CN106875372B - 用于在医学图像中将结构分割的方法和系统 - Google Patents

用于在医学图像中将结构分割的方法和系统 Download PDF

Info

Publication number
CN106875372B
CN106875372B CN201610954019.9A CN201610954019A CN106875372B CN 106875372 B CN106875372 B CN 106875372B CN 201610954019 A CN201610954019 A CN 201610954019A CN 106875372 B CN106875372 B CN 106875372B
Authority
CN
China
Prior art keywords
ultrasound image
ultrasound
roi
elements
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610954019.9A
Other languages
English (en)
Other versions
CN106875372A (zh
Inventor
E.萨姆塞特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN106875372A publication Critical patent/CN106875372A/zh
Application granted granted Critical
Publication of CN106875372B publication Critical patent/CN106875372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/486Diagnostic techniques involving arbitrary m-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Cardiology (AREA)

Abstract

提供了用于在医学图像中将结构分割的方法和系统。方法和系统驱动多个换能器元件,并且在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号。方法和系统生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像,并且生成具有组织元素和血液元素的ROI的第二超声图像。第一超声图像的组织元素具有比血液元素更高的强度。第二超声图像的血液元素具有比组织元素更高的强度。方法和系统还通过在用于ROI的第一和第二超声图像上同时应用边缘检测来执行分割。

Description

用于在医学图像中将结构分割的方法和系统
技术领域
本文中描述的实施例一般涉及在医学图像中分割结构,并且更具体地说,涉及基于B-模式超声图像和B-流超声图像分割感兴趣区域。
背景技术
常规超声成像系统通常包含诸如具有换能器的超声探头的超声扫描装置,超声探头连接到超声系统,以便在通过用户检查(例如,超声扫描)期间控制超声数据的采集以采集诸如B-模式图像的患者的一个或多个超声图像或视频(例如,为体积(volume)或身体成像)。B-模式图像内像素的亮度基于由超声数据表示的对应于患者内组织的结构的回波信号的强度。常规超声成像系统的诊断工具允许用户基于像素的相对亮度,在B-模式图像内分割选择的结构。
然而,B-模式图像易于信号丢失(drop-out)、遮蔽、噪声和/或其它声学伪像,其影响在要求统计建模的B-模式图像内分割结构中的准确度。
发明内容
在一个实施例中,提供了一种超声成像系统。超声成像系统可包含换能器阵列。换能器阵列包含多个换能器元件。超声成像系统也包含用来驱动换能器阵列的发射电路和用来收集来自换能器阵列的接收信号从而形成波束相加信号的接收波束形成器。超声成像系统也可包含一个或多个处理器和用于存储编程指令的存储器。一个或多个处理器通过执行多个操作来运行编程指令。一个或多个处理器可生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像。第一超声图像的组织元素具有比血液元素更高的强度。一个或多个处理器可生成具有组织元素和血液元素的ROI的第二超声图像。第二超声图像的血液元素具有比组织元素更高的强度。一个或多个处理器还可通过在用于ROI的第一和第二超声图像上同时应用边缘检测来执行分割。
在另一个实施例中,提供了一种分割结构的方法。方法可包含驱动多个换能器元件,并且在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号。方法可还生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像。第一超声图像的组织元素具有比血液元素更高的强度。方法可还生成具有组织元素和血液元素的ROI的第二超声图像。第二超声图像的血液元素具有比组织元素更高的强度。另外,方法可通过在用于ROI的第一和第二超声图像上同时应用边缘检测来执行分割。
在另一个实施例中,一种有形并且非暂时性计算机可读媒介可包含配置成引导一个或多个处理器的一个或多个计算机软件模块。一个或多个计算机软件模块可配置成引导一个或多个处理器驱动多个换能器元件,并且在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号。一个或多个计算机软件模块可还配置成引导一个或多个处理器生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像。第一超声图像的组织元素具有比血液元素更高的强度。一个或多个计算机软件模块可还配置成引导一个或多个处理器生成具有组织元素和血液元素的ROI的第二超声图像。第二超声图像的血液元素具有比组织元素更高的强度。此外,一个或多个计算机软件模块可配置成引导一个或多个处理器通过在用于ROI的第一和第二超声图像上同时应用边缘检测来执行分割。
本发明提供一组技术方案,如下:
1. 一种超声成像系统,包括:
换能器阵列,包括多个换能器元件;
发射电路,用来驱动所述换能器阵列;
接收波束形成器,用来收集来自所述换能器阵列的接收信号,并且形成波束相加信号;以及
一个或多个处理器和用于存储编程指令的存储器,其中所述一个或多个处理器通过执行下面操作来运行所述编程指令:
生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像,其中所述第一超声图像的所述组织元素具有比所述血液元素更高的强度;
生成具有组织元素和血液元素的所述ROI的第二超声图像,其中所述第二超声图像的所述血液元素具有比组织元素更高的强度;以及
通过在用于所述ROI的所述第一和第二超声图像上同时应用边缘检测来执行分割。
2. 如技术方案1所述的超声成像系统,其中所述第一超声图像对应于B-模式超声图像,并且所述第二超声图像对应于B-流超声图像、多普勒彩色血流超声图像或对比增强超声图像。
3. 如技术方案1所述的超声成像系统,其中所述一个或多个处理器还应用网格到所述ROI,并且基于用于分割操作的所述ROI的边缘来调整所述网格的形状。
4. 如技术方案3所述的超声成像系统,其中所述网格由所述一个或多个处理器基于诊断选择来从存储在所述存储器上的多个候选网格中选择。
5. 如技术方案1所述的超声成像系统,其中所述一个或多个处理器还从所述第一超声图像确定第一强度梯度集和从所述第二超声图像确定第二强度梯度集,并且应用能量函数到所述第一和第二集以识别对应于所述ROI的边缘的选择强度梯度集。
6. 如技术方案5所述的超声成像系统,其中所述能量函数包含梯度阈值或位置变化阈值。
7.如技术方案5所述的超声成像系统,其中所述选择强度梯度集包含部分所述第一和第二集。
8. 如技术方案1所述的超声成像系统,其中所述ROI是对应于左心室、右心室、左心房、右心房或左心室流出道中的至少一个的心脏结构。
9. 如技术方案1所述的超声成像系统,其中所述一个或多个处理器将所述第一超声图像覆盖在所述第二超声图像上。
10. 一种用于分割结构的方法,包括:
驱动多个换能器元件;
在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号;
生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像,其中所述第一超声图像的所述组织元素具有比所述血液元素更高的强度;
生成具有组织元素和血液元素的所述ROI的第二超声图像,其中所述第二超声图像的所述血液元素具有比所述组织元素更高的强度;以及
通过在用于所述ROI的所述第一和第二超声图像上同时应用边缘检测来执行分割。
11. 如技术方案10所述的方法,其中所述第一超声图像对应于B-模式超声图像,并且所述第二超声图像对应于B-流超声图像、多普勒彩色血流超声图像或对比增强超声图像。
12. 如技术方案10所述的方法,还包括:
应用网格到所述ROI;以及
基于用于分割操作的所述ROI的边缘来调整所述网格的形状。
13. 如技术方案12所述的方法,还包括基于诊断选择来从多个候选网格中选择所述网格。
14. 如技术方案10所述的方法,还包括:
从所述第一超声图像确定第一强度梯度集,并且从所述第二超声图像确定第二强度梯度集;以及
应用能量函数到所述第一和第二集以识别对应于所述ROI的边缘的选择强度梯度集。
15. 如技术方案14所述的方法,其中所述能量函数包含梯度阈值或位置变化阈值。
16.如技术方案14所述的方法,其中所述选择强度梯度集包含部分所述第一和第二集。
17. 一种有形并且非暂时性计算机可读媒介,包括一个或多个计算机软件模块,所述一个或多个计算机软件模块配置成引导一个或多个处理器以:
驱动多个换能器元件;
在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号;
生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像,其中所述第一超声图像的所述组织元素具有比所述血液元素更高的强度;
生成具有组织元素和血液元素的所述ROI的第二超声图像,其中所述第二超声图像的所述血液元素具有比组织元素更高的强度;以及
通过在用于所述ROI的所述第一和第二超声图像上同时应用边缘检测来执行分割。
18. 如技术方案17所述的有形并且非暂时性计算机可读媒介,其中所述一个或多个处理器还被引导以:
应用网格到所述ROI;以及
基于用于分割操作的所述ROI的边缘来调整所述网格的形状。
19. 如技术方案17所述的有形并且非暂时性计算机可读媒介,其中所述一个或多个处理器还被引导以:
从所述第一超声图像确定第一强度梯度集,并且从所述第二超声图像确定第二强度梯度集;以及
应用能量函数到所述第一和第二集以识别对应于所述ROI的所述边缘的选择强度梯度集。
20. 如技术方案17所述的有形并且非暂时性计算机可读媒介,其中所述第一超声图像对应于B-模式超声图像,并且所述第二超声图像对应于B-流超声图像、多普勒彩色血流超声图像或对比增强超声图像。
附图说明
图1图示根据实施例的超声成像系统的示意框图。
图2是根据实施例的图1的超声成像系统的控制器电路的简化框图的说明。
图3图示根据实施例的用于从第一和第二超声图像分割结构的方法的流程图。
图4是根据实施例的覆盖在B-模式超声图像上的B-流超声图像的说明。
图5图示根据实施例的用于通过同时应用边缘检测到感兴趣区域的B-流超声图像和B-模式超声图像来执行分割的方法的流程图。
图6是根据实施例的应用到感兴趣区域的网格的说明。
图7是根据实施例的第一和第二梯度集的图解说明。
图8是根据实施例的基于选择梯度强度集的调整的网格的说明。
图9图示具有探头的3D功能(capable)的微型化超声系统,探头可配置成采集3D超声数据或多平面超声数据。
图10图示一个手提式或袖珍式超声成像系统,其中,显示器和用户接口形成单个单元。
图11图示在可移动底痤上提供的超声成像系统。
具体实施方式
在结合附图阅读时,将更好地理解某些实施例的下面详细描述。就图形图示各种实施例的功能模块的简图而言,功能块不一定指示在硬件电路系统之间的划分。因此,例如,一个或多个功能块(例如,处理器或存储器)可在单件硬件(例如,通用信号处理器或一块随机存取存储器、硬盘或诸如此类)中实现。类似地,程序可以是独立程序,可以作为子例程包含在操作系统中,可以是安装的软件包的功能及诸如此类。应理解,各种实施例不限于图形中所示的布置和工具。
如本文所使用的,以单数陈述或以单词“一”或“一个”进行的元素或步骤应理解为不排除多个所述元素或步骤,除非这种排除被明确规定。此外,对本发明的“一个实施例”的提及不意图解释为排除也包含所述特征的附加实施例的存在。此外,除非明确相反地规定,否则,“包括”或“具有”具有特定性质的元素或多个元素的实施例可包含不具有那个性质的附加元素。
各种实施例提供组合在B-模式超声图像中的测量和对于B-流超声图像使用编码激励进行的测量的系统和方法。B-流超声图像提供流信息,例如血流或组织的移动。各种实施例同时应用边缘检测到B-模式和B-流超声图像,以跟踪解剖形状,例如对应于感兴趣区域的心脏结构(例如,左心室)。例如,B-流图像的边缘检测可识别心脏结构的血液-组织界面(例如,心内膜)。B-模式和B-流超声图像的边缘检测可组合和/或吸收(assimilate),形成相对于仅B-模式超声图像的边缘检测的用于解剖形状的分割的更准确测量集。
至少一个实施例的技术效果包含用于解剖结构的定量分析的更稳健分割结果。
图1是诊断医学成像系统,具体而言超声成像系统100的示意图。超声成像系统100包含具有发射电路122和探头/SAP电子器件110的超声探头126。超声探头126可配置成从患者的感兴趣区域(例如,器官、心脏结构、血管)采集超声数据或信息。超声探头126经由发射电路122以通信方式耦合到控制器电路136。发射电路122基于由用户接收的采集设置,将信号(例如,编码激励、未编码激励)发射到发射波束形成器121。由发射电路122发射的信号又驱动换能器阵列112内的换能器元件124。换能器元件124发射脉动超声信号到患者(例如,身体)中。多种几何形状和配置可用于阵列112。此外,换能器元件124的阵列112可例如作为不同类型超声探头的一部分提供。
采集设置可定义由换能器元件124发射的超声脉冲的幅度、脉冲宽度、频率和/或诸如此类。采集设置可由用户通过从用户接口142选择增益设置、功率、时间增益补偿(TGC)、分辨率和/或诸如此类来进行调整。
例如压电晶体的换能器元件124将脉动超声信号发射到对应于采集设置的身体(例如,患者)或体积中。超声信号例如可包含一个或多个参考脉冲、一个或多个推送脉冲(例如,横波(shear-wave))和/或一个或多个跟踪脉冲。至少一部分脉动超声信号从感兴趣区域(ROI)(例如,胸部组织、肝脏组织、心脏组织、前列腺组织及诸如此类)反向散射以产生回波。回波根据深度在时间中被延迟,并且由换能器阵列112内的换能器元件124接收。连同其它用途一道,超声信号可用于成像,用于生成和/或跟踪横波,用于测量在组织的压缩移位(例如,应变)中的差别和/或用于治疗。例如,探头126可输送编码和未编码的激励脉冲。
编码激励是长编码脉冲序列的发射和接收的信号的解码(例如,滤波),以便改进图像SNR和/或分辨率。长发射脉冲序列中包含的能量在接收时借助于代码被压缩成短时间间隔。例如,在题为"ULTRASOUND IMAGING USING CODED EXCITATION ON TRANSMIT ANDSELECTIVE FILTERING OF FUNDAMENTAL AND (SUB)HARMONIC SIGNALS ON RECEIVE"的美国专利号5980459和题为"METHOD AND APPARATUS FOR FLOW IMAGING USING CODEDEXCITATION"的美国专利号6210332中描述了编码激励和滤波技术,两个专利均通过引用明确结合于本文中。
换能器阵列112可具有用于换能器元件124的多种阵列几何形状和配置,换能器元件124可作为例如不同类型的超声探头126的一部分提供。探头/SAP电子器件110可用来控制换能器元件124的切换。探头/SAP电子器件110也可用来将换能器元件124编组到一个或多个子孔径中。
换能器元件124将接收的回波信号转换成可由接收器128接收的电接收信号。表示接收的回波的电接收信号通过接收波束形成器130。通常,接收波束形成器130收集来自换能器元件124的电接收信号,以基于电接收信号形成波束相加信号。例如,接收波束形成器130向每个电接收信号给予时间延迟和权重,电接收信号由接收波束形成器130相加以形成波束相加信号。接收波束形成器130可输出波束相加信号到控制器电路136。
接收波束形成器130可包含专用硬件,例如专用集成电路。另外或备选地,接收波束形成器130可包含一个或多个处理器、中央控制器电路(CPU)或能够根据特定逻辑指令处理输入的数据的任何其它电子组件。另外或备选地,接收波束形成器130可运行在有形并且非暂时性计算机可读媒介(例如,存储器140)上存储的指令用于使用任何适合的波束形成方法(例如,自适应波束形成、合成发射聚焦(synthetic transmit focus)、像差校正、合成孔径、杂波减少和/或自适应噪声控制和/或诸如此类)的波束形成计算(例如,软件波束形成),。
另外或备选地,接收波束形成器130可在电接收信号上执行波束形成,并且输出到射频(RF)信号。RF信号随后被提供到处理RF信号的RF处理器132。RF处理器132可生成用于多个扫描平面或不同的扫描图案的不同超声图像数据类型,例如B-模式、彩色多普勒(速度/功率/方差)、组织多普勒(速度)和多普勒能量。例如,RF处理器132可生成用于多扫描平面的组织多普勒数据。RF处理器132收集与多个数据切片有关的信息(例如,I/Q、B-模式、彩色多普勒、组织多普勒和多普勒能量信息),并且在存储器134上存储可包含时间戳和定向/旋转信息的数据信息。
备选地,RF处理器132可包含解调RF信号以形成表示回波信号的I/Q数据对的复解调器(未示出)。RF或IQ信号数据随后可被直接提供到存储器134用于存储(例如,临时存储)。
控制器电路136可配置成处理采集的超声数据(例如,RF信号数据、波束相加信号、IQ数据对),并且准备超声图像数据的帧用于在显示器138上的显示。控制器电路136可包含一个或多个处理器。可选地,控制器电路136可包含中央控制器电路(CPU)、一个或多个微处理器、图形控制器电路(GPU)或能够根据特定逻辑指令处理输入的数据的任何其它电子组件。具有包含GPU的控制器电路136可对诸如体绘制(volume- rendering)的计算密集操作是有利的。另外或备选地,控制器电路136可运行在有形并且非暂时性计算机可读媒介(例如,存储器140)上存储的指令。
控制器电路136配置成根据关于采集的超声数据的多个可选择超声模态来执行一个或多个处理操作,调整或定义从换能器元件124发射的超声脉冲,调整在显示器138上显示的组件(例如,超声图像,接口组件)的一个或多个图像显示设置和其它操作,如本文中所述的。采集的超声数据可在接收回波信号时在扫描或治疗会话期间由控制器电路136实时处理。另外或备选地,超声数据可在扫描会话期间临时存储在存储器134上,并且在现场或离线操作中以低于实时处理。
超声成像系统100可包含用于存储未调度以立即显示的采集的超声数据的所处理帧,或者存储处理后图像(例如,横波图像,应变图像)、对应于例如图形用户接口的固件或软件、一个或多个默认图像显示设置和/或诸如此类的存储器140。存储器装置140可以是有形并且非暂时性计算机可读媒介,例如闪速存储器、RAM、ROM、EEPROM和/或诸如此类。
存储器134和140之一或两者可存储超声数据的3D超声图像数据集,其中,此类3D超声图像数据集被访问以呈现2D和3D图像。例如,3D超声图像数据集可映射到对应存储器134或140中以及一个或多个参考平面中。包含超声图像数据集的超声数据的处理可部分基于用户输入,例如,在用户接口142处接收的用户选择。
控制器电路136以可操作方式耦合到显示器138和用户接口142。显示器138可包含一个或多个液晶显示器(例如,发光二极管(LED)背光)、有机发光二极管(OLED)显示器、等离子体显示器、CRT显示器和/或诸如此类。显示器138可显示由显示器138从控制器电路136接收的患者信息、超声图像和/或视频、显示接口的组件、来自存储器134或140上存储或当前采集的超声数据的一个或多个2D、3D或4D超声图像数据集、测量、诊断、治疗信息和/或诸如此类。
用户接口142控制控制器电路136的操作,并且配置成接收来自用户的输入。用户接口142可包含键盘、鼠标、触摸垫、一个或多个物理按钮和/或诸如此类。可选地,显示器138可以是包含用户接口142的至少一部分的触摸屏显示器。
例如,用户接口142的一部分可对应于由在显示器上示出的控制器电路136生成的图形用户接口(GUI)。GUI可包含可由操作用户接口142(例如,触摸屏、键盘、鼠标)的用户选择、操纵/或激活的一个或多个接口组件。接口组件可以以变化的形状和颜色例如图形或可选择图标、滑杆、光标和/或诸如此类呈现。可选地,一个或多个接口组件可包含文本或符号,例如下拉菜单、工具栏、菜单栏、标题栏、窗口(例如,弹出窗口)和/或诸如此类。另外或备选地,一个或多个接口组件可指示GUI内用于输入或编辑信息(例如,患者信息、用户信息、诊断信息)的区,例如文本框、文本字段和/或诸如此类。
在各种实施例中,接口组件可在被选择时执行各种功能,例如测量功能、编辑功能、数据库访问/搜索功能、诊断功能、控制采集设置和/或由控制器电路136执行的用于超声成像系统100的系统设置。
图2是控制器电路136的示范框图。控制器电路136在图2中在概念上图示为电路和/或软件模块的集合,但可利用专用硬件板、DSP、一个或多个处理器、FPGA、ASIC、配置成引导一个或多个处理器的有形并且非暂时性计算机可读媒介和/或诸如此类的任何组合来实现。
电路251-266(例如,专用硬件、微处理器、软件模块)执行表示超声成像系统100的一个或多个视觉诊断、操作、数据操纵和/或诸如此类的中间处理器操作。电路251-266可由控制器电路136控制。控制器电路136可接收以若干形式中一个的超声数据270(例如,波束相加信号、RF信号、IQ数据对)。在图2的实施例中,接收的超声数据270可构成表示与数字化信号的每个数据样本关联的实和虚分量的IQ数据对。IQ数据对提供到一个或多个电路,例如,B-流电路251、彩色-血流电路252、声学辐射力成像(ARFI)电路254、B-模式电路256、频谱多普勒电路258、声流电路260、组织多普勒电路262、对比增强电路264及电记录术(electrography)电路266。其它电路也可被包含,例如除其它之外的M-模式电路、功率多普勒电路。然而,本文中描述的实施例不限于处理IQ数据对。例如,处理可采用RF数据和/或使用其它方法进行。此外,数据可通过多个电路处理。
每个电路251-266配置成以对应方式处理IQ数据对,以除其它之外分别生成B-流数据285、彩色-血流数据273、ARFI数据274、B-模式数据276、频谱多普勒数据278、声流数据280、组织多普勒数据282、对比成像数据284(例如,ROI数据采集位置)、电记录术数据286(例如,应变数据、横波数据),所有数据可在随后处理前临时存储在存储器290(或图1中示出的存储器140)中。数据273-286例如可存储为向量数据值集,其中,每个集定义个别的超声图像帧。向量数据值通常基于极坐标系统组织。
扫描转换器电路292访问存储器290并从中获得与图像帧关联的向量数据值,并且将向量数据值集转换成笛卡尔坐标,以生成用于显示的格式化的超声图像帧293。由扫描转换器电路292生成的超声图像帧293可提供回存储器290用于随后处理,或者可提供到存储器134或存储器140。一旦扫描转换器电路292生成与数据关联的超声图像帧293,图像帧便可存储在存储器290中,或者通过总线299传递到数据库(未示出)、存储器140和/或其它处理器(未示出)。
显示电路298通过总线299访问存储器290和/或存储器140并且从中获得一个或多个图像帧,以将图像显示到显示器138上。显示电路298从用户接口142接收用户输入,选择在存储器(例如,存储器290)上存储的要显示的一个或多个图像帧和/或选择用于图像帧的显示布局或配置。
显示电路298可包含2D视频处理器电路294。2D视频处理器电路294可用来组合从不同类型的超声信息生成的一个或多个帧。图像的连续帧可在存储器290或存储器140中存储为电影回放(cine loop)(4D图像)。电影回放表示用来捕捉向用户实时显示的图像数据的先入先出循环图像缓冲器。用户可通过在用户接口142处输入冻结命令,冻结电影回放。
显示电路298可包含3D处理器电路296。3D处理器电路296可访问存储器290以获得超声图像帧的空间连续群组,并且例如通过如是已知的体绘制或表面绘制算法来生成其三维图像表示。三维图像可利用各种成像技术例如射线造型法、最大强度像素投影及诸如此类来生成。
显示电路298可包含图形电路297。图形电路297可访问存储器290以获得已存储或当前在采集的超声图像帧和ROI数据采集位置的群组。图形电路297可生成包含ROI的图像和定位(例如,覆盖)到ROI的图像上的图形表示的图像。图形表示可表示治疗空间的轮廓、治疗波束的焦点或区域、由治疗空间内聚焦区域采取的路径、会话期间使用的探头、ROI数据采集位置及诸如此类。图形表示也可用来指示治疗会话的进展。图形表示可使用保存的图形图像或图画(例如,计算机图形生成的图画)生成,或者图形表示可由用户使用用户接口142的GUI,直接绘到图像上。
结合图3,用户可经由用户接口142选择用来从两个超声图像中执行ROI的分割的接口组件。
图3图示根据本文中描述的各种实施例的用于从两个超声图像中分割结构(例如对应于ROI的心脏结构)的方法300的流程图。方法300例如可采用本文中讨论的各种实施例(例如,系统和/或方法)的结构或方面。在各种实施例中,可忽略或添加某些步骤(或操作),可组合某些步骤,可同时执行某些步骤,可并发执行某些步骤,可将某些步骤分成多个步骤,可以以不同顺序执行某些步骤,或者可以以迭代方式重新执行某些步骤或步骤系列。在各种实施例中,方法300的部分、方面和/或变化可用作存储器中存储的一个或多个算法或软件模块,以引导硬件(例如,一个或多个处理器)执行本文中描述一个或多个操作。应注意,根据本文中的实施例,可使用其它方法。
一种或多种方法可(i)驱动多个换能器元件;(ii)在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号;(iii)生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像;(iv)生成具有组织元素和血液元素的ROI的第二超声图像;以及(v)通过在用于ROI的第一和第二超声图像上同时应用边缘检测来执行分割。
从302开始,发射电路122可例如使用编码激励或编码和未编码激励来驱动多个换能器元件124。例如,控制器电路136可在预确定的采集时间段期间指示超声探头126在编码与未编码激励之间切换。可选地,未编码激励脉冲可被编码激励交织和/或在其之后。在编码激励期间,由控制器电路136引导的发射电路122可将脉冲驱动N次到每个换能器元件124。脉冲可对应于由发射电路122根据在存储器140上存储的预定义的发射序列而形成的编码波形,该序列由控制器电路136选择。例如,在第一发射点火(例如,N=1),使换能器元件124根据第一发射代码脉动,并且在第二发射点火(例如,N=2),使换能器元件124根据相对于第一发射代码具有不同相位(例如,双相的)的第二发射代码脉动。可选地,第二发射代码可相对于第一发射代码具有不同幅度。控制器电路136可基于由控制器电路136经由用户接口142从一个或多个接口组件(例如,可选择图标、下拉菜单)的选择来接收的采集设置,从存储器140上存储的多个候选预定义的发射序列中选择预定义的发射序列。
发射波束形成器121可引导或操纵脉冲用于通过换能器元件124的对应于ROI的一部分的所预期发射焦点位置处的每个发射点火。例如,发射波束形成器121可响应于来自存储器140的发射序列,向由发射电路122产生的相应脉冲给予时间延迟。控制器电路136可通过发射波束形成器121调整时间延迟,以将由换能器元件124发射的脉冲聚焦在ROI的一个或多个所预期发射焦点位置处。N个脉冲以指定的脉冲重复间隔(PRI)发射到一个或多个焦点位置。
在304处,接收波束形成器130可收集来自换能器阵列112的接收信号,以基于接收信号形成波束相加信号。例如,换能器元件124可响应于在302处的编码和未编码激励,采集或接收回波信号。换能器元件124可经由探头/SAP电子器件110输出接收的回波信号到接收器128,其将接收的回波信号传递到接收波束形成器130。基于由发射波束形成器121操纵的脉冲的方向(例如,对应于焦点位置),接收波束形成器130可向接收的回波信号给予焦点时间延迟,接收的回波信号由接收波束形成器130相加以形成对应波束相加信号。例如,每个波束相加信号指示从聚焦在特定发射焦点位置处的编码激励的N个发射点火的每个反射的总超声能量。
在306处,控制器电路136可通过应用滤波器权重到波束相加信号来形成滤波的信号。例如,波束相加信号可作为超声数据270包含在由B-流电路251接收的超声数据270(图2)中。B-流电路251可包含用于跨N个发射点火进行滤波的滤波器。基于此,B-流电路251供应滤波器信号,滤波器信号可由B-流电路251进一步处理(例如,边缘增强、对数压缩)成用于扫描转换器292的数据值(例如,在308处)。
B-流电路251的滤波器可对应于诸如专用集成电路的专用硬件装置。另外或备选地,B-流电路251可包含运行在存储器140上存储的指令以便执行波束相加信号的滤波的一个或多个处理器、中央控制器电路(CPU)和/或诸如此类。
B-电路251的滤波器可基于滤波器系数的选择来执行解码、带通滤波和壁滤波。例如,滤波器可包含有限脉冲响应(FIR)滤波器,它接收用于滤波由于第一编码发射点火(例如,在N=1)产生的接收波束相加信号的第一滤波器系数集,以及接收用于滤波由于第二编码发射点火(例如,在N=2)产生的接收波束相加信号的第二滤波器系数集。第一滤波器系数集可通过将滤波器系数的预确定集的每个乘以第一滤波器权重(例如,标量值(scalervalue))而形成。第二滤波器系数集通过将滤波器系数的预确定集的每个乘以第二滤波器权重而形成。发射相位和滤波器权重可基于生成B-流超声成像,或者可以是其的函数。
FIR滤波器可具有M个滤波器抽头用于接收用于每个发射点火的M个滤波器系数的相应集。用于第n个发射点火的滤波器系数可以是anc1、anc2、……、ancM,其中,an是用于第n个发射点火的滤波器权重,n=1、2、……、N,并且其中,c1、c2、……、cM是滤波器系数集,其选择成使FIR滤波器能够压缩波束相加信号,并且传递所预期基本频带的主要部分。
例如,通过将基于所预期频带的第一滤波器系数b1、b2、……、bP集与相对于发射代码为匹配(例如,与发射代码相同)或不匹配滤波器系数的第二滤波器系数d1、d2、……、dQ集卷积,获得滤波器系数c1、c2、……、cM,其中,M=(P+Q−1)。滤波器权重a1、a2、……aN可作为“壁”滤波器运行,其选择性地从以大于预确定的阈值的速率移动的组织(例如,血流)传递信号。例如,可选择滤波器系数以抑制对应于以低速的运动或速度的低频率。
滤波器系数anc1、anc2、……ancM可存储在存储器290和/或存储器140上。选择滤波器系数可由B-电路251选择用于由换能器元件124的每个发射点火。例如,对于第一发射点火,B-电路251可从存储器290上存储的用于滤波器的滤波器系数anc1、anc2、……、ancM选择滤波器系数a1c1、a1c2、……、a1cM,对于第二发射点火,B-电路251可选择用于滤波器的滤波器系数a2c1、a2c2、……、a2cM和/或诸如此类。另外或备选地,控制器电路136可基于由用户经由用户接口142选择的诊断应用来调整滤波器系数。可选地,不同的滤波器系数集可存储在存储器290中的查找表中,并且所预期系数集可由用户可选择和/或由控制器电路136自动选择。
在308处,控制器电路136可基于滤波的信号来生成具有感兴趣区域(ROI)的组织元素和血液元素的超声图像例如B-流超声图像,其中血液元素具有比组织元素更高的强度。例如,与编码激励关联的滤波的信号可由B-电路251或通常由控制器电路136处理(例如,边缘增强、对数压缩)成用于B-超声图像的向量数据值,这些值存储在存储器290上。扫描转换器292访问存储器290并且从中获得用于B-超声图像的向量数据值,并且将向量数据值集转换成笛卡尔坐标,以生成用于显示的格式化的B-超声图像帧。生成的B-超声图像可存储在存储器290中以便由显示电路298访问和/或用于进一步处理(例如,分割)。
B-超声图像包含组织元素和血液元素。例如,组织元素可对应于ROI的组织结构的B-超声图像的像素或体素。血液元素可对应于ROI内流动的血液的B-超声图像的像素或体素。B-超声图像的血液元素相对于组织元素具有更高强度或亮度。例如,B-超声图像可具有对应于患者的左心室的ROI。对应于ROI周围的心内膜的组织元素(例如,像素,体素)将具有比对应于ROI内流动的血液的血液元素(例如,像素,体素)更低强度或亮度。
应注意,虽然相对于308描述了B-模态,但各种其它实施例可利用其它模态,例如对比增强超声图像(例如,通过将诸如充气微泡或造影剂(Optison)的对比剂注入到ROI中)或多普勒彩色血流超声图像。例如,通过从换能器元件124发射多普勒信号或脉冲序列,并且计算在脉冲序列与从ROI背向散射的至少一部分多普勒信号之间的多普勒移位,彩色血流电路252或通常控制器电路136可使用彩色血流或多普勒模态生成超声图像。在另一个示例中,对比增强电路264或通常控制器电路136可基于对比增强模态来生成超声图像。
在310处,控制器电路136生成具有ROI的组织元素和血液元素的超声图像例如B-模式超声图像,其中组织元素具有比血液元素更高的强度。B-模式图像可基于与未编码激励的关联的接收的信号或编码激励的滤波的信号(例如,基于用于在308处的B-图像的相同采集/发射信号)。在各种实施例中,B-模式超声图像可以是基于通过由换能器元件124例如在ƒ0(通常换能器低频带边缘)发射的脉冲或未编码激励得到的接收的信号的(子)谐波或基础图像。与未编码激励关联的接收的信号可作为超声数据270包含在由B-电路256接收的超声数据270(图2)中。可选地,B-模式电路251可包含滤波器,例如集中在频率2ƒ0(第二谐波)或频率ƒ0/2(子谐波)的带通滤波器。B-模式电路256或通常控制器电路136可从用于B-模式超声图像的接收的信号,计算向量数据值,这些值存储在存储器290上。
扫描转换器292访问存储器290并且从中获得用于B-模式超声图像的向量数据值,并且将向量数据值集转换成笛卡尔坐标,以生成用于显示的格式化的B-模式超声图像帧。生成的B-模式超声图像可存储在存储器290中以便由显示电路298访问和/或用于进一步处理(例如,分割)。
B-超声图像和B-模式超声图像可个别(例如,并排)在显示器138上显示。另外或备选地,结合图4,B-超声图像可覆盖在B-模式超声图像上以形成超声图像400。超声图像400可允许用户在医疗诊断期间相对于例如心内膜404的已知解剖标记(例如,基于B-模式超声图像),观察例如对应于左心室的ROI 402内的血液流动(例如,基于B-超声图像)。
在312处,控制器电路136可执行对用于ROI的B-模式和B-超声图像的分割。结合图5,控制器电路136可通过同时应用边缘检测到用于ROI的B-模式和B-超声图像来执行分割。
图5是通过同时应用边缘检测到B-超声图像和B-模式超声图像来用于执行分割的流程图。方法例如可对应于由控制器136通过运行在存储器(例如,存储器140,存储器290)中存储的一个或多个算法而执行的操作。在各种实施例中,可忽略或添加某些步骤(或操作),可组合某些步骤,可同时执行某些步骤,可并发执行某些步骤,可将某些步骤分成多个步骤,可以以不同顺序执行某些步骤,或者可以以迭代方式重新执行某些步骤或步骤系列。在各种实施例中,方法300的部分、方面和/或变化可用作用来引导硬件执行本文中描述的一个或多个操作的一个或多个算法。应注意,根据本文中的实施例,可使用其它方法。
从502开始,控制器电路136可应用网格602到ROI 402。结合图6,网格602可基于在存储器140中存储的网格模板数据库,具有初始大小和/或形状。网格模板数据库可以是具有对应解剖结构的候选网格的集合。
例如,用户可通过经由用户接口142选择B-模式超声图像和/或B-超声图像内的结构来选择和/或指定ROI 402。另外或备选地,用户可基于用于超声成像系统100的诊断选择(例如,心脏输出测量)来指定ROI 402。ROI 402可对应于诸如左心室、右心室、左心房、右心房、左心室流出道和/或诸如此类的心脏结构。基于ROI 402的选择,控制器电路136可比较由ROI 402表示的心脏结构与网格模板数据库中候选网格的集合。控制器电路136可选择匹配ROI 402的解剖结构的候选网格之一,并且将网格602覆盖在ROI 402上。可选地,用户可经由用户接口142调整网格602的形状和/或重新定位网格602。
图6是应用到由超声图像400示出的ROI 402的网格602的说明。网格602可细分成多个曲面片,例如,网格602可基于Doo-Sabin表面、Catmull-Clark表面、活动轮廓、水平集、B-样条和/或诸如此类。曲面片可重新定位,从而允许控制器电路136和/或用户经由用户接口142调整网格602的形状。例如,调整一个或多个曲面片的位置以使网格602的拓扑或总体形状符合如结合图5的516所述的ROI 402的边缘的位置。应注意,虽然网格602以2D示出,但在各种其它实施例中,3D网格602可由控制器电路136应用。
另外或备选地,每个曲面片可沿曲面片轴线移动。例如,控制器电路136可为每个曲面片定义在中心位置处的表面点。控制器电路126可沿从对应表面点,相对于每个曲面片的相对表面垂直延伸的表面法向量,计算曲面片轴线。
返回到图5,在504处,控制器电路136可分别从B-模式和B-超声图像确定第一和第二强度梯度集。第一和第二强度梯度集可以是分别对应于B-模式超声图像和B-超声图像的位置(例如,沿曲面片轴线)的计算的强度梯度向量或强度梯度量值的集合。例如,控制器电路136可在设置的距离阈值内,沿每个曲面片轴线计算对应于在网格602周围和/或接近网格602的像素强度(或用于3D超声图像的体素)中的变化的B-模式超声图像(用于第一集)的导数。
在506处,控制器电路136可相对于网格602选择感兴趣地点(locality)604。感兴趣地点604可基于网格602的曲面片之一来对应于来自B-模式超声图像和B-超声图像的像素的区。例如,感兴趣地点604可以是沿曲面片之一的曲面片轴线延伸预确定的距离的一系列像素。另外或备选地,感兴趣地点604可由用户经由用户接口142选择。
在508处,控制器电路136分析相对于能量函数,在感兴趣地点604的第一和第二强度梯度集。能量函数可对应于在存储器140中存储用于选择对应于解剖结构的边缘的强度梯度的机器学习算法。能量函数可分析强度梯度的一个或多个形态特性以识别ROI 402的边缘的位置。
例如,能量函数可包含梯度阈值、位置变化阈值(location variancethreshold)、峰值形式模板和/或诸如此类以从第一和第二强度梯度集确定对应于ROI 402的边缘的选择强度梯度集。梯度阈值可对应于强度梯度集的峰值,例如梯度量值,该峰值指示在表示ROI 402的边缘的相邻像素强度中的变化。例如,在强度梯度集内高于梯度阈值的峰值可指示边缘。位置变化阈值可对应于在由第一和第二强度梯度集识别的峰值之间的距离阈值。例如,仅相对于彼此在位置变化阈值内的第一和第二强度梯度集的峰值可指示ROI402的边缘。峰值形式模板可对应于指示边缘的峰值的总体形状。例如,峰值形式模板可定义斜率阈值和/或峰值阈值,这些阈值定义对应于ROI 402的边缘的峰值。
在510处,控制器电路136可基于由能量函数识别的边缘位置,确定来自第一和第二集的强度梯度是否对应于ROI 402的边缘。图7是根据实施例的在感兴趣地点604处第一强度梯度集702和第二强度梯度集704的图解表示。垂直轴线708表示强度梯度的量值,并且水平轴线710对应于相对于感兴趣地点604的像素位置。控制器电路136在运行能量函数时,可比较第一和第二强度梯度集702和704与梯度阈值718,以定位具有高于识别ROI 402的边缘的梯度阈值718的强度梯度的第一和第二强度梯度集的峰值。
在512处,由控制器电路136识别的对应于ROI 402的边缘的强度梯度可添加到选择强度梯度集。例如,控制器电路136可确定第二集704的峰值722表示对应于ROI 402的边缘的感兴趣地点604的像素位置714。控制器电路136可包含选择强度梯度集的像素位置714,该位置指示相对于感兴趣地点604(例如,曲面片),ROI 402的边缘的位置。应注意,在各种实施例中,选择强度梯度集可包含部分第一和第二强度梯度集。例如,能量函数可定位在第一强度梯度集和/或第二强度梯度集中的边缘。
在各种实施例中,控制器电路136可确定对应于ROI 402的边缘的感兴趣地点604的不同像素位置。基于不同像素位置,控制器电路136可吸收和/或调整从第一和第二集确定的像素位置。例如,控制器电路136可从第一强度梯度集(例如,从B-模式超声图像)确定第一像素位置,并且从第二强度梯度集(例如,从B-超声图像)确定第二像素位置。控制器电路136可从第一和第二像素位置计算平均像素位置,其将由控制器电路136包含到选择强度梯度集。
在514处,控制器电路136确定是否需要选择附加的感兴趣地点。例如,控制器电路136可在518处继续选择对应于网格602的曲面片的新感兴趣地点,直至每个曲面片具有对应于ROI 402的边缘的选择强度梯度。
在516处,如果无需附加的感兴趣地点,则控制器电路136可基于选择梯度强度集来调整网格602。
图8是基于选择梯度强度集和网格602的调整的网格802的说明。例如,选择梯度强度集的像素位置可由控制器电路136用来将曲面片重新定位到ROI 402的边缘,由此调整网格602。控制器电路136可确定在像素位置714与由沿曲面片轴线的感兴趣地点604表示的曲面片之间的距离。控制器电路136可通过将曲面片移位和/或将曲面片的表面点投射到沿曲面片轴线的像素位置714来调整曲面片。
基于调整的网格802,控制器电路136可分割来自B-模式超声图像和/或B-超声图像的ROI 402。另外或备选地,控制器电路136和/或用户可基于由网格802定义的ROI 402的大小来执行诊断测量(例如,体积)。
应注意,在各种实施例中,与结合图5描述不同的,在312处,其它技术可用于对B-模式和B-超声图像进行分割。例如,具有1D强度轮廓的阶跃函数可拟合(例如,垂直于网格)以同时确定B-模式和B-超声图像的边缘。在另一个示例中,能量函数可应用到B-模式和B-超声图像,描述像素数据的某些统计特性(例如,均值,方差),以识别B-模式和B-超声图像的边缘。
另外或备选地,使用以通信方式耦合到超声成像系统100的工作站,可远程地执行(例如,在不同位置处)和/或在时间上偏移方法300的一个或多个操作(例如,302-312)。例如,用户可从以通信方式耦合到超声成像系统100的工作站访问在存储器140和/或存储器290上存储的在先前扫描期间结合302-310采集的B-模式和B-超声图像。用户可执行访问和/或选择B-模式和B-超声图像,以执行在312处的用于ROI的B-模式和B-超声图像的分割。
图1的超声系统100可在诸如膝上型计算机或袖珍式系统的小型化系统中及更大的控制台类型系统中体现。图9和10图示小型化系统,而图11图示更大的系统。
图9图示具有探头932的3D功能的微型化超声系统930,探头可配置成采集3D超声数据或多平面超声数据。例如,探头932可具有如先前相对于探头讨论的元件的2D阵列。用户接口934(其也可包含集成显示器936)提供以接收来自操作员的命令。如本文中所使用得,“小型化”意味着超声系统930是持持式或手提式装置,或者配置成在人的手、口袋、公文包大小的箱或背包中携带。例如,超声系统930可以是具有典型膝上型计算机大小的手提式装置。超声系统930可由操作员轻松携带。集成显示器936(例如,内部显示器)配置成显示例如一个或多个医疗图像。
超声数据可经由有线或无线网络940(或直接连接,例如,经由串行或并行电缆或USB端口)发送到外部装置938。在一些实施例中,外部装置938可以是具有显示器的计算机或工作站。备选地,外部装置938可以是单独的外部显示器或打印机,其能够从手提式超声系统930接收图像数据及显示或打印可具有比集成显示器936更高分辨率的图像。
图10图示手提式或袖珍式超声成像系统1050,其中,显示器1052和用户接口1054形成单个单元。作为示例,袖珍式超声成像系统1050可以是大约2英寸宽,大约4英寸长以及大约0.5英寸深,并且重量不超过3盎司的袖珍式或手掌大小的超声系统。袖珍式超声成像系统1050通常包含显示器1052、用户接口1054,其可包含或不包含用于到例如超声探头1056的扫描装置的连接的输入/输出(I/O)端口和键盘类型接口。显示器1052例如可以是320 x 320像素彩色LCD显示器(在其上可显示医疗图像1090)。按钮1082的打字机状键盘1080可以可选地包含在用户接口1054中。
多功能控制1084每个可以根据系统操作的模式(例如显示不同视图)指配功能。因此,每个多功能控制1084可配置成提供多个不同动作。诸如与多功能控制1084关联的标签显示区1086的一个或多个接口组件可根据需要包含在显示器1052上。系统1050也可具有用于特定目的功能的附加按键和/或控制1088,该功能可包含但不限于“冻结”、“深度控制”、“增益控制”、“颜色-模式”、“打印”及“存储”。
标签显示区1086的一个或多个可包含标签1092以指示视频在显示,或者允许用户选择成像对象的不同视图以显示。不同视图的选择也可通过关联多功能控制1084提供。显示器1052也可具有对应于用于显示与显示的图像视图有关的信息(例如,与显示的图像关联的标签)的文本显示区1094的一个或多个接口组件。
应注意,各种实施例可结合具有不同尺寸、重量及功耗的微型化或小型化超声系统实现。例如,袖珍式超声成像系统1050和微型化超声系统930可提供与系统100相同的扫描和处理功能性。
图11图示在可移动底痤1102上提供的超声成像系统1100。便携式超声成像系统1100也可以称为基于手推车系统。显示器1104和用户接口1106被提供,并且应理解,显示器1104可以是单独的或者可与用户接口1106分开。用户接口1106可以可选是触摸屏,允许操作员通过触摸显示的图形、图标及诸如此类选择选项。
用户接口1106也包含控制按钮1108,控制按钮可用来根据预期或需要和/或如通常提供地那样控制便携式超声成像系统1100。用户接口1106提供多个接口选项,用户可在物理上操纵这些选项以与可显示的超声数据和其它数据交互,以及输入信息和设置并且改变扫描参数及观看角度等。例如,可提供键盘1110、轨迹球1112和/或多功能控制1114。
应注意,各种实施例可在硬件、软件或其组合中实现。各种实施例和/或例如模块或在其中的组件和控制器的组件也可实现为一个或多个计算机或处理器的一部分。计算机或处理器可包含计算装置、输入装置、显示单元及例如用于接入因特网的接口。计算机或处理器可包含微处理器。微处理器可连接到通信总线。计算机或处理器也可包含存储器。存储器可包含随机接入存储器(RAM)和只读存储器(ROM)。计算机或处理器可还包含存储装置,其可以是硬盘驱动或可移动存储驱动,例如固态驱动、光盘驱动及诸如此类。存储装置也可以是用于将计算机程序或其它指令装载到计算机或处理器中的其它类似的部件。
如本文中所使用的,术语“计算机”、“子系统”或“模块”可包含任何基于处理器或基于微处理器的系统,包含使用微控制器、精简指令集计算机(RISC)、ASIC、逻辑电路及能够运行本文中所述功能的任何其它电路或处理器的系统。上述示例只是示范的,并且因此不意图以任何方式限制术语“计算机”的定义和/或含意。
计算机或处理器运行在一个或多个存储元件中存储的指令集以便处理输入数据。存储元件也可根据预期或需要存储数据或其它信息。存储元件可以以处理机器内的物理存储器元件或信息源的形式。
指令集可包含指示作为处理机器的计算机或处理器执行诸如各种实施例的方法和过程的特定操作的各种命令。指令集可以以软件程序的形式。软件可以以各种形式,例如系统软件或应用软件并且可体现为有形并请求非暂时性计算机可读媒介。此外,软件可以以单独程序或模块的集合,更大程序内的程序模块或程序模块的一部分的形式。软件也可包含以面向对象的编程形式的模块化程序设计。由处理机器对输入数据的处理可以响应于操作员命令,或者响应于先前处理的结果,或者响应于由另一个处理机器发出的请求。
如本文中所使用的,“配置成”执行任务或操作的结构、限制或元素以对应于任务或操作的方式特别地在结构上形成,构建或适应。为清晰和避免疑问的目的,只能够被修改以执行任务或操作的对象未如本文中所使用地那样“配置成”执行任务或操作。而是,如本文中所使用的“配置成”的使用指示结构性适应或特性,并且指示被描述为“配置成”执行任务或操作的任何结构、限制或元素的结构性要求。例如,可将“配置成”执行任务或操作的控制器电路、处理器或计算机理解为特别被构建以执行任务或操作(例如,使与其结合使用或在其上存储的一个或多个程序或指令适合或意图执行任务或操作,和/或使处理电路系统的布置适合或意图执行任务或操作)。为清晰和避免疑问的目的,通用计算机(其可变得“配置成”执行任务或操作如果适当编程的话)未“配置成”执行任务或操作,除非或直至特殊编程或结构修改以执行任务或操作。
如本文中所使用的,术语“软件”和“固件”是可交换的,并且包含供由计算机运行的在存储器中存储的任何计算机程序,存储器包含RAM存储器、ROM存储器、EPROM存储器、EEPROM存储器及非易失性RAM (NVRAM)存储器。上述存储器类型只是示范的,并且因此关于可用于计算机程序的存储的存储器的类型不是限制的。
要理解,上面描述意图是说明性的而不是限制性的。例如,上述实施例(和/或其方面)可彼此结合使用。另外,可进行多种修改以使具体状况或材料适合各种实施例的教导,而没有背离其范围。虽然本文所述材料的尺寸和类型意图定义各种实施例的参数,但是它们决不是限制性的,而只是示范的。在审查上面描述时,许多其他实施例对于本领域的技术人员将是显而易见的。因此,应参考所附权利要求书连同这类权利要求书所被赋予的等同物的全部范围来确定各种实施例的范围。在所附权利要求书中,术语“包含”和“其中”用作相应术语“包括”和“其中”的易懂英语等同物。此外,在下面权利要求书中,术语“第一”、“第二”和“第三”等只用作标记,而不是意图对其对象强加数字要求。此外,下面的权利要求书的限制没有以方法加功能形式来书写并且不意图基于35 U.S.C.§ 112来解释,除非并且直到这类权利要求限制确切地使用后面是缺乏进一步结构的功能陈述的短语“用于…的部件”。
本书面描述使用包含最佳模式的示例来公开各种实施例,并且还使本领域的任何技术人员能够实施各种实施例,包含制作和使用任何装置或系统以及执行任何包含的方法。各种实施例的可取得专利的范围由权利要求书限定,并且可包含本领域的技术人员想到的其他示例。如果这类其他示例具有没有不同于权利要求书的文字语言的结构元件,或者如果它们包含具有与权利要求书的文字语言的无实质差异的等效结构元件,则它们意图处于权利要求书的范围之内。

Claims (17)

1.一种超声成像系统,包括:
换能器阵列,包括多个换能器元件;
发射电路,用来驱动所述换能器阵列;
接收波束形成器,用来收集来自所述换能器阵列的接收信号,并且形成波束相加信号;以及
一个或多个处理器和用于存储编程指令的存储器,其中所述一个或多个处理器通过执行下面操作来运行所述编程指令:
生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像,其中所述第一超声图像的所述组织元素具有比所述血液元素更高的强度;
生成具有组织元素和血液元素的所述ROI的第二超声图像,其中所述第二超声图像的所述血液元素具有比组织元素更高的强度;以及
通过在用于所述ROI的所述第一和第二超声图像上同时应用边缘检测来执行分割;所述边缘检测包括从所述第一超声图像确定第一强度梯度集和从所述第二超声图像确定第二强度梯度集,并且应用能量函数到所述第一和第二集以识别对应于所述ROI的边缘的选择强度梯度集。
2.如权利要求1所述的超声成像系统,其中所述第一超声图像对应于B-模式超声图像,并且所述第二超声图像对应于B-流超声图像、多普勒彩色血流超声图像或对比增强超声图像。
3.如权利要求1所述的超声成像系统,其中所述一个或多个处理器还应用网格到所述ROI,并且基于用于分割操作的所述ROI的边缘来调整所述网格的形状。
4.如权利要求3所述的超声成像系统,其中所述网格由所述一个或多个处理器基于诊断选择来从存储在所述存储器上的多个候选网格中选择。
5.如权利要求1所述的超声成像系统,其中所述能量函数包含梯度阈值或位置变化阈值。
6.如权利要求1所述的超声成像系统,其中所述选择强度梯度集包含部分所述第一和第二集。
7.如权利要求1所述的超声成像系统,其中所述ROI是对应于左心室、右心室、左心房、右心房或左心室流出道中的至少一个的心脏结构。
8.如权利要求1所述的超声成像系统,其中所述一个或多个处理器将所述第一超声图像覆盖在所述第二超声图像上。
9.一种用于分割结构的方法,包括:
驱动多个换能器元件;
在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号;
生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像,其中所述第一超声图像的所述组织元素具有比所述血液元素更高的强度;
生成具有组织元素和血液元素的所述ROI的第二超声图像,其中所述第二超声图像的所述血液元素具有比所述组织元素更高的强度;以及
通过在用于所述ROI的所述第一和第二超声图像上同时应用边缘检测来执行分割;所述边缘检测包括:从所述第一超声图像确定第一强度梯度集,并且从所述第二超声图像确定第二强度梯度集;应用能量函数到所述第一和第二集以识别对应于所述ROI的边缘的选择强度梯度集。
10.如权利要求9所述的方法,其中所述第一超声图像对应于B-模式超声图像,并且所述第二超声图像对应于B-流超声图像、多普勒彩色血流超声图像或对比增强超声图像。
11.如权利要求9所述的方法,还包括:
应用网格到所述ROI;以及
基于用于分割操作的所述ROI的边缘来调整所述网格的形状。
12.如权利要求11所述的方法,还包括基于诊断选择来从多个候选网格中选择所述网格。
13.如权利要求9所述的方法,其中所述能量函数包含梯度阈值或位置变化阈值。
14.如权利要求9所述的方法,其中所述选择强度梯度集包含部分所述第一和第二集。
15.一种有形并且非暂时性计算机可读媒介,包括一个或多个计算机软件模块,所述一个或多个计算机软件模块配置成引导一个或多个处理器以:
驱动多个换能器元件;
在接收波束形成器处收集来自换能器阵列的接收信号以形成波束相加信号;
生成具有组织元素和血液元素的感兴趣区域(ROI)的第一超声图像,其中所述第一超声图像的所述组织元素具有比所述血液元素更高的强度;
生成具有组织元素和血液元素的所述ROI的第二超声图像,其中所述第二超声图像的所述血液元素具有比组织元素更高的强度;以及
通过在用于所述ROI的所述第一和第二超声图像上同时应用边缘检测来执行分割;所述边缘检测包括:从所述第一超声图像确定第一强度梯度集,并且从所述第二超声图像确定第二强度梯度集;应用能量函数到所述第一和第二集以识别对应于所述ROI的所述边缘的选择强度梯度集。
16.如权利要求15所述的有形并且非暂时性计算机可读媒介,其中所述一个或多个处理器还被引导以:
应用网格到所述ROI;以及
基于用于分割操作的所述ROI的边缘来调整所述网格的形状。
17.如权利要求15所述的有形并且非暂时性计算机可读媒介,其中所述第一超声图像对应于B-模式超声图像,并且所述第二超声图像对应于B-流超声图像、多普勒彩色血流超声图像或对比增强超声图像。
CN201610954019.9A 2015-10-27 2016-10-27 用于在医学图像中将结构分割的方法和系统 Active CN106875372B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/923952 2015-10-27
US14/923,952 US10588605B2 (en) 2015-10-27 2015-10-27 Methods and systems for segmenting a structure in medical images

Publications (2)

Publication Number Publication Date
CN106875372A CN106875372A (zh) 2017-06-20
CN106875372B true CN106875372B (zh) 2022-04-19

Family

ID=58564750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610954019.9A Active CN106875372B (zh) 2015-10-27 2016-10-27 用于在医学图像中将结构分割的方法和系统

Country Status (2)

Country Link
US (1) US10588605B2 (zh)
CN (1) CN106875372B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154826B2 (en) 2013-07-17 2018-12-18 Tissue Differentiation Intelligence, Llc Device and method for identifying anatomical structures
US10716536B2 (en) 2013-07-17 2020-07-21 Tissue Differentiation Intelligence, Llc Identifying anatomical structures
US11986341B1 (en) 2016-05-26 2024-05-21 Tissue Differentiation Intelligence, Llc Methods for accessing spinal column using B-mode imaging to determine a trajectory without penetrating the the patient's anatomy
US11701086B1 (en) 2016-06-21 2023-07-18 Tissue Differentiation Intelligence, Llc Methods and systems for improved nerve detection
EP3300021B1 (en) * 2016-09-22 2018-12-05 RaySearch Laboratories AB Image processing system and method for interactive contouring of three-dimensional medical data
WO2018109764A1 (en) * 2016-12-14 2018-06-21 Eyes Ltd System and methods for fully automated data analysis, reporting and quantification for medical and general diagnosis, and for edge detection in digitized images
US10660613B2 (en) * 2017-09-29 2020-05-26 Siemens Medical Solutions Usa, Inc. Measurement point determination in medical diagnostic imaging
CN107610124B (zh) * 2017-10-13 2020-03-31 中冶赛迪技术研究中心有限公司 一种炉口图像预处理方法
WO2019118613A1 (en) * 2017-12-12 2019-06-20 Oncoustics Inc. Machine learning to extract quantitative biomarkers from ultrasound rf spectrums
US20190216430A1 (en) * 2018-01-15 2019-07-18 General Electric Company System and method for ultrasound flow imaging
US10685261B2 (en) * 2018-06-11 2020-06-16 GM Global Technology Operations LLC Active segmention of scanned images based on deep reinforcement learning for OCR applications
EP3826544B1 (en) * 2018-07-26 2024-06-05 Koninklijke Philips N.V. Ultrasound system with an artificial neural network for guided liver imaging
JP6697538B1 (ja) * 2018-12-21 2020-05-20 ゼネラル・エレクトリック・カンパニイ 超音波装置及びその制御プログラム
US11232611B2 (en) * 2019-10-10 2022-01-25 GE Precision Healthcare LLC System and methods for reducing anomalies in ultrasound images
JP7426086B2 (ja) 2020-06-09 2024-02-01 本多電子株式会社 超音波血流領域表示装置、方法及びプログラム、超音波画像診断装置
US20210390685A1 (en) * 2020-06-16 2021-12-16 GE Precision Healthcare LLC Method and system for providing clutter suppression in vessels depicted in b-mode ultrasound images
US20230197056A1 (en) * 2021-12-17 2023-06-22 Fujifilm Sonosite, Inc. Compound acoustic lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322509B1 (en) * 2000-05-01 2001-11-27 Ge Medical Systems Global Technology Company, Llc Method and apparatus for automatic setting of sample gate in pulsed doppler ultrasound imaging
GB201106184D0 (en) * 2011-04-12 2011-05-25 Univ Dublin City Processing ultrasound images
CN102123668A (zh) * 2008-06-26 2011-07-13 维拉声学公司 使用未聚焦发送波束的高帧率定量多普勒流成像
WO2015189160A1 (en) * 2014-06-12 2015-12-17 Koninklijke Philips N.V. Medical image processing device and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980459A (en) 1998-03-31 1999-11-09 General Electric Company Ultrasound imaging using coded excitation on transmit and selective filtering of fundamental and (sub)harmonic signals on receive
US7450746B2 (en) * 2002-06-07 2008-11-11 Verathon Inc. System and method for cardiac imaging
US8290266B2 (en) * 2006-08-24 2012-10-16 Agency For Science, Technology And Research Model-based method and system for image segmentation and modelling
CN101527047B (zh) * 2008-03-05 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 使用超声图像检测组织边界的方法与装置
US9320496B2 (en) * 2010-02-25 2016-04-26 Siemens Medical Solutions Usa, Inc. Volumetric is quantification for ultrasound diagnostic imaging
US20130046168A1 (en) * 2011-08-17 2013-02-21 Lei Sui Method and system of characterization of carotid plaque
CN102324092B (zh) * 2011-09-09 2013-08-07 华南理工大学 一种数字图像中颗粒状对象的自动分割方法
US20130245441A1 (en) * 2012-03-13 2013-09-19 Siemens Medical Solutions Usa, Inc. Pressure-Volume with Medical Diagnostic Ultrasound Imaging
US11006926B2 (en) * 2018-02-27 2021-05-18 Siemens Medical Solutions Usa, Inc. Region of interest placement for quantitative ultrasound imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322509B1 (en) * 2000-05-01 2001-11-27 Ge Medical Systems Global Technology Company, Llc Method and apparatus for automatic setting of sample gate in pulsed doppler ultrasound imaging
CN102123668A (zh) * 2008-06-26 2011-07-13 维拉声学公司 使用未聚焦发送波束的高帧率定量多普勒流成像
GB201106184D0 (en) * 2011-04-12 2011-05-25 Univ Dublin City Processing ultrasound images
WO2015189160A1 (en) * 2014-06-12 2015-12-17 Koninklijke Philips N.V. Medical image processing device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
融合图像局部能量和梯度的水平集分割方法;包立君等;《哈尔滨工业大学学报》;20160506;第43卷(第3期);第44-48页 *

Also Published As

Publication number Publication date
US20170112473A1 (en) 2017-04-27
CN106875372A (zh) 2017-06-20
US10588605B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
CN106875372B (zh) 用于在医学图像中将结构分割的方法和系统
US9943288B2 (en) Method and system for ultrasound data processing
US20170238907A1 (en) Methods and systems for generating an ultrasound image
US10874373B2 (en) Method and system for measuring flow through a heart valve
US10206651B2 (en) Methods and systems for measuring cardiac output
US9420996B2 (en) Methods and systems for display of shear-wave elastography and strain elastography images
CN108784735B (zh) 用于显示采集质量水平的超声成像系统和方法
US20120116218A1 (en) Method and system for displaying ultrasound data
US20170119356A1 (en) Methods and systems for a velocity threshold ultrasound image
US11432803B2 (en) Method and system for generating a visualization plane from 3D ultrasound data
US20180206825A1 (en) Method and system for ultrasound data processing
US20100249589A1 (en) System and method for functional ultrasound imaging
US9955950B2 (en) Systems and methods for steering multiple ultrasound beams
US10631831B2 (en) Methods and systems for adjusting a field of view for medical imaging systems
US10499883B2 (en) Methods and systems for spatial color flow for diagnostic medical imaging
US20130165785A1 (en) Method and apparatus for aperture selection in ultrasound imaging
US8197407B2 (en) Method and apparatus for sub-harmonic contrast imaging
EP3813673B1 (en) Methods and systems for performing transvalvular pressure quantification
US11219429B2 (en) Ultrasound imaging apparatus and controlling method for the same
US20160081659A1 (en) Method and system for selecting an examination workflow
US20170086789A1 (en) Methods and systems for providing a mean velocity
CN110636799A (zh) 针对器官查看的最佳扫描平面选择
US20160354060A1 (en) Methods and systems for controlling a diagnostic medical imaging display interface
RU2778840C2 (ru) Ультразвуковая диагностика анатомических особенностей

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant