合材料制备方法。
聚乙烯导电泡沫复合材料作为电模拟实验的导电材料具有以下优点:第一,使用了新型导电泡沫复合材料,利用该材料的微小空腔来模拟岩石骨架,具有复杂连通结构的导电骨架来模拟复杂孔隙吼道,这种微观导电逾渗网络可以模拟实际地层的复杂孔隙介质结构,从而在模拟微观非均质方面,与实际地层更相似。第二,可以制备出多层圆柱环状导电泡沫材料紧密契合,制成平面非均质地层模型,从而在模拟平面非均质方面,可以研究传统电模拟系统无法研究的平面非均质油藏模型。第三,可以制备出多层圆柱环状导电泡沫材料紧密纵向排列,制成层间非均质地层模型,从而在模拟层间非均质方面,与实际地层更相似。第四,消除了现有电模拟实验中电解质溶液与电极材料发生电解反应的现象,制备方法简单、成本低,测量方法简单,可使用自动化测量设备,极大提高了电模拟实验的精确性。第五,提供一种可以有效研究非均质地层复杂渗流规律的实验方法。
新型导电泡沫复合材料电模拟系统可以根据油藏地质资料来制作不同夹层数、不同厚度、不同电导率和孔隙度的模型,在制作导电泡沫复合材料过程中通过改变发泡剂用量、导电填料用量可以改变各小层的发泡倍率、电导率,进而可以模拟不同孔隙度、渗透率的储层。在制作导电泡沫复合材料过程中通过数控电热切割机切割各小层的厚度,进而可以模拟具有不同厚度的储层。通过将不同储层契合在一起,进而可以模拟不同夹层数的储层。从而可以更加准确地研究所模拟油藏在非均质储层的渗流规律。
本发明提供一种乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法,实验设备由双辊筒炼塑机SK—160B型、平板硫化机XLB型、数字万用表、真空干燥箱DZF—6050型、数字温度计TM—902C、分析扫描电子显微镜、数控泡沫切割机JH—2组成;实验材料由高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、乙烯—醋酸乙烯酯(EVA)、乙炔炭黑(CB平均粒度45~68nm)、过氧化二异丙苯(DCP)、偶氮二甲酰胺(AC)、硬脂酸锌(Zn—St)、白油。
本发明制备过程如下:
(1)首先将干燥后的HDPE、EVA、LDPE加入双辊开炼机中,混炼5~8min,然后把用白油混合好的乙炔炭黑(CB)加入开炼机中,混炼3~5min,最后把DCP、AC、Zn-St等助剂加入开炼机中薄通3~5次后下片,混炼温度为170℃。
(2)混炼好的试样在常温下放置24h以后,放入发泡模具中,在180℃的模压温度、10Mpa模压压力条件下在平板硫化机上进行发泡,发泡时间为25~30min。
(3)将制得的发泡材料放入真空干燥箱内,在常压100℃条件下热平衡2~3h。
(4)将成型的导电泡沫复合材料放入数控电热切割机进行电热切割处理,加工成满足电模拟实验要求的导电材料。
本发明所述的导电泡沫复合材料模型形状不受限制,可以由数控电热切割机加工为长方体型来模拟层流流动模型和圆柱体型来模拟径向流流动模型。
本发明所述的导电泡沫复合材料有两种基本结构,开孔结构如图2所示,闭孔结构如图3所示,闭孔结构泡沫材料,气泡孤立地分散在聚合物中,作为基体的聚合物是连续相。开孔结构泡沫材料,聚合物中的气泡是破的,气泡间可以连通,泡体中的气相和聚合物都是连续相,这与油藏渗流机理极为相似。在本发明中将不导电的气泡空腔来模拟实际渗流过程中的岩石骨架,将导电的交联高分子材料来模拟实际渗流过程中的岩石孔隙喉道,采用开孔结构或闭孔结构模拟油藏不同区域的复杂渗流情况。
所述的导电泡沫复合材料具有较大的弹性和可压缩性,可以使用铜制细探针直接伸入导电泡沫复合材料内部进行测量,可以进行三维测量。
所述的数控电热切割机可对不同非均质地层模型进行切割加工,将各小层尺寸厚度加工为理想的模型尺寸。
新型导电泡沫复合材料电模拟系统可以根据油藏地质资料来制作各小层不同电导率和孔隙度的模型,从而可以更加准确地研究所模拟油藏在不同渗透率和孔隙度时的渗流规律。
附图说明
图1所示为实施例一中高发泡倍率泡沫体断面的SEM照片;
图2所示为实施例二中中发泡倍率泡沫体断面的SEM照片;
图3所示为实施例三中导电泡沫材料模型结构示意图;
图4所示为实施例四中导电泡沫材料模型结构示意图;
图5所示为实施例五中导电泡沫材料模型结构示意图;
图6所示为实施例六中导电泡沫材料模型结构示意图。
具体实施方式
下面结合具体实施方式对本发明进行详细的说明:
实施例一:
(1)首先将干燥后的HDPE、EVA、LDPE加入双辊开炼机中,组分配比为HDPE:EVA:LDPE=50:40:10,混炼8min,然后把用白油混合好的乙炔炭黑(CB)(填充用量为20phr),加入开炼机中,混炼5min,最后把交联剂DCP添加量为0.5phr(phr为百分含量)、发泡剂偶氮二甲酰胺(AC)添加量为6phr(AC与Zn-St的配比为4:1)加入开炼机中薄通5次后下片,混炼温度为170℃。
(2)混炼好的试样在常温下放置24h以后,放入发泡模具中,在180℃的模压温度、10Mpa模压压力条件下在平板硫化机上进行发泡,发泡时间为30min。
(3)将制得的发泡材料放入真空干燥箱内,在常压100℃条件下热平衡3h。
(4)制得的高发泡倍率泡沫体断面的SEM照片如图1所示。
其中,经测量所制备泡沫材料的泡沫密度约为0.178g/cm3,为高发泡倍率泡沫体,电阻率约为20Ω·cm,泡沫的尺寸为长×宽×高为1m×1m×1m。
实施例二:
(1)首先将干燥后的HDPE、EVA、LDPE加入双辊开炼机中,组分配比为HDPE:EVA:LDPE=50:40:10,混炼4min,然后把用白油混合好的乙炔炭黑(CB)(填充用量为30phr),加入开炼机中,混炼4min,最后把交联剂DCP添加量为0.5phr、发泡剂偶氮二甲酰胺(AC)添加量为4phr(AC与Zn-St的配比为4:1)加入开炼机中薄通4次后下片,混炼温度为170℃。
(2)混炼好的试样在常温下放置24h以后,放入发泡模具中,在180℃的模压温度、10Mpa模压压力条件下在平板硫化机上进行发泡,发泡时间为28min。
(3)将制得的发泡材料放入真空干燥箱内,在常压100℃条件下热平衡2.5h。
(4)制得的高发泡倍率泡沫体断面的SEM照片如图2所示。
其中,经测量所制备泡沫材料的泡沫密度约为0.247g/cm3,为中发泡倍率泡沫体,电阻率约为12Ω·cm,泡沫的尺寸为长×宽×高为1m×1m×1m。
实施例三:
(1)将成型的导电泡沫复合材料放入数控电热切割机进行电热切割处理,将实施例一制得的材料加工成外半径为0.5m,内半径为0.3m的圆柱环。将实施例二制得的材料加工成外半径为0.3m,内半径为0.02m的圆柱环。
(2)将以上制得的两圆柱环紧密嵌套在一起,并在内圆柱环内径插入0.02m的铜制模拟井,如图3所示,其中1—铜制模拟直井,2—外圆柱环,3—内圆柱环,即可进行平面非均质地层电模拟实验。
实施例四:
(1)将成型的导电泡沫复合材料放入数控电热切割机进行电热切割处理,将实施例一制得的材料加工成外半径为0.5m,内半径为0.3m的圆柱环。将实施例二制得的材料加工成外半径为0.5m,内半径为0.3m的圆柱环。
(2)将以上制得的两圆柱环紧密叠放在一起,并在内圆柱环内径插入0.02m的铜制模拟井,如图4所示,其中1—铜制模拟直井,2—圆柱环,3—圆柱环,即可进行层间非均质地层电模拟实验。
实施例五:
(1)将成型的导电泡沫复合材料放入数控电热切割机进行电热切割处理,在导电泡沫材料上切出两个相互连通半径为0.02m的圆柱管道。
(2)如图5所示,在1、2号孔道中分别插入两根顶端带有卡口的铜棒,在到达最深处后,两根铜棒相互卡住紧密结合,即可研究模拟水平井在地层中的电模拟实验。
实施例六:
(1)将多块不同电导率的成型的导电泡沫复合材料放入数控电热切割机进行电热切割处理,按照地层模型的需要,切成可拼接的条带状。如图6所示,其中1—电导率为ρ1孔隙度为厚度为h1的条带状导电泡沫材料,2—电导率为ρ2孔隙度为厚度为h2的条带状导电泡沫材料,3—电导率为ρ3孔隙度为厚度为h3的条带状导电泡沫材料,4—电导率为ρ4孔隙度为厚度为h4的条带状导电泡沫材料,5—电导率为ρ5孔隙度为厚度为h5的条带状导电泡沫材料,6—电导率为ρ6孔隙度为厚度为h6的条带状导电泡沫材料.
(2)如图6所示,再所需的待测点插入模拟注采井,即可进行两口注采井网在沉积相为河流相的平面非均质地层中的电模拟实验。
本发明的特点在于采用模压发泡工艺,进而制得乙炔炭黑填充高密度聚乙烯体系导电泡沫,一方利用导电泡沫较好的可加工性可以一次冲压成型,制成适用于电模拟系统的模型,另一方面,使用数控电热切割机对制得的材料可以进一步加工成适合电模拟实验的形状,拓展其应用领域。
以上对本发明的原理及实施方式进行了阐述,并提供了使用案例,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

1.一种乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法,其特征在于:
由以下步骤实现:
(1)首先将干燥后的HDPE、EVA、LDPE加入双辊开炼机中,混炼5~8min,然后把用白油混合好的乙炔炭黑(CB)加入开炼机中,混炼3~5min,最后把DCP、AC、Zn-St等助剂加入开炼机中薄通3~5次后下片,混炼温度为170℃。
(2)混炼好的试样在常温下放置24h以后,放入发泡模具中,在180℃的模压温度、10Mpa模压压力条件下在平板硫化机上进行发泡,发泡时间为25~30min。
(3)将制得的发泡材料放入真空干燥箱内,在常压100℃条件下热平衡2~3h。
(4)将成型的导电泡沫复合材料放入数控电热切割机进行电热切割处理,加工成满足电模拟实验要求的导电材料。
2.如权利要求1所述的一种乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法,其特征在于根据制得的材料具有不同的电导率,乙炔炭黑(CB)填充用量可以在10phr到40phr之间。
3.如权利要求1所述的一种乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法,其特征在于根据制得的材料具有不同的发泡倍率,发泡剂偶氮二甲酰胺(AC)添加量可以在2phr到8phr之间。
4.如权利要求1所述的一种乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法,其特征在于经过数控电热切割机进行电热切割处理后可以与复杂结构井的铜制模型紧密契合。
5.如权利要求1所述的一种乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法,其特征在于所制得的材料长×宽×高为1m×1m×1m。
6.如权利要求1所述的一种乙炔炭黑填充高密度聚乙烯体系导电泡沫的制备方法,,其特征在于所使用数控电热切割机进行电热切割处理后可以制成平面非均质、层间非均质的地层模型来进行电模拟实验研究。
CN201710115891.9A 2017-03-01 2017-03-01 一种用于渗流电模拟实验的导电泡沫复合材料制备方法 Active CN106883484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710115891.9A CN106883484B (zh) 2017-03-01 2017-03-01 一种用于渗流电模拟实验的导电泡沫复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710115891.9A CN106883484B (zh) 2017-03-01 2017-03-01 一种用于渗流电模拟实验的导电泡沫复合材料制备方法

Publications (2)

Publication Number Publication Date
CN106883484A true CN106883484A (zh) 2017-06-23
CN106883484B CN106883484B (zh) 2019-11-19

Family

ID=59180120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710115891.9A Active CN106883484B (zh) 2017-03-01 2017-03-01 一种用于渗流电模拟实验的导电泡沫复合材料制备方法

Country Status (1)

Country Link
CN (1) CN106883484B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903482A (zh) * 2017-11-07 2018-04-13 广州市欧橡隔热材料有限公司 一种永久防静电、导电eva的制备方法
CN109280240A (zh) * 2018-08-08 2019-01-29 日丰企业(佛山)有限公司 化学交联发泡聚乙烯材料的制备方法及一种螺杆
CN114076727A (zh) * 2022-01-10 2022-02-22 中国空气动力研究与发展中心低速空气动力研究所 一种基于电阻率的冰的孔隙率测量方法
CN115931667A (zh) * 2022-07-26 2023-04-07 中国石油大学(华东) 基于复电导率参数的含水合物沉积物样品渗透率评价方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4294866A1 (en) * 2021-02-18 2023-12-27 Borealis AG Upgraded polyolefin for electrical components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104196527A (zh) * 2014-08-13 2014-12-10 中国石油大学(北京) 多分支井产能模拟系统与多分支井产能模拟实验方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104196527A (zh) * 2014-08-13 2014-12-10 中国石油大学(北京) 多分支井产能模拟系统与多分支井产能模拟实验方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李继新 等: ""炭黑填充PE-HD/EVA/PE-LD 导电发泡复合材料的阻温特性"", 《中国塑料》 *
王宏硕: "《水工建筑物 基本部分》", 31 October 1991, 水利电力出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903482A (zh) * 2017-11-07 2018-04-13 广州市欧橡隔热材料有限公司 一种永久防静电、导电eva的制备方法
CN107903482B (zh) * 2017-11-07 2020-03-17 广州市欧橡隔热材料有限公司 一种永久防静电、导电eva的制备方法
CN109280240A (zh) * 2018-08-08 2019-01-29 日丰企业(佛山)有限公司 化学交联发泡聚乙烯材料的制备方法及一种螺杆
CN114076727A (zh) * 2022-01-10 2022-02-22 中国空气动力研究与发展中心低速空气动力研究所 一种基于电阻率的冰的孔隙率测量方法
CN114076727B (zh) * 2022-01-10 2022-05-13 中国空气动力研究与发展中心低速空气动力研究所 一种基于电阻率的冰的孔隙率测量方法
CN115931667A (zh) * 2022-07-26 2023-04-07 中国石油大学(华东) 基于复电导率参数的含水合物沉积物样品渗透率评价方法
CN115931667B (zh) * 2022-07-26 2024-01-05 中国石油大学(华东) 基于复电导率参数的含水合物沉积物样品渗透率评价方法

Also Published As

Publication number Publication date
CN106883484B (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN106883484B (zh) 一种用于渗流电模拟实验的导电泡沫复合材料制备方法
Wang et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance
Zhang et al. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications
Roman-Manso et al. Electrically functional 3D-architectured graphene/SiC composites
Tayarani-Yoosefabadi et al. Stochastic microstructural modeling of fuel cell gas diffusion layers and numerical determination of transport properties in different liquid water saturation levels
Zhong et al. Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: Simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin
Wang et al. Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor
CN105551831A (zh) 一种碗状氮掺杂碳中空粒子的制备方法及应用
CN107355201A (zh) 一种天然气水合物开发模拟实验装置的使用方法
CN106067383A (zh) 一种基于硫化钴镍核壳三维多级纳米结构的赝电容器正极及其制备方法
Aghvami-Panah et al. A comparison study on polymeric nanocomposite foams with various carbon nanoparticles: adjusting radiation time and effect on electrical behavior and microcellular structure
Si et al. A Comprehensive Review on Measurement and Correlation Development of Capillary Pressure for Two‐Phase Modeling of Proton Exchange Membrane Fuel Cells
You et al. Living architecture: toward energy generating buildings powered by microbial fuel cells
CN107687336A (zh) 一种天然气水合物开发模拟实验装置的一维长管模型系统
CN106869912A (zh) 基于泡沫复合材料的新型非均质储层渗流电模拟系统方法
Liu et al. Simplified method for estimating discharge of microporous ceramic emitters for drip irrigation
Fu et al. Permeability modeling for porous transducer of liquid-circular angular accelerometer
Maslan et al. Simulation of porosity and PTFE content in gas diffusion layer on proton exchange membrane fuel cell performance
CN108415019A (zh) 一种实验测量降水粒子群模型的制作方法
Yang et al. Fractal study of interporosity flow function and shape factor in rough fractured dual porous media
Li et al. Pore-scale study of water and mass transport characteristic in anion exchange membrane fuel cells with anisotropic gas diffusion layer
Villanueva A mixed wettability pore size distribution model for the analysis of water transport in PEMFC materials
CN108910861A (zh) 一种芳杂环纤维基纳米碳纤维气凝胶材料的制备方法
Abdollahzadeh et al. (1D+ 1D) approach mathematical modeling of two phase multicomponent transport flow in PEMFC
CN105788877A (zh) 一种泡沫状三维石墨烯超级电容器电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant