CN106865622B - 一种Fe3O4@LDH复合纳米材料的合成方法 - Google Patents

一种Fe3O4@LDH复合纳米材料的合成方法 Download PDF

Info

Publication number
CN106865622B
CN106865622B CN201710083481.0A CN201710083481A CN106865622B CN 106865622 B CN106865622 B CN 106865622B CN 201710083481 A CN201710083481 A CN 201710083481A CN 106865622 B CN106865622 B CN 106865622B
Authority
CN
China
Prior art keywords
composite nano
nano materials
synthetic method
ldh
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710083481.0A
Other languages
English (en)
Other versions
CN106865622A (zh
Inventor
吴晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Institute of Economic and Trade Technology
Original Assignee
Jiangsu Institute of Economic and Trade Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Institute of Economic and Trade Technology filed Critical Jiangsu Institute of Economic and Trade Technology
Priority to CN201710083481.0A priority Critical patent/CN106865622B/zh
Publication of CN106865622A publication Critical patent/CN106865622A/zh
Application granted granted Critical
Publication of CN106865622B publication Critical patent/CN106865622B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种Fe3O4@LDH复合纳米材料的合成方法。本发明通过一缩二乙二醇作为反应溶剂,Fe2+和Fe3+与碱溶液共沉淀反应制备得到超顺磁性Fe3O4纳米球。在保持Fe3O4纳米球均匀分散的基础上,与一缩二乙二醇溶液中的Al3+、Mg2+充分混合,然后与碱溶液发生共沉淀反应。本发明方法克服了现有技术中颗粒尺寸难以控制、颗粒分散不均、Fe3O4与LDH难以很好地形成层状复合纳米材料的缺陷,制备出比表面积大、粒径均一、形貌可调的Fe3O4@LDH层状纳米复合材料。本发明中制备的Fe3O4@LDH复合纳米材料可以有效对抗癌药物柔红霉素进行承载和缓释,可以进行磁导向靶向给药,可作为肿瘤早期治疗的潜在药物制剂应用于临床。本发明的合成方法简便易行、靶向给药效果好、毒性低,具有广阔的医学临床应用价值和前景。

Description

一种Fe3O4@LDH复合纳米材料的合成方法
技术领域
本发明涉及一种Fe3O4@LDH复合纳米材料的合成方法,Fe3O4@LDH复合纳米材料可以有效对抗癌药物进行承载和缓释,并且可以进行磁导向靶向给药,可作为肿瘤早期治疗的潜在药物制剂应用于临床。
背景技术
众所周知,层状双氢氧化物(layered double hydroxides,以下简称LDH)具有优良的离子交换性质,其氢氧化物层中金属离子也可以在相当大的范围内变化,再加上其脱水形成复合氧化物的能力和所提供的有限制的层间反应环境,使其在材料、化工、医药和环境保护等方面有着广泛的用途。开发这些用途应该是未来工作的重点。LDH纳米材料近年来在生物领域的应用也越来越受到关注。LDH作为复合载药材料,可以提高药物的安全性、有效性、还可以提高药物的稳定性和溶解度,控制药物释放,具有广泛的应用价值。
在生物医学领域,磁性纳米材料易于修饰,可以与特异性的药物相结合,常被用作靶向给药载体。靶向给药可以将药物直接输送到病灶部位,减少了药物对正常组织的伤害,提高了药效。将磁性材料和载药的纳米载体复合在一起,具有广阔的应用前景。
利用纳米材料实现靶向给药并进行治疗是未来药学及治疗学不断追求的目标,已成为当今研究的热点之一。本发明提供新的Fe3O4@LDH复合纳米材料可以有效的对抗癌药物进行承载和缓释,并且可以进行磁导向靶向给药,可作为肿瘤早期治疗的潜在药物制剂应用于临床。
发明内容
发明目的:本发明提供了一种新的Fe3O4@LDH复合纳米材料的合成方法。
技术方案:针对目前现有技术很难制备晶型好的Fe3O4@LDH复合纳米材料的缺陷,本发明提供了一种新Fe3O4@LDH复合纳米材料的合成方法。
1、一种Fe3O4@LDH复合纳米材料的合成方法,其特征在于由如下步骤制得:
A、将二价铁盐和三价铁盐在一缩二乙二醇为溶剂的条件下进行超声溶解得到溶液A,溶液A中Fe2+和Fe3+浓度分别为0.1~1.0mol/L.;
B、将可溶性碱溶于到一缩二乙二醇试剂中,配制成碱溶液B,碱溶液B的浓度为0.1~5.0mol/L;
C、将可溶性铝盐和镁盐在一缩二乙二醇为溶剂的条件下进行超声溶解得到溶液C,混合盐络合溶液的金属离子浓度为0.1~1.0mol/L;
D、将溶液B逐滴滴加到溶液A中,温度40~90℃,剧烈搅拌,反应时间1~5h,再高温160~220℃反应1~5h,得到产物D;
E、将D中所得产物冷却后与溶液C充分混合,然后逐滴滴加溶液B,剧烈搅拌,反应温度40~80℃,反应时间1~8h。所得产物用去离子水多次离心洗涤,获得相应产品。
有益效果:
(1) 将一定浓度的铁盐和亚铁盐试剂溶解在一缩二乙二醇中,将上述溶液充分混合后加入一缩二乙二醇的碱溶液,制得产品和镁、铝盐的一缩二乙二醇溶液混合后与碱液进一步反应,以此制备Fe3O4@LDH复合纳米材料。该方法具有操作简便,具有广阔的应用价值和前景。
(2) 将合成的Fe3O4@LDH复合纳米材料与一定浓度的柔红霉素充分混合交融,制备得到可靶向给药的抗癌药物制剂。
本发明的优点是:本发明的合成方法简便易行、靶向给药效果好、毒性低,具有广阔的医学临床应用价值和前景。本发明中制备的Fe3O4@LDH纳米复合材料可以有效的对抗癌药物柔红霉素进行承载和缓释,可以进行靶向给药,可作为肿瘤早期治疗的潜在药物制剂应用于临床。
附图说明
图1是本发明实施例1实验组SEM结果图;
图2是本发明实施例2实验组载药能力结果图。
具体实施方式
实施例1
将FeCl2和FeCl3超声溶解在一缩二乙二醇中,溶液中FeCl2和FeCl3物质的量浓度分别为0.1 mol/L和0.2mol/L;将NaOH固体溶于到一缩二乙二醇中,浓度为0.8mol/L。将MgCl2、AlCl3超声溶解在一缩二乙二醇中,溶液中MgCl2、AlCl3的物质的量浓度分别为0.1mol/L。
将NaOH溶液逐滴滴加到铁盐溶液中,温度60℃,剧烈搅拌,反应时间1h,再高温200℃反应5h。将所得产物冷却后与MgCl2、AlCl3的混合溶液充分混合,然后逐滴滴加NaOH溶液,剧烈搅拌,反应温度60℃,反应时间1h。所得产物用去离子水多次离心洗涤,获得相应产品。本发明所得产品用电子扫描电镜(SEM)表征结果见图1。
实施例2
将实施例1中制得的产品与物质的量浓度为5mg/mL的柔红霉素充分混合,过24h后,将混合物3000r/min离心3min,取上层澄清溶液。分别对5mg/mL的柔红霉素溶液和已取上层澄清溶液进行紫外光谱分析,所得结果见图2,结果表明Fe3O4@LDH复合纳米材料具有很好的承载抗癌药物柔红霉素效果。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种Fe3O4@ LDH复合纳米材料的合成方法,其特征在于由如下步骤制得:
A、将二价铁盐和三价铁盐在一缩二乙二醇为溶剂的条件下进行超声溶解得到溶液A,溶液A中Fe2+和Fe3+浓度分别为0.1~1.0mol/L;
B、将可溶性碱溶于到一缩二乙二醇试剂中,配制成碱溶液B,碱溶液B的浓度为0.1~5.0mol/L;
C、将可溶性铝盐和镁盐在一缩二乙二醇为溶剂的条件下进行超声溶解得到溶液C,混合盐络合溶液的金属离子浓度为0.1~1.0mol/L;
D、将溶液B逐滴滴加到碱溶液A中,温度40~90℃,剧烈搅拌,反应时间1~5h,再高温160~220℃反应1~5h,得到产物D;
E、将D中所得产物冷却后与溶液C充分混合,然后逐滴滴加溶液B,剧烈搅拌,反应温度40~80℃,反应时间1~8h。所得产物用去离子水多次离心洗涤,获得相应产品。
2.根据权利要求1所述的Fe3O4@LDH复合纳米材料的合成方法,其特征在于步骤A中所述的可溶性二价铁盐是氯化亚铁、硫酸亚铁中一种或者两种的混合物。
3.根据权利要求1所述的Fe3O4@LDH复合纳米材料的合成方法,其特征在于步骤A中所述的可溶性三价铁盐是氯化铁、硫酸铁、硝酸铁中一种或者几种的混合物。
4.根据权利要求1所述的Fe3O4@LDH复合纳米材料的合成方法,其特征在于步骤B中所述的可溶性碱是氢氧化钠、氢氧化钾中一种或者几种的混合物。
5.根据权利要求1所述的Fe3O4@LDH复合纳米材料的合成方法,其特征在于步骤C中所述的可溶性铝盐是氯化铝、硝酸铝、硫酸铝、明矾中一种或者几种的混合物。
6.根据权利要求1所述的Fe3O4@LDH复合纳米材料的合成方法,其特征在于步骤C中所述的可溶性镁盐是氯化镁、硝酸镁、硫酸镁、明矾中一种或者几种的混合物。
CN201710083481.0A 2017-02-16 2017-02-16 一种Fe3O4@LDH复合纳米材料的合成方法 Expired - Fee Related CN106865622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710083481.0A CN106865622B (zh) 2017-02-16 2017-02-16 一种Fe3O4@LDH复合纳米材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710083481.0A CN106865622B (zh) 2017-02-16 2017-02-16 一种Fe3O4@LDH复合纳米材料的合成方法

Publications (2)

Publication Number Publication Date
CN106865622A CN106865622A (zh) 2017-06-20
CN106865622B true CN106865622B (zh) 2018-05-11

Family

ID=59167567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710083481.0A Expired - Fee Related CN106865622B (zh) 2017-02-16 2017-02-16 一种Fe3O4@LDH复合纳米材料的合成方法

Country Status (1)

Country Link
CN (1) CN106865622B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107837396B (zh) * 2017-09-18 2021-10-22 孔祥硕 集磁靶向、热疗化疗一体化的多功能药物载体的制备方法
CN108855117B (zh) * 2018-07-13 2021-04-20 盐城工学院 核壳结构光催化剂及其制备方法和应用
CN109365832B (zh) * 2018-12-20 2021-11-26 江苏经贸职业技术学院 一种Fe3O4@Au复合材料的合成方法
CN110013559B (zh) * 2019-05-14 2021-08-31 东华大学 一种ha靶向的双金属氢氧化物-超小铁纳米材料及其制备和应用
CN113117749B (zh) * 2021-04-21 2022-09-02 宁夏大学 一种催化去除煤化工高含盐废水中cod复合催化膜的制备方法及其应用
CN114712390B (zh) * 2022-03-18 2023-06-20 中国人民解放军总医院第五医学中心 基于层状双金属氢氧化物的纳米材料、制备方法及应用
CN114849675A (zh) * 2022-05-18 2022-08-05 哈尔滨工业大学 一种用于吸附铀的磁性NiFe-LDH复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964391B (zh) * 2013-01-28 2015-10-14 北京化工大学 一种片状结构层状复合氢氧化物及其制备方法

Also Published As

Publication number Publication date
CN106865622A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN106865622B (zh) 一种Fe3O4@LDH复合纳米材料的合成方法
Rives et al. Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review
Zhang et al. A magnetic organic–inorganic composite: synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides
US10149862B2 (en) Method of making nanocomposites of metal oxide and reduced graphene oxide and use for cancer treatment
Baek et al. Effect of different forms of anionic nanoclays on cytotoxicity
CN105214090B (zh) 一种Fe3O4@ZnO核壳纳米球的合成方法
Djaballah et al. The use of Zn-Ti layered double hydroxide interlayer spacing property for low-loading drug and low-dose therapy. Synthesis, characterization and release kinetics study
Liu et al. The generation of myricetin–nicotinamide nanococrystals by top down and bottom up technologies
CN102641507B (zh) 一种甲氨蝶呤/层状双金属氢氧化物纳米复合材料的制备方法
Qi et al. A novel method to get methotrexatum/layered double hydroxides intercalation compounds and their release properties
Li et al. RETRACTED: Synthesis of hollow maghemite (< gamma>-Fe2O3) particles for magnetic field and pH-responsive drug delivery and lung cancer treatment
Abdullah et al. Biosynthesis and characterization of MgO nanowires using Prosopis farcta and evaluation of their applications
Dai et al. Dual-stimuli-responsive TiO x/DOX nanodrug system for lung cancer synergistic therapy
Liu et al. Intercalation of methotrexatum into layered double hydroxides via exfoliation-reassembly process
Kim et al. Anticancer activity of ferulic acid‐inorganic nanohybrids synthesized via two different hybridization routes, reconstruction and exfoliation‐reassembly
Dai et al. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study
Hussein-Al-Ali et al. The in vitro therapeutic activity of betulinic acid nanocomposite on breast cancer cells (MCF-7) and normal fibroblast cell (3T3)
Hashim et al. Preparation of zinc layered hydroxide-ferulate and coated zinc layered hydroxide-ferulate nanocomposites for controlled release of ferulic acid
Pu et al. Green synthesis of highly dispersed ytterbium and thulium co-doped sodium yttrium fluoride microphosphors for in situ light upconversion from near-infrared to blue in animals
Kim et al. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides
Strimaite et al. Layered terbium hydroxides for simultaneous drug delivery and imaging
CN104445364B (zh) 一种ZnAl-层状双金属氢氧化物的合成方法
Lu et al. Emerging metallenes: synthesis strategies, biological effects and biomedical applications
CN104825488B (zh) 一种装载砷剂及其制备方法与应用
CN106806898A (zh) 一种叶酸靶向磁功能化二硫化钼药物载体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180404

Address after: No. 180 Jiangning longmian Road District of Nanjing City, Jiangsu province 211168

Applicant after: Jiangsu Institute of Economic & Trade Technology

Address before: No. 180 Jiangning longmian Road District of Nanjing City, Jiangsu province 211168

Applicant before: Wu Xiaohong

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180511

Termination date: 20200216

CF01 Termination of patent right due to non-payment of annual fee