CN106876692B - 一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法 - Google Patents

一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法 Download PDF

Info

Publication number
CN106876692B
CN106876692B CN201710223533.XA CN201710223533A CN106876692B CN 106876692 B CN106876692 B CN 106876692B CN 201710223533 A CN201710223533 A CN 201710223533A CN 106876692 B CN106876692 B CN 106876692B
Authority
CN
China
Prior art keywords
lithium
bearing copper
copper chromium
silver
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710223533.XA
Other languages
English (en)
Other versions
CN106876692A (zh
Inventor
杨科
舒杰
吴瑶瑶
罗明贺
张延玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201710223533.XA priority Critical patent/CN106876692B/zh
Publication of CN106876692A publication Critical patent/CN106876692A/zh
Application granted granted Critical
Publication of CN106876692B publication Critical patent/CN106876692B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料,其特征在于包括以下步骤:取硝酸钡、硝酸锂、硝酸银、硝酸铜、硝酸铬、纳米二氧化钛、石墨烯球磨混合,接着将所得的粉末在马弗炉中进行烧结,先在550℃恒温4小时进行预烧以分解盐类,接着在950℃烧结12小时,自然冷却到室温即可得到锂位银铜铬共掺杂钛酸钡锂。接下来,将所得的锂位银铜铬共掺杂钛酸钡锂放入瓷舟并置于管式气氛炉中,然后将盛放硫脲的另一个瓷舟也放入管式气氛炉,并置于气流的上游处,用氩气作为保护气,在600℃处理1小时,自然冷却到室温后,取出产物并研磨成粉,所得产物即为锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料。

Description

一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负 极材料的制备方法
技术领域
本发明涉及一种锂离子电池的钛酸钡锂负极材料,尤其是涉及一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法。
背景技术
近年来我国相继出台新能源汽车支持政策,体现了国家对新能源汽车特别是电动汽车发展的重视。然而,我国大部分电动汽车配备的都是铅酸电池,这类电池比能量低、寿命短,往往使用一年之后电池就需要报废更新,并且电池中所含的铅、镉等重金属和硫酸对环境有严重危害性,而且这类电池的回收技术难度大,目前的回收工作处于停滞状态。因此,需要发展新型动力电池。
在各类化学动力电源之中,动力锂电池因其具有高工作电位、高比能量和循环寿命长等优点而被认为是最有发展潜力的新型能源储存装置,目前已逐步替代铅酸电池作为电动汽车的动力源。虽然锂离子电池的保护电路已经比较成熟,但对于动力电池而言,要真正保证安全,负极材料的选择十分关键。目前商用锂离子电池的负极材料大多为碳材料,而碳材料的嵌锂电位接近金属锂,当电池过充电时,金属锂可能在碳负极表面产生枝晶,从而刺穿隔膜导致电池短路。钛酸盐基材料具有较高的嵌锂电位可以有效避免金属锂的析出,且在高温下具有一定的吸氧功能,因而具有明显的安全性特征,被认为是代替石墨作为锂离子电池负极材料的理想选择。其中Li4Ti5O12是成功商业化的钛系负极材料,其最大的优点在于脱嵌锂过程中体积无变化,循环性能好,在充放电过程中不易形成锂枝晶,安全性高。但是,相对较低的锂离子扩散速率、低的导电性及理论容量都制约了Li4Ti5O12更为广泛的应用;另外,相对较高的电压平台(1.55 V),明显降低了Li4Ti5O12作为负极的全电池电压,进而降低了电池的能量密度。因此,很有必要开发可靠的电位平台较低的新型钛酸盐负极材料。
BaLi2Ti6O14是一种新型的钛酸盐负极材料,它具有1.2V的平均嵌脱锂电位,这使得用BaLi2Ti6O14作为负极的全电池具有更高的工作电压、能量密度和功率密度。在BaLi2Ti6O14的晶体结构中,[TiO6]八面体通过共边和共顶点组成基本的[Ti6O14]n -4n三维网络骨架,[LiO4]四面体和[BaO11]多面体在这个[TiO6]八面体构成的[Ti6O14]n -4n隧道结构中交错排列。同时,[Ti6O14]n -4n隧道结构中具有四面体空位4a、四面体空位4b、八面体空位8c及多面体空位8f,这些不同的空位为锂离子的存储提供了大量的空间,使得这些化合物作为储锂材料具有较大的潜在应用价值。另外,与[LiO4]四面体相邻的四面体空位和八面体空位通过共面相连,这些隧道中的相互贯通的空位结构为锂离子的快速嵌入脱出提供了扩散通道。由此可知,BaLi2Ti6O14是非常适合作为锂离子电池电极材料的,然而单纯的BaLi2Ti6O14具有电子和离子电导率低的缺点,因此迫切需要采取有效措施对它进行改性,以提升其电化学性能。
现有BaLi2Ti6O14负极材料的改性方法,主要是对钡位进行金属离子掺杂,包括Ag+、Pb2+、Al3+、La3+等离子,同时还尝试了表面银包覆,然而,单一的改性措施都未能有效的获得高性能的钛酸钡锂,从而不能获得一种能满足当前社会需求的高功率长寿命锂离子电池负极材料。
发明内容
本发明所要解决的技术问题是提供一种制备锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的方法,该合成方法通过先构建一种颗粒状的锂位银铜铬共掺杂钛酸钡锂负极材料,然后进行氮硫掺杂碳包覆,从而获得一种结构稳定、致密的钛系负极材料,所得到的钛酸钡锂负极材料的颗粒均一、粒径分布均匀、电子和离子电导率高,从而有效改善了钛酸钡锂负极材料的电化学性能。
本发明解决上述技术问题所采用的技术方案为:一种锂离子电池用锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法,包括以下步骤:首先,取0.1摩尔硝酸钡、0.2摩尔硝酸锂、0.005摩尔硝酸银、0.01摩尔硝酸铜、0.015摩尔硝酸铬、0.6摩尔纳米二氧化钛(6 nm)、0.1摩尔石墨烯在450转/分钟下球磨混合12小时,置于100℃烘箱烘干后,在玛瑙研钵中研细,接着将粉末在马弗炉中进行烧结,先用2小时从室温升温到550℃,并在该温度下恒温4小时进行预烧以分解盐类,接着再用2小时升温到950℃,并在该温度下保持12小时,自然冷却到室温即可得到锂位银铜铬共掺杂钛酸钡锂。接下来,将所得的锂位银铜铬共掺杂钛酸钡锂放入瓷舟并置于管式气氛炉中,然后将盛放硫脲的另一个瓷舟也放入管式气氛炉,并置于气流的上游处,用氩气作为保护气,用2小时从室温升温到600℃,并在该温度下保温1小时,自然冷却到室温后,取出产物并研磨成粉,所得产物即为锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料。
与现有技术相比,本发明的优点在于:(1)该方法制备的钛酸钡锂负极材料的颗粒粒径均一、结构稳定、致密。其中石墨烯的添加可以使得钛酸钡锂颗粒的均一化,锂位银铜铬共掺杂可以大幅度提升钛酸钡锂结构中的离子电导率,而氮硫掺杂碳包覆可以明显改善钛酸钡锂的电子电导率,进而使得钛酸钡锂负极材料具有优越的电化学性能。(2)同时,该方法利用硫脲蒸腾的技术进行氮硫掺杂碳包覆,该工艺操作简便,所得的碳层薄而均一,在不降低钛酸钡锂负极材料可逆容量的情况下,可以大幅度改善其倍率性能,能满足高功率、长寿命锂离子电池实际应用的需要。
附图说明
图1为本发明实施例中所得锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的扫描电镜图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1:取0.1摩尔硝酸钡、0.2摩尔硝酸锂、0.005摩尔硝酸银、0.01摩尔硝酸铜、0.015摩尔硝酸铬、0.6摩尔纳米二氧化钛(6 nm)、0.1摩尔石墨烯在450转/分钟下球磨混合12小时,置于100℃烘箱烘干后,在玛瑙研钵中研细,接着将粉末在马弗炉中进行烧结,先用2小时从室温升温到550℃,并在该温度下恒温4小时进行预烧以分解盐类,接着再用2小时升温到950℃,并在该温度下保持12小时,自然冷却到室温即可得到锂位银铜铬共掺杂钛酸钡锂。接下来,将所得的锂位银铜铬共掺杂钛酸钡锂放入瓷舟并置于管式气氛炉中,然后将盛放硫脲的另一个瓷舟也放入管式气氛炉,并置于气流的上游处,用氩气作为保护气,用2小时从室温升温到600℃,并在该温度下保温1小时,自然冷却到室温后,取出产物并研磨成粉,所得产物即为锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料。将所得的产物作为研究电极,金属锂片作为对电极,在充满氩气的手套箱中组装成扣式锂离子电池,以0.1C的倍率在0.5-3.0V电位区间内进行充放电循环,可得首次放电容量为191mAh/g,充电容量为167mAh/g,其循环100周后的可逆容量为157mAh/g;以5C的倍率在0.5-3.0V电位区间内进行充放电循环,可得首次放电容量为162mAh/g,充电容量为154mAh/g,其循环100周后的可逆容量为146mAh/g,显示了优异的电化学性能。

Claims (1)

1.一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法,其特征在于包括以下步骤:首先,取0.1摩尔硝酸钡、0.2摩尔硝酸锂、0.005摩尔硝酸银、0.01摩尔硝酸铜、0.015摩尔硝酸铬、0.6摩尔纳米二氧化钛、0.1摩尔石墨烯在450转/分钟下球磨混合12小时,置于100℃烘箱烘干后,在玛瑙研钵中研细,接着将粉末在马弗炉中进行烧结,先用2小时从室温升温到550℃,并在该温度下恒温4小时进行预烧以分解盐类,接着再用2小时升温到950℃,并在该温度下保持12小时,自然冷却到室温即可得到锂位银铜铬共掺杂钛酸钡锂;接下来,将所得的锂位银铜铬共掺杂钛酸钡锂放入瓷舟并置于管式气氛炉中,然后将盛放硫脲的另一个瓷舟也放入管式气氛炉,并置于气流的上游处,用氩气作为保护气,用2小时从室温升温到600℃,并在该温度下保温1小时,自然冷却到室温后,取出产物并研磨成粉,所得产物即为锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料。
CN201710223533.XA 2017-04-07 2017-04-07 一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法 Active CN106876692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710223533.XA CN106876692B (zh) 2017-04-07 2017-04-07 一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710223533.XA CN106876692B (zh) 2017-04-07 2017-04-07 一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN106876692A CN106876692A (zh) 2017-06-20
CN106876692B true CN106876692B (zh) 2019-03-15

Family

ID=59160989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710223533.XA Active CN106876692B (zh) 2017-04-07 2017-04-07 一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN106876692B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066971A (zh) * 2021-03-30 2021-07-02 宁波容百新能源科技股份有限公司 一种富锂锰基正极材料的气相包覆方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924201A (zh) * 2010-07-26 2010-12-22 郑州大学 锂离子电池负极材料碳包覆及金属掺杂钛酸锂的制备方法
CN104409712A (zh) * 2014-09-19 2015-03-11 四川省有色冶金研究院有限公司 碳氮包覆钛酸锂材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463114B1 (ko) * 2008-02-15 2014-11-20 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924201A (zh) * 2010-07-26 2010-12-22 郑州大学 锂离子电池负极材料碳包覆及金属掺杂钛酸锂的制备方法
CN104409712A (zh) * 2014-09-19 2015-03-11 四川省有色冶金研究院有限公司 碳氮包覆钛酸锂材料的制备方法

Also Published As

Publication number Publication date
CN106876692A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
Zhang et al. An overview of modification strategies to improve LiNi0· 8Co0· 1Mn0· 1O2 (NCM811) cathode performance for automotive lithium-ion batteries
Dong et al. Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0. 7Co0. 2Mn0. 1O2 cathode materials
Jiang et al. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries
Jiang et al. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material
Yi et al. Enhanced electrochemical property of FePO4-coated LiNi0. 5Mn1. 5O4 as cathode materials for Li-ion battery
Liu et al. Highly enhanced electrochemical performances of LiNi0. 815Co0. 15Al0. 035O2 by coating via conductively LiTiO2 for lithium-ion batteries
CN102760876B (zh) 铌酸盐及其复合材料与其在二次锂电池中的应用
CN102306772A (zh) 一种混合离子电池氟磷酸亚铁钠正极材料的制备方法
CN101777644A (zh) 锂离子电池负极材料碳包覆掺镁钛酸锂的制备方法
Cai et al. Preparation and re‐examination of Li4Ti4. 85Al0. 15O12 as anode material of lithium‐ion battery
CN109786697A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法
CN104993118A (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
CN104692352A (zh) 锂离子电池正极材料表面包覆纳米级磷酸铁的方法
CN106207150A (zh) 一种喷雾冷冻干燥制备锂电负极材料钛酸锂的方法
CN106816597B (zh) 一种锂位镁铝共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法
CN109346710A (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
Li et al. Improved electrochemical performances of LiNi0. 5Co0. 2Mn0. 3O2 modified by Graphene/V2O5 co-coating
Zhu et al. A new aspect of the Li diffusion enhancement mechanism of ultrathin coating layer on electrode materials
TWI667837B (zh) 一種富鋰氧化物正極材料及其製備方法以及一種鋰離子電池
CN105810901A (zh) 一种Ti3+/Ti4+混合价态的掺杂铁元素的锂离子电池钛酸锂负极材料及其制备方法
CN106876692B (zh) 一种锂位银铜铬共掺杂协同氮硫掺杂碳包覆改性钛酸钡锂负极材料的制备方法
CN102332574A (zh) 一种锂离子电池用改性钛酸锂材料及其制备方法
CN102390825A (zh) 一种锂离子电池用改性磷酸铁锂材料及其制备方法
Tian et al. Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries
CN103647074A (zh) 一种高倍率型钴酸锂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant