CN106881063B - 一种除砷材料及其制备方法和在农村地下水除砷中的应用 - Google Patents

一种除砷材料及其制备方法和在农村地下水除砷中的应用 Download PDF

Info

Publication number
CN106881063B
CN106881063B CN201710081804.2A CN201710081804A CN106881063B CN 106881063 B CN106881063 B CN 106881063B CN 201710081804 A CN201710081804 A CN 201710081804A CN 106881063 B CN106881063 B CN 106881063B
Authority
CN
China
Prior art keywords
suspension
arsenic
arsenic removal
kaolinite
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710081804.2A
Other languages
English (en)
Other versions
CN106881063A (zh
Inventor
黄冠星
侯钦宣
张英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hydrogeology and Environmental Geology CAGS
Original Assignee
Institute of Hydrogeology and Environmental Geology CAGS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hydrogeology and Environmental Geology CAGS filed Critical Institute of Hydrogeology and Environmental Geology CAGS
Priority to CN201710081804.2A priority Critical patent/CN106881063B/zh
Publication of CN106881063A publication Critical patent/CN106881063A/zh
Application granted granted Critical
Publication of CN106881063B publication Critical patent/CN106881063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供一种除砷材料及其制备方法,所述材料是由高岭石、三氯化铁和氯化亚铁按质量比1:0.15~0.6:0.01~0.03经混合、固着、冻干形成的微米级高岭石‑针铁矿复合材料,所述高岭石为在纯水中超声分散后悬浮时间在6~72h之间的高岭石颗粒。用该材料去除地下水砷的操作方法为,向高砷地下水中投放该材料,并进行充分搅拌混合、静置后利用虹吸取上清液。本发明所提供的除砷材料制备成本低廉,使用简单,使用后不产生次生污染问题,在农村高砷地下水分布区的分散性除砷中尤为适用。

Description

一种除砷材料及其制备方法和在农村地下水除砷中的应用
技术领域
本发明属于地下水处理技术领域,具体涉及一种除砷材料及其制备方法和在农村地下水除砷中的应用。
背景技术
地下水是一种十分重要的饮用水资源,尤其在我国广大农村地区。然而,原生的高砷地下水在我国的新疆、内蒙古、山西、长江三角洲以及珠江三角洲等地广泛分布。长期饮用高砷地下水会使得人们产生神经衰弱等健康问题,突出表现为多样性皮肤损害和多发性神经炎。目前,我国的《地下水水质标准》中规定可直接饮用的III类水砷的标准限值为0.01mg/L。
天然地下水中,砷主要以三价或五价的无机砷形式存在,有机砷含量往往可以忽略不计。近几十年,国内外对水中无机砷的去除技术进行了深入研究,可去除水中砷的方法有离子交换、混凝、膜分离以及吸附等方法。离子交换技术可通过离子的竞争交换作用去除水中的砷氧阴离子而达到除砷目的,但离子交换作用受其他阴离子如氯离子、重碳酸根等的干扰影响较大,因此,离子交换技术较为适宜于低离子强度的地表水除砷,而不适宜于离子强度相对偏高的地下水除砷。混凝除砷技术适合于水厂中大规模的除砷体系,将其应用到农村分散性的地下水除砷则费用过于昂贵。膜分离技术中采用反渗透技术也可去除水中的砷,但用于农村分散性的地下水除砷则处理成本偏高且会产生浓水等次生问题。相比之下,吸附技术较为适宜于农村分散性的地下水除砷。
然而,目前的吸附技术用于农村地下水除砷均存在一些明显的缺陷:如处理成本偏高、应用方法复杂或产生次生污染等。例如,专利文件(申请号:CN201010210241.0)公开了一种去除地下水砷的方法,该方法可用于农村分散性的地下水除砷,且除砷成本低廉,但其缺陷是应用方法复杂,需经过混合吸附反应、沉淀、多重过滤(砂介质过滤、膜过滤)等单元实现固液分离来除砷,尤其是最终的膜过滤单元,对于我国广大农村的公民来说,其操作难度明显偏高,此外,该方法中加入的铁盐、铝盐等化学物质会存在反应不完全现象,使得水中的铁离子、铝离子浓度升高,进而导致次生污染问题。专利文件(申请号:CN201510247526.4)中公开了一种去除地下水砷的材料,在用于除砷时表现为使用方便和无次生污染等优点,但该材料本身制备程序复杂、除砷效率偏低,因此不利于广大农村低收入阶层的地下水除砷。
发明内容
本发明的目的之一是提供一种除砷材料及其制备方法,以解决现有除砷材料成本偏高,使用复杂,容易产生二次污染的问题。
本发明的目的之二是提供上述除砷材料在农村地下水除砷中的应用。
本发明的目的一是通过以下技术方案实现的:本发明所提供的除砷材料由高岭石、三氯化铁和氯化亚铁按质量比1:0.2~0.6:0.01~0.03经混合、固着、冻干形成的微米级高岭石-针铁矿复合材料,所述高岭石为在纯水中超声分散后悬浮时间在6~72h之间的高岭石颗粒。
本发明提供了上述除砷材料的制备方法,包括以下步骤:
(1)将高岭土加入到纯水中进行超声分散0.5~2h,静置6h后通过虹吸取悬浮液,将所取悬浮液再静置72h后分层,用虹吸去除悬浮液得到沉淀物,沉淀物经冻干得到高岭石颗粒;
(2)在步骤(1)所得的高岭石颗粒中加入4~10倍质量的纯水,然后进行超声分散0.5~2h形成混悬液;
(3)对步骤(2)所得混悬液进行搅拌,同时加入三氯化铁并调节混悬液pH至5.5~6.5,然后向混悬液中通氮气0.5~1h,所加入的三氯化铁与步骤(1)所得高岭石颗粒的质量比为0.2~0.6:1;
(4)步骤(3)后,加入氯化亚铁至混悬液中并保持通氮气,再次调节混悬液pH至5.5~6.5,继续通氮气0.5~1h后密封混悬液,所加入的氯化亚铁与步骤(1)所得高岭石颗粒的质量比为0.01~0.03:1;
(5)将密封的悬浮液置于50~60℃条件下5~6天,之后取出置于室温条件下静置30天,之后开封取出其中的沉淀物用纯水进行淋洗,最后进行冻干制得除砷材料成品。
步骤(3)中,用磁力搅拌仪对混悬液进行搅拌。
步骤(3)和(4)中,用氢氧化钠调节pH值。
步骤(5)中,沉淀物用纯水淋洗至淋洗液电导率小于10μS/cm。
本发明的目的二是通过以下技术方案实现的:一种除砷材料在农村地下水除砷中的应用,
按除砷材料和砷的质量比为4000~10000:1向高砷地下水中投放除砷材料,并进行充分搅拌混合8~24h,然后静置24~72h至固液彻底分离,最后利用虹吸取上清液得除砷后的地下水。
本发明的有益效果如下:
1)本发明的材料安全环保、便于运输、保质期长久,使用该材料去除水中砷不会产生次生污染问题;
2)本发明除砷材料的制备原料简单易得,方法易于掌握,整体成本低廉;
3)本发明所涉及除砷阶段的应用极其简单,操作极为方便,适宜我国广大农村地区大多低学历人群的使用。
附图说明
图1为本发明除砷材料于扫描电镜1微米尺度条件下的微观形貌。
图2为本发明除砷材料于扫描电镜20微米尺度条件下的微观形貌。
具体实施方式
实施例1
1)称取分析纯级高岭土400g加入到已放置1L纯水的烧杯中,将烧杯置于细胞破碎仪下进行超声分散1h,静置6h后通过虹吸取悬浮液至另一烧杯,对剩余沉积的高岭土3次循环重复前述的加纯水、超声、静置、虹吸的步骤,将每次所取的悬浮液静置72h后分层,用虹吸去除悬浮液得沉淀物,将沉淀物放置于真空冷冻干燥仪中进行冻干制得高岭石颗粒48.5g;
2)将制得的高岭石颗粒倒入烧杯中,加入400mL纯水置于细胞破碎仪下进行超声分散1h形成混悬液;
3)将混悬液移至磁力搅拌仪上进行搅拌,同时加入1mol/L的三氯化铁溶液95mL至混悬液中,加入微量氢氧化钠调节混悬液的pH至6,然后向混悬液中通氮气0.5h;
4)向持续通氮气并搅拌着的混悬液中加入1mol/L的氯化亚铁溶液6.1mL,再次加入微量氢氧化钠调节混悬液的pH至6,继续搅拌并通氮气1h后密封混悬液;
5)将密封的混悬液置于水浴锅中55℃条件下5天,之后取出置于室温条件下静置30天,之后开封取出其中的沉淀物用纯水进行多次淋洗至淋洗液电导率为小于10μS/cm,最后置于真空冷冻干燥仪中进行冻干制得成品A。
将微量成品A置于扫描电镜下观察,如图1和图2所示,可直观看到高岭石颗粒表面已被固着一些针铁矿,所制得的高岭石-针铁矿复合材料基本为0.5~5μm之间的颗粒。
上述所得除砷材料A对水中砷的去除效果如下:
分别配置浓度为0.02mg/L、0.04mg/L、0.06 mg/L、0.08mg/L、0.1mg/L、0.15mg/L、0.2mg/L的三价无机砷和五价无机砷的高砷水样各7组,每组水样40mL,分别加入40mg的除砷材料A,室温条件下混合反应24h,处理后的水样砷浓度如表1和表2所示。表1为除砷材料对三价砷的去除效果,表2为除砷材料对五价砷的去除效果,采用氢化物发生原子荧光光度法测定水中砷的浓度。
表1 :
表2 :
由表可知,本发明除砷材料对三价无机砷和五价无机砷都具有良好的吸附效果,可应用于高砷地下水(砷含量一般小于0.1 mg/L)的除砷。
实施例2
1)称取分析纯级高岭土150g加入到已放置1L纯水的烧杯中,将烧杯置于细胞破碎仪下进行超声分散1h,静置6h后通过虹吸取悬浮液至另一烧杯,对剩余沉积的高岭土3次循环重复前述的加纯水、超声、静置、虹吸的步骤,将每次所取的悬浮液静置72h后分层,用虹吸去除悬浮液得沉淀物,将沉淀物放置于真空冷冻干燥仪中进行冻干制得高岭石颗粒20g;
2)将制得的高岭石颗粒倒入烧杯中,加入200mL纯水置于细胞破碎仪下进行超声分散1h形成混悬液;
3)将混悬液移至磁力搅拌仪上进行搅拌,同时加入1mol/L的三氯化铁溶液24.7mL至混悬液中,加入微量氢氧化钠调节混悬液的pH至6,然后向混悬液中通氮气0.5h;
4)向持续通氮气并搅拌着的混悬液中加入1mol/L的氯化亚铁溶液1.58mL,再次加入微量氢氧化钠调节混悬液的pH至6,继续搅拌并通氮气1h后密封混悬液;
5)将密封的混悬液置于水浴锅中55℃条件下5天,之后取出置于室温条件下静置30天,之后开封取出其中的沉淀物用纯水进行多次淋洗至淋洗液电导率为小于10μS/cm,最后置于真空冷冻干燥仪中进行冻干制得成品-材料B。
实施例3
1)称取分析纯级高岭土150g加入到已放置1L纯水的烧杯中,将烧杯置于细胞破碎仪下进行超声分散1h,静置6h后通过虹吸取悬浮液至另一烧杯,对剩余沉积的高岭土3次循环重复前述的加纯水、超声、静置、虹吸的步骤,将每次所取的悬浮液静置72h后分层,用虹吸去除悬浮液得沉淀物,将沉淀物放置于真空冷冻干燥仪中进行冻干制得高岭石颗粒20g;
2)将制得的高岭石颗粒倒入烧杯中,加入200mL纯水置于细胞破碎仪下进行超声分散1h形成混悬液;
3)将混悬液移至磁力搅拌仪上进行搅拌,同时加入1mol/L的三氯化铁溶液74mL至混悬液中,加入微量氢氧化钠调节混悬液的pH至6,然后向混悬液中通氮气0.5h;
4)向持续通氮气并搅拌着的混悬液中加入1mol/L的氯化亚铁溶液4.73mL,再次加入微量氢氧化钠调节混悬液的pH至6,继续搅拌并通氮气1h后密封混悬液;
5)将密封的混悬液置于水浴锅中55℃条件下5天,之后取出置于室温条件下静置30天,之后开封取出其中的沉淀物用纯水进行多次淋洗至淋洗液电导率为小于10μS/cm,最后置于真空冷冻干燥仪中进行冻干制得成品-材料C。
本发明所得除砷材料在高砷地下水中的应用方法如下:
1) 取砷浓度为0.05mg/L的高砷地下水15L,分为三份各5L,分别加入本发明的除砷材料A、B、C各2g、2.5g、1g置于搅拌仪上进行充分搅拌混合16h;
2)静置48h至固液彻底分离,利用橡胶软管通过虹吸取上清液,上清液的砷浓度分别为0.008mg/L、0.009mg/L、0.008mg/L,低于我国的可直接饮用的地下水III类水砷的标准限值。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干修改,这些修改也应视为本发明保护的范围。

Claims (4)

1.一种除砷材料的制备方法,其特征在于,包括以下步骤:
(1)将高岭土加入到纯水中进行超声分散0.5~2h,静置6h后通过虹吸取悬浮液,将所取悬浮液再静置72h后分层,用虹吸去除悬浮液得到沉淀物,沉淀物经冻干得到高岭石颗粒;
(2)在步骤(1)所得的高岭石颗粒中加入4~10倍质量的纯水,然后进行超声分散0.5~2h形成混悬液;
(3)对步骤(2)所得混悬液进行搅拌,同时加入三氯化铁并调节混悬液pH至5.5~6.5,然后向混悬液中通氮气0.5~1h,所加入的三氯化铁与步骤(1)所得高岭石颗粒的质量比为0.2~0.6:1;
(4)步骤(3)后,加入氯化亚铁至混悬液中并保持通氮气,再次调节混悬液pH至5.5~6.5,继续通氮气0.5~1h后密封混悬液,所加入的氯化亚铁与步骤(1)所得高岭石颗粒的质量比为0.01~0.03:1;
(5)将密封的悬浮液置于50~60℃条件下5~6天,之后取出置于室温条件下静置30天,之后开封取出其中的沉淀物用纯水进行淋洗,最后进行冻干制得除砷材料成品,所述除砷材料成品为微米级高岭石-针铁矿复合材料。
2.根据权利要求1所述的除砷材料的制备方法,其特征在于,步骤(3)中,用磁力搅拌仪对混悬液进行搅拌。
3.根据权利要求1所述的除砷材料的制备方法,其特征在于,步骤(3)和(4)中,用氢氧化钠调节pH值。
4.根据权利要求1所述的除砷材料的制备方法,其特征在于,步骤(5)中,沉淀物用纯水淋洗至淋洗液电导率小于10μS/cm。
CN201710081804.2A 2017-02-15 2017-02-15 一种除砷材料及其制备方法和在农村地下水除砷中的应用 Active CN106881063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710081804.2A CN106881063B (zh) 2017-02-15 2017-02-15 一种除砷材料及其制备方法和在农村地下水除砷中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710081804.2A CN106881063B (zh) 2017-02-15 2017-02-15 一种除砷材料及其制备方法和在农村地下水除砷中的应用

Publications (2)

Publication Number Publication Date
CN106881063A CN106881063A (zh) 2017-06-23
CN106881063B true CN106881063B (zh) 2019-02-26

Family

ID=59178877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710081804.2A Active CN106881063B (zh) 2017-02-15 2017-02-15 一种除砷材料及其制备方法和在农村地下水除砷中的应用

Country Status (1)

Country Link
CN (1) CN106881063B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547777B (zh) * 2020-05-22 2022-01-28 昆明理工大学 一种四氧化三铁/高岭土纳米复合材料去除污酸中砷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060030476A1 (en) * 2002-06-21 2006-02-09 Lovell John S High capacity regenerable sorbent for removal or arsenic and other toxic ions from drinking water
CN103771431A (zh) * 2013-12-18 2014-05-07 核工业北京地质研究院 一种高岭石颗粒表面的磁化方法
CN103816903A (zh) * 2014-03-19 2014-05-28 黑龙江省科学院自然与生态研究所 铁基磁性纳米针铁矿的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060030476A1 (en) * 2002-06-21 2006-02-09 Lovell John S High capacity regenerable sorbent for removal or arsenic and other toxic ions from drinking water
CN103771431A (zh) * 2013-12-18 2014-05-07 核工业北京地质研究院 一种高岭石颗粒表面的磁化方法
CN103816903A (zh) * 2014-03-19 2014-05-28 黑龙江省科学院自然与生态研究所 铁基磁性纳米针铁矿的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
负载型FeOOH/mmt吸附As(V)的实验研究;周尧;《甘肃科学学报》;20160831;第28卷(第4期);第34-38页 *

Also Published As

Publication number Publication date
CN106881063A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN106629659B (zh) 一种以海藻为碳源的荧光碳量子点的制备方法和用途
CN106975443B (zh) 一种磁改性膨润土吸附剂的制备方法及应用
CN107021510B (zh) 呈镶边立方块状钴-铁类普鲁士蓝纳米材料及其制备方法
CN110003896B (zh) 一种抗氧化铈掺杂碳量子点及其制备方法与应用
CN109569552B (zh) 一种磁性/非磁性碳酸镧钠除磷吸附剂及其合成方法
CN105271405B (zh) 一种基于碳酸氧铋或氧化铋纳米管的材料及其制备方法
CN105779356B (zh) 一种微生物自组装纳米材料及其制备方法和应用
CN104722282B (zh) 一种壳聚糖包覆的粉煤灰磁珠磁性吸附剂的合成方法
CN104826600B (zh) 一种磁性高岭土的制备方法
CN105536753B (zh) 一种矿物前驱体吸附剂及其制备方法和应用
CN105727881A (zh) 一种碱改性凹凸棒土吸附剂及其制备方法
Lee et al. Aminoclay-induced humic acid flocculation for efficient harvesting of oleaginous Chlorella sp.
CN104353412B (zh) 铁氢氧化物/海泡石复合砷吸附剂及其制备方法和用途
CN106904705A (zh) 一种高效可循环的酸性含As(V)废水处理方法
CN104888705A (zh) 磁性氧化铁/蔗渣活性炭的制备方法
CN105771936A (zh) 磁性锆/铁复合氧化物纳米材料及其制备方法和应用
CN105688804A (zh) 磁性生物质炭的制备及其对染料的吸附
CN105771908A (zh) 一种用于重金属吸附的磁性二氧化硅核壳复合材料及其制备方法
CN111672465A (zh) 一种四氧化三铁-二氧化锰/桑树杆生物炭复合材料的制备方法及应用
CN109647349A (zh) 用于去除工业废水中重金属离子和有机物的改性四氧化三铁纳米复合物及制备方法
CN106881063B (zh) 一种除砷材料及其制备方法和在农村地下水除砷中的应用
Jiang et al. Decorating S-doped Cu-La bimetallic oxides with UIO-66 to increase the As (III) adsorption capacity via synchronous oxidation and adsorption
Koilraj et al. Encapsulation of a powdery spinel-type Li+ ion sieve derived from biogenic manganese oxide in alginate beads
CN105709684A (zh) 一种铁锰复合氧化物除砷材料及其制备和应用方法
CN110314637B (zh) 一种改性针铁矿及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant