CN106849599A - A kind of electromagnet-friction Piezoelectric anisotropy formula energy collecting device - Google Patents
A kind of electromagnet-friction Piezoelectric anisotropy formula energy collecting device Download PDFInfo
- Publication number
- CN106849599A CN106849599A CN201710270093.3A CN201710270093A CN106849599A CN 106849599 A CN106849599 A CN 106849599A CN 201710270093 A CN201710270093 A CN 201710270093A CN 106849599 A CN106849599 A CN 106849599A
- Authority
- CN
- China
- Prior art keywords
- friction
- friction layer
- layer
- electromagnetic
- energy harvester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 15
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- -1 polydimethylsiloxane Polymers 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000003306 harvesting Methods 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 241001124569 Lycaenidae Species 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VQAPWLAUGBBGJI-UHFFFAOYSA-N [B].[Fe].[Rb] Chemical compound [B].[Fe].[Rb] VQAPWLAUGBBGJI-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K35/00—Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
- H02K35/04—Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving coil systems and stationary magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/186—Vibration harvesters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明涉及一种电磁摩擦压电复合式能量采集器,属于微机电系统及微能源技术领域。采集器壳体内部两侧放置永磁铁,转轴通过轴承与壳体连接,内凹形设计的悬臂梁固连在转轴上,悬臂梁两端分别固定连接半球形质量块,覆有缓冲层的压电陶瓷安装于壳体内部,悬臂梁上缠绕有线圈,线圈外附有第二摩擦层,第二摩擦层与壳体之间相应位置处依次为第一摩擦层、柔性压电材料与绝缘填充层,采集的能量通过第一电极层与第二电极层外接线路输出,第一电极层连接柔性压电材料和第一摩擦层,第二电极层位于转轴上部,通过导线连接线圈和第二摩擦层。优点是将振动能转化为电能,对输出能量叠加放大,进一步提高器件的能量转换效率。
The invention relates to an electromagnetic friction piezoelectric composite energy collector, which belongs to the technical field of micro-electromechanical systems and micro-energy sources. Permanent magnets are placed on both sides of the shell of the collector. The rotating shaft is connected to the shell through bearings. The cantilever beam with concave design is fixedly connected to the rotating shaft. The electroceramic is installed inside the shell, and a coil is wound on the cantilever beam. The second friction layer is attached to the outside of the coil. The corresponding position between the second friction layer and the shell is the first friction layer, flexible piezoelectric material and insulating filling. layer, the collected energy is output through the first electrode layer and the second electrode layer externally connected to the circuit, the first electrode layer is connected to the flexible piezoelectric material and the first friction layer, the second electrode layer is located on the upper part of the rotating shaft, and the coil and the second friction layer are connected by wires Floor. The advantage is that the vibration energy is converted into electric energy, and the output energy is superimposed and amplified to further improve the energy conversion efficiency of the device.
Description
技术领域technical field
本发明涉及微机电系统(MEMS)及微能源技术领域,尤其涉及一种电磁-摩擦-压电复合式能量采集器。The invention relates to the technical fields of micro-electromechanical systems (MEMS) and micro-energy sources, in particular to an electromagnetic-friction-piezoelectric composite energy collector.
背景技术Background technique
随着能源清洁化、高效化趋势的日益增强,新型能量采集装置的相关研究工作近年来取得较大进展。振动能量采集器是新型能量采集装置的一个研究重点,其工作方式主要有电磁式、静电式和压电式三种。在电磁式方面,土耳其中东技术大学的研究小组Kulah等人提出一种固有频率不同的悬臂梁阵列的方法来增加共振带宽,从而可以采集较宽频带振动信号的能量;在静电式方面,王中林院士实现了基于摩擦起电和静电感应的耦合原理TENGs纳米摩擦发电机;在压电式方面,美国麻省理工等院校研制出的压电发电机功效量级可达几百至一千μw/cm3。With the increasing trend of energy cleanliness and high efficiency, the research work on new energy harvesting devices has made great progress in recent years. Vibration energy harvester is a research focus of new energy harvesting devices, and its working methods mainly include electromagnetic, electrostatic and piezoelectric. In terms of electromagnetic type, Kulah et al., a research group of Middle East Technical University in Turkey, proposed a method of cantilever beam array with different natural frequencies to increase the resonance bandwidth, so that the energy of vibration signals with a wider frequency band can be collected; in terms of electrostatic type, Academician Wang Zhonglin Realized the TENGs nano triboelectric generator based on the coupling principle of triboelectrification and electrostatic induction; in terms of piezoelectricity, the piezoelectric generator developed by MIT and other institutions in the United States has an efficiency level of several hundred to one thousand μw/cm 3 .
而将单一工作方式巧妙组合的复合式采集装置效率高、应用面广,适合代替传统单一的能量采集装置。在此方面,新加坡国立大学的Bin Yang等研究人员制成的微型复合振动能量收集器实现了压电与电磁转换机理同时获取能量,仍存在能量采集的效率较低,结构复杂等问题。北京大学的张晓升等人提出的基于压电摩擦电磁的纳米发电机采集自然界中的可再生能量,然而仍存在压电能量采集效率低,能量损耗大等问题。综上,采集效率低、结构复杂等问题严重限制着复合式能量收集器的实用化程度,为此如何通过多机制复合及特殊结构设计提高能量采集器的能量转换效率,并开发实用化的能量采集器产品是近未来能量采集领域备受关注的热点问题。此外,利用电磁、压电、摩擦三种机制复合的采集人体运动机械能的自主振动能量采集器还未见报道。However, the compound harvesting device, which cleverly combines a single working mode, has high efficiency and wide application, and is suitable to replace the traditional single energy harvesting device. In this regard, the micro-composite vibration energy harvester made by researchers such as Bin Yang from the National University of Singapore has realized the piezoelectric and electromagnetic conversion mechanism to obtain energy at the same time, but there are still problems such as low energy harvesting efficiency and complex structure. Zhang Xiaosheng of Peking University and others proposed a nanogenerator based on piezoelectric triboelectromagnetics to collect renewable energy in nature. However, there are still problems such as low piezoelectric energy collection efficiency and large energy loss. In summary, the problems of low collection efficiency and complex structure seriously limit the practicality of the composite energy harvester. For this reason, how to improve the energy conversion efficiency of the energy harvester through multi-mechanism compounding and special structural design, and develop practical energy harvesters Harvester products are a hot topic in the field of energy harvesting in the near future. In addition, there is no report on an autonomous vibration energy harvester that uses electromagnetic, piezoelectric, and frictional mechanisms to collect the mechanical energy of human motion.
发明内容Contents of the invention
本发明提出一种电磁摩擦压电复合式能量采集器,以解决传统单一形式及复合形式能量采集器存在的采集效率低的问题。The invention proposes an electromagnetic friction piezoelectric composite energy harvester to solve the problem of low collection efficiency existing in traditional single-form and composite-form energy harvesters.
本发明采取技术方案是:采集器壳体内部两侧对称置有磁极反向放置的“门”形永磁铁,转轴通过轴承与壳体连接,内凹形设计的悬臂梁固连在转轴上,悬臂梁两端分别固定连接半球形质量块,覆有缓冲层的压电陶瓷与质量块一一对应、并安装于壳体内部,悬臂梁上缠绕有线圈,线圈外附有第二摩擦层,第二摩擦层与壳体之间相应位置处依次为第一摩擦层、柔性压电材料与绝缘填充层,采集的能量通过第一电极层与第二电极层外接线路输出,第一电极层连接柔性压电材料和第一摩擦层,第二电极层位于转轴上部,通过导线连接线圈和第二摩擦层;The technical solution adopted by the present invention is: the two sides of the shell of the collector are symmetrically arranged with "gate" shaped permanent magnets with reversed magnetic poles, the rotating shaft is connected with the shell through bearings, and the cantilever beam with concave design is fixedly connected to the rotating shaft. The two ends of the cantilever beam are respectively fixedly connected to the hemispherical mass block, and the piezoelectric ceramics covered with the buffer layer correspond to the mass block one by one, and are installed inside the housing. A coil is wound on the cantilever beam, and a second friction layer is attached to the coil. The corresponding positions between the second friction layer and the shell are the first friction layer, the flexible piezoelectric material and the insulating filling layer in sequence. The collected energy is output through the first electrode layer and the second electrode layer through the external circuit, and the first electrode layer is connected to A flexible piezoelectric material and the first friction layer, the second electrode layer is located on the upper part of the rotating shaft, and the coil and the second friction layer are connected by wires;
本发明所述悬臂梁的中部向内凹;The middle part of the cantilever beam of the present invention is concave inward;
本发明所述第一摩擦层的接触面有弧形凹槽,第二摩擦层的接触面有对应的弧形凸起;According to the present invention, the contact surface of the first friction layer has arc-shaped grooves, and the contact surface of the second friction layer has corresponding arc-shaped protrusions;
本发明所述第一摩擦层与第二摩擦层的接触面都为平面;The contact surfaces of the first friction layer and the second friction layer in the present invention are all planes;
本发明所述第一摩擦层上摩擦表面有微观凸起;The first friction layer of the present invention has microscopic protrusions on the friction surface;
本发明所述第二摩擦层下摩擦表面有微观凸起;The friction surface under the second friction layer of the present invention has microscopic protrusions;
本发明所述第一摩擦层采用聚二甲基硅氧烷PDMS;The first friction layer of the present invention adopts polydimethylsiloxane PDMS;
本发明所述第二摩擦层采用聚酰胺PA;The second friction layer of the present invention adopts polyamide PA;
本发明所述柔性压电材料采用聚偏氟乙烯PVDF;The flexible piezoelectric material of the present invention adopts polyvinylidene fluoride PVDF;
本发明所述柔性压电材料与第一摩擦层采用绝缘胶连接。The flexible piezoelectric material of the present invention is connected with the first friction layer by insulating glue.
本发明的优点是:结构新颖,采用电磁、压电、摩擦三种机制复合作用进行振动能量采集,能量采集器整体采用简洁高效的对称型结构设计,提供了一种新型的人体运动机械能采集方式;采用悬臂梁设计,悬臂梁采用对称式内凹形结构,两侧置有质量块,增加力偶,增加了悬臂梁振动频率,有效增加了电能的输出量,提高能量采集效率;发明的转轴通过轴承与壳体连接,减小摩擦能量损耗,且相较于固定端约束的悬臂梁结构,转轴连接释放一个自由度,减少内应力的能量损耗;本发明采用压电陶瓷和柔性压电材料共同构成压电能量采集单元,综合了压电陶瓷能量采集效率高和柔性压电材料易变形,设计方便的优点,且在压电陶瓷上覆盖了缓冲层,压电能量采集单元的能量采集效率和使用寿命都有所提高。The advantages of the present invention are: novel structure, vibration energy collection by using electromagnetic, piezoelectric and frictional mechanisms combined, energy harvester as a whole adopts a simple and efficient symmetrical structure design, providing a new type of human body movement mechanical energy collection method ;The cantilever beam design is adopted, the cantilever beam adopts a symmetrical concave structure, and there are mass blocks on both sides, increasing the force couple, increasing the vibration frequency of the cantilever beam, effectively increasing the output of electric energy, and improving the efficiency of energy collection; the invented shaft passes through The bearing is connected to the housing to reduce the frictional energy loss, and compared with the cantilever beam structure constrained by the fixed end, the connection of the rotating shaft releases a degree of freedom to reduce the energy loss of internal stress; the present invention uses piezoelectric ceramics and flexible piezoelectric materials together The piezoelectric energy harvesting unit is formed, which combines the advantages of high energy harvesting efficiency of piezoelectric ceramics, easy deformation of flexible piezoelectric materials, and convenient design, and the buffer layer is covered on the piezoelectric ceramics, and the energy harvesting efficiency of the piezoelectric energy harvesting unit and The service life has been improved.
附图说明Description of drawings
图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2是本发明外观整体图;Fig. 2 is an overall view of the appearance of the present invention;
图3是本发明摩擦结构方案一的结构示意图;Fig. 3 is a structural schematic diagram of the friction structure scheme 1 of the present invention;
图4是本发明摩擦结构方案二外观整体图;Fig. 4 is an overall appearance diagram of the second friction structure scheme of the present invention;
图5是本发明摩擦结构方案二的结构示意图;Fig. 5 is a structural schematic diagram of the second friction structure scheme of the present invention;
图6是本发明悬臂梁及线圈缠绕示意图。Fig. 6 is a schematic diagram of the winding of the cantilever beam and the coil of the present invention.
具体实施方式detailed description
采集器壳体1内部两侧对称置有磁极反向放置的“门”形永磁铁2,转轴3通过轴承4与壳体1连接,内凹形设计的悬臂梁5固连在转轴3上,悬臂梁5两端分别固定连接半球形质量块6,覆有缓冲层7的压电陶瓷8与质量块6一一对应、并安装于壳体1内部,悬臂梁5上缠绕有线圈9,线圈9外附有第二摩擦层11,第二摩擦层11与壳体1之间相应位置处依次为第一摩擦层10、柔性压电材料12与绝缘填充层13,采集的能量通过第一电极层14与第二电极层15外接线路输出,第一电极层14连接柔性压电材料12和第一摩擦层10,第二电极层15位于转轴3上部,通过导线连接线圈9和第二摩擦层11。The two sides of the collector housing 1 are symmetrically equipped with "gate"-shaped permanent magnets 2 with opposite magnetic poles. The rotating shaft 3 is connected to the housing 1 through the bearing 4. The concave cantilever beam 5 is fixedly connected to the rotating shaft 3. The two ends of the cantilever beam 5 are respectively fixedly connected to the hemispherical mass block 6, and the piezoelectric ceramic 8 covered with the buffer layer 7 corresponds to the mass block 6 one by one, and is installed inside the housing 1. A coil 9 is wound on the cantilever beam 5, and the coil 9 9 is attached with a second friction layer 11, and the corresponding positions between the second friction layer 11 and the housing 1 are the first friction layer 10, the flexible piezoelectric material 12 and the insulating filling layer 13, and the collected energy passes through the first electrode Layer 14 and the second electrode layer 15 are externally connected to the line output, the first electrode layer 14 is connected to the flexible piezoelectric material 12 and the first friction layer 10, the second electrode layer 15 is located on the upper part of the rotating shaft 3, and the coil 9 and the second friction layer are connected by wires 11.
当人体运动提供振动激励时,绕有线圈9的悬臂梁5绕转轴3往复转动,并切割磁力线,依据电磁感应原理,产生电能输出,当悬臂梁5转动到临界位置时,第一摩擦层10和第二摩擦层11相接触并发生相对运动,产生摩擦电能输出;同时,位于壳体1内部上下侧的压电陶瓷8被质量块6撞击,覆于绝缘填充层13下的柔性压电材料12产生挤压变形,两者共同产生压电电能输出;When human body movement provides vibration excitation, the cantilever beam 5 with the coil 9 reciprocatingly rotates around the rotating shaft 3, and cuts the magnetic field line, and generates electric energy output according to the principle of electromagnetic induction. When the cantilever beam 5 rotates to a critical position, the first friction layer 10 It is in contact with the second friction layer 11 and undergoes relative motion to generate triboelectric energy output; at the same time, the piezoelectric ceramics 8 located on the upper and lower sides of the housing 1 are hit by the mass block 6, and the flexible piezoelectric material covered under the insulating filling layer 13 12 produces extrusion deformation, and the two together generate piezoelectric electric energy output;
所述悬臂梁5的中部向内凹;The middle part of the cantilever beam 5 is concave inward;
所述第一摩擦层10有弧形凹槽,第二摩擦层11有对应的弧形凸起;The first friction layer 10 has arc-shaped grooves, and the second friction layer 11 has corresponding arc-shaped protrusions;
所述第一摩擦层10与第二摩擦层11的接触面为平面;The contact surface between the first friction layer 10 and the second friction layer 11 is a plane;
所述第一摩擦层10上摩擦表面有微观凸起;There are microscopic protrusions on the friction surface of the first friction layer 10;
所述第二摩擦层11下摩擦表面有微观凸起;The lower friction surface of the second friction layer 11 has microscopic protrusions;
所述永磁铁2采用产生强磁场的磁性材料,如铁氧体磁材料、铷铁硼磁材料、衫钻磁材料、铝镍钻磁材料等;Described permanent magnet 2 adopts the magnetic material that produces strong magnetic field, as ferrite magnetic material, rubidium iron boron magnetic material, shirt drill magnetic material, aluminum nickel drill magnetic material etc.;
所述线圈9为表面覆盖绝缘层的导电性优异的金属线(如银、铜、铝及其合金等)有序缠绕而成;The coil 9 is formed by orderly winding metal wires (such as silver, copper, aluminum and their alloys, etc.) whose surface is covered with an insulating layer;
所述压电陶瓷8采用传统的PZT材料,柔性压电材料12采用聚偏氟乙烯PVDF,缓冲层7含有导电硅胶,柔性压电材料12与绝缘填充层13的材料选择不会在压电能量单元形变产能的过程中产生过高的内应力;The piezoelectric ceramic 8 adopts traditional PZT material, the flexible piezoelectric material 12 adopts polyvinylidene fluoride PVDF, the buffer layer 7 contains conductive silica gel, and the material selection of the flexible piezoelectric material 12 and the insulating filling layer 13 will not affect the piezoelectric energy. Excessive internal stress is generated during the process of unit deformation and production capacity;
所述第一摩擦层10采用聚二甲基硅氧烷PDMS,第二摩擦层11采用聚酰胺PA;The first friction layer 10 is made of polydimethylsiloxane PDMS, and the second friction layer 11 is made of polyamide PA;
所述柔性压电材料12与第一摩擦层10采用绝缘胶连接,以减小多机制耦合的能量损耗。The flexible piezoelectric material 12 is connected with the first friction layer 10 by insulating glue, so as to reduce the energy loss of multi-mechanism coupling.
如图2、图3,当悬臂梁旋转到临界位置,第一摩擦层和第二摩擦层的接触面积可以达到最大,第一摩擦层10设计有弧形凹槽,第二摩擦层11有对应的弧形凸起,上下摩擦表面均采用微观凸起处理,该处理方式增加材料的有效摩擦面积,提高能量采集效率。As shown in Figure 2 and Figure 3, when the cantilever beam rotates to the critical position, the contact area between the first friction layer and the second friction layer can reach the maximum, the first friction layer 10 is designed with arc-shaped grooves, and the second friction layer 11 has a corresponding The arc-shaped protrusions, and the upper and lower friction surfaces are treated with microscopic protrusions. This treatment method increases the effective friction area of the material and improves the energy collection efficiency.
如图4、图5,为简化结构,降低生产难度及成本,第一摩擦层和第二摩擦层的凹凸型摩擦结构设计可以简化成平面型。As shown in Fig. 4 and Fig. 5, in order to simplify the structure and reduce the difficulty and cost of production, the concave-convex friction structure design of the first friction layer and the second friction layer can be simplified into a flat type.
如图6,线圈9对称密绕于内凹形悬臂梁5上,悬臂梁两端置有半球形质量块6。As shown in Figure 6, the coil 9 is symmetrically wound on the concave cantilever beam 5, and the hemispherical mass blocks 6 are placed at both ends of the cantilever beam.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710270093.3A CN106849599B (en) | 2017-04-23 | 2017-04-23 | Electromagnetic friction piezoelectric combined type energy collector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710270093.3A CN106849599B (en) | 2017-04-23 | 2017-04-23 | Electromagnetic friction piezoelectric combined type energy collector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106849599A true CN106849599A (en) | 2017-06-13 |
CN106849599B CN106849599B (en) | 2023-04-07 |
Family
ID=59142955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710270093.3A Active CN106849599B (en) | 2017-04-23 | 2017-04-23 | Electromagnetic friction piezoelectric combined type energy collector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106849599B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107317516A (en) * | 2017-08-17 | 2017-11-03 | 浙江师范大学 | A ship-borne self-powered positioning and tracking device |
CN107359818A (en) * | 2017-08-17 | 2017-11-17 | 浙江师范大学 | A kind of piezoelectricity windmill |
CN107395055A (en) * | 2017-08-17 | 2017-11-24 | 浙江师范大学 | A kind of novel on-vehicle locating and tracking system vibration energy accumulator |
CN107565848A (en) * | 2017-08-17 | 2018-01-09 | 浙江师范大学 | A kind of vehicle-mounted indirect excitation formula energy accumulator of low frequency |
CN108155831A (en) * | 2018-03-16 | 2018-06-12 | 南昌工程学院 | A kind of piezoelectricity-friction thermoelectricity compound type energy collecting device for being used to acquire wind energy |
CN108365729A (en) * | 2018-04-28 | 2018-08-03 | 忻州师范学院 | A kind of self-adaptive electromagnetic-friction complex vibration energy collecting device |
CN108551273A (en) * | 2018-04-28 | 2018-09-18 | 忻州师范学院 | A kind of beam type electromagnetism-friction-Piezoelectric anisotropy vibration energy collector |
CN109560721A (en) * | 2018-12-04 | 2019-04-02 | 郑州大学 | A kind of combined vibrating energy collecting device |
CN110311531A (en) * | 2019-08-01 | 2019-10-08 | 广东心科医疗科技有限公司 | A kind of energy collecting device |
CN112152508A (en) * | 2020-11-15 | 2020-12-29 | 浙江师范大学 | Rotary excitation friction-piezoelectric composite generator |
CN112187102A (en) * | 2020-11-15 | 2021-01-05 | 浙江师范大学 | Rotary excitation swing type piezoelectric-friction generator |
CN113156230A (en) * | 2021-01-13 | 2021-07-23 | 西安理工大学 | Testing device and testing method for frictional electric energy collector |
CN113224977A (en) * | 2021-06-01 | 2021-08-06 | 吉林大学 | Vibration energy collector with double self-adaptation of direction and frequency |
CN113514719A (en) * | 2021-06-02 | 2021-10-19 | 国能大渡河检修安装有限公司 | Energy collection testing system and method combining magnetic vibration piezoelectricity with triboelectricity |
CN113992062A (en) * | 2021-12-29 | 2022-01-28 | 清华大学 | Hybrid squirrel cage energy harvesting device |
CN117890050A (en) * | 2024-03-15 | 2024-04-16 | 中北大学 | Self-driven composite multi-source vibration sensor suitable for aircraft |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060208610A1 (en) * | 2005-03-21 | 2006-09-21 | Jon Heim | High-performance electroactive polymer transducers |
US20070200468A1 (en) * | 2005-03-21 | 2007-08-30 | Heim Jonathan R | High-performance electroactive polymer transducers |
US7498681B1 (en) * | 2007-03-21 | 2009-03-03 | Sandia Corporation | Mechanical vibration to electrical energy converter |
CN101438057A (en) * | 2006-03-07 | 2009-05-20 | 流体公司 | Fluidic energy transfer devices |
US20100043778A1 (en) * | 2007-09-17 | 2010-02-25 | Cristian Penciu | Modular and inflatable solar collector |
US20110074162A1 (en) * | 2009-09-30 | 2011-03-31 | Francesco Cottone | Energy harvester apparatus having improved efficiency |
KR20120059037A (en) * | 2010-11-30 | 2012-06-08 | 한국전자통신연구원 | Hybrid Energy Harvester and Portable Device Having the Same |
US20120326536A1 (en) * | 2010-12-21 | 2012-12-27 | Oscilla Power Inc. | Vibration energy harvesting apparatus |
WO2013049790A1 (en) * | 2011-09-30 | 2013-04-04 | Faulkner Roger W | Commutating circuit breaker |
CN103178744A (en) * | 2013-03-26 | 2013-06-26 | 北京大学 | A Composite Nanogenerator Based on Piezoelectric Triboelectromagnetic |
US20130193930A1 (en) * | 2012-01-31 | 2013-08-01 | Duality Reality Energy, LLC | Energy harvesting with a micro-electro-machanical system (MEMS) |
WO2013190585A1 (en) * | 2012-06-18 | 2013-12-27 | Politecnico Di Torino | Magneto-inductive energy harvester device, having an internal guide magnetic suspension |
KR101465346B1 (en) * | 2013-06-27 | 2014-11-25 | 성균관대학교산학협력단 | Piezo-electric energy harvester including a compposite of piezo electric material and polymer |
CN104506086A (en) * | 2015-01-21 | 2015-04-08 | 吉林大学 | Miniature piezoelectric and capacitance composite vibration energy harvester |
WO2016020481A1 (en) * | 2014-08-07 | 2016-02-11 | Ostbayerische Technische Hochschule Regensburg | Energy harvester |
KR20160032483A (en) * | 2014-09-16 | 2016-03-24 | 국방과학연구소 | Method for manufacturing micro piezoelectric composite wire, piezoelectric energy harvester using the micro piezoelectric composite wire, and method for manufacturing thereof |
KR20160076700A (en) * | 2014-12-23 | 2016-07-01 | 한국기계연구원 | Energy harvesting device with Magnetoelectric composite laminate for structural health monitoring of electric power transmission |
CN105915117A (en) * | 2016-04-19 | 2016-08-31 | 中北大学 | Friction-piezoelectricity-magnetoelectricity composite vibration miniature energy collector |
CN205666768U (en) * | 2016-06-12 | 2016-10-26 | 吉林大学 | Piezoelectric motor with half falcate elastomer |
WO2017009660A1 (en) * | 2015-07-16 | 2017-01-19 | Cambridge Enterprise Limited | Vibration-based energy harvester with strain optimised topology |
KR101725333B1 (en) * | 2016-05-23 | 2017-04-10 | 충남대학교산학협력단 | Piezoelectric Energy Harvesting Device Comprising Layered Double Hydroxides |
CN206673809U (en) * | 2017-04-23 | 2017-11-24 | 吉林大学 | A kind of electromagnet-friction Piezoelectric anisotropy formula energy collecting device |
-
2017
- 2017-04-23 CN CN201710270093.3A patent/CN106849599B/en active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060208610A1 (en) * | 2005-03-21 | 2006-09-21 | Jon Heim | High-performance electroactive polymer transducers |
US20070200468A1 (en) * | 2005-03-21 | 2007-08-30 | Heim Jonathan R | High-performance electroactive polymer transducers |
CN101438057A (en) * | 2006-03-07 | 2009-05-20 | 流体公司 | Fluidic energy transfer devices |
US7498681B1 (en) * | 2007-03-21 | 2009-03-03 | Sandia Corporation | Mechanical vibration to electrical energy converter |
US20100043778A1 (en) * | 2007-09-17 | 2010-02-25 | Cristian Penciu | Modular and inflatable solar collector |
US20110074162A1 (en) * | 2009-09-30 | 2011-03-31 | Francesco Cottone | Energy harvester apparatus having improved efficiency |
KR20120059037A (en) * | 2010-11-30 | 2012-06-08 | 한국전자통신연구원 | Hybrid Energy Harvester and Portable Device Having the Same |
US20120326536A1 (en) * | 2010-12-21 | 2012-12-27 | Oscilla Power Inc. | Vibration energy harvesting apparatus |
WO2013049790A1 (en) * | 2011-09-30 | 2013-04-04 | Faulkner Roger W | Commutating circuit breaker |
US20130193930A1 (en) * | 2012-01-31 | 2013-08-01 | Duality Reality Energy, LLC | Energy harvesting with a micro-electro-machanical system (MEMS) |
WO2013190585A1 (en) * | 2012-06-18 | 2013-12-27 | Politecnico Di Torino | Magneto-inductive energy harvester device, having an internal guide magnetic suspension |
CN103178744A (en) * | 2013-03-26 | 2013-06-26 | 北京大学 | A Composite Nanogenerator Based on Piezoelectric Triboelectromagnetic |
KR101465346B1 (en) * | 2013-06-27 | 2014-11-25 | 성균관대학교산학협력단 | Piezo-electric energy harvester including a compposite of piezo electric material and polymer |
WO2016020481A1 (en) * | 2014-08-07 | 2016-02-11 | Ostbayerische Technische Hochschule Regensburg | Energy harvester |
KR20160032483A (en) * | 2014-09-16 | 2016-03-24 | 국방과학연구소 | Method for manufacturing micro piezoelectric composite wire, piezoelectric energy harvester using the micro piezoelectric composite wire, and method for manufacturing thereof |
KR20160076700A (en) * | 2014-12-23 | 2016-07-01 | 한국기계연구원 | Energy harvesting device with Magnetoelectric composite laminate for structural health monitoring of electric power transmission |
CN104506086A (en) * | 2015-01-21 | 2015-04-08 | 吉林大学 | Miniature piezoelectric and capacitance composite vibration energy harvester |
WO2017009660A1 (en) * | 2015-07-16 | 2017-01-19 | Cambridge Enterprise Limited | Vibration-based energy harvester with strain optimised topology |
CN105915117A (en) * | 2016-04-19 | 2016-08-31 | 中北大学 | Friction-piezoelectricity-magnetoelectricity composite vibration miniature energy collector |
KR101725333B1 (en) * | 2016-05-23 | 2017-04-10 | 충남대학교산학협력단 | Piezoelectric Energy Harvesting Device Comprising Layered Double Hydroxides |
CN205666768U (en) * | 2016-06-12 | 2016-10-26 | 吉林大学 | Piezoelectric motor with half falcate elastomer |
CN206673809U (en) * | 2017-04-23 | 2017-11-24 | 吉林大学 | A kind of electromagnet-friction Piezoelectric anisotropy formula energy collecting device |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107359818B (en) * | 2017-08-17 | 2023-05-16 | 浙江师范大学 | A piezoelectric windmill |
CN107359818A (en) * | 2017-08-17 | 2017-11-17 | 浙江师范大学 | A kind of piezoelectricity windmill |
CN107395055A (en) * | 2017-08-17 | 2017-11-24 | 浙江师范大学 | A kind of novel on-vehicle locating and tracking system vibration energy accumulator |
CN107565848A (en) * | 2017-08-17 | 2018-01-09 | 浙江师范大学 | A kind of vehicle-mounted indirect excitation formula energy accumulator of low frequency |
CN107395055B (en) * | 2017-08-17 | 2018-11-16 | 浙江师范大学 | A kind of novel on-vehicle locating and tracking system vibration energy accumulator |
CN107317516A (en) * | 2017-08-17 | 2017-11-03 | 浙江师范大学 | A ship-borne self-powered positioning and tracking device |
CN108155831A (en) * | 2018-03-16 | 2018-06-12 | 南昌工程学院 | A kind of piezoelectricity-friction thermoelectricity compound type energy collecting device for being used to acquire wind energy |
CN108155831B (en) * | 2018-03-16 | 2024-04-26 | 南昌工程学院 | Piezoelectric-triboelectric composite energy collector for collecting wind energy |
CN108365729A (en) * | 2018-04-28 | 2018-08-03 | 忻州师范学院 | A kind of self-adaptive electromagnetic-friction complex vibration energy collecting device |
CN108551273A (en) * | 2018-04-28 | 2018-09-18 | 忻州师范学院 | A kind of beam type electromagnetism-friction-Piezoelectric anisotropy vibration energy collector |
CN109560721A (en) * | 2018-12-04 | 2019-04-02 | 郑州大学 | A kind of combined vibrating energy collecting device |
CN110311531A (en) * | 2019-08-01 | 2019-10-08 | 广东心科医疗科技有限公司 | A kind of energy collecting device |
CN112152508A (en) * | 2020-11-15 | 2020-12-29 | 浙江师范大学 | Rotary excitation friction-piezoelectric composite generator |
CN112187102B (en) * | 2020-11-15 | 2021-10-01 | 浙江师范大学 | A Rotationally Excited Oscillating Piezo-Triboelectric Generator |
CN112187102A (en) * | 2020-11-15 | 2021-01-05 | 浙江师范大学 | Rotary excitation swing type piezoelectric-friction generator |
CN113156230B (en) * | 2021-01-13 | 2022-10-14 | 西安理工大学 | Testing device and testing method for frictional electric energy collector |
CN113156230A (en) * | 2021-01-13 | 2021-07-23 | 西安理工大学 | Testing device and testing method for frictional electric energy collector |
CN113224977A (en) * | 2021-06-01 | 2021-08-06 | 吉林大学 | Vibration energy collector with double self-adaptation of direction and frequency |
CN113514719A (en) * | 2021-06-02 | 2021-10-19 | 国能大渡河检修安装有限公司 | Energy collection testing system and method combining magnetic vibration piezoelectricity with triboelectricity |
CN113514719B (en) * | 2021-06-02 | 2024-03-29 | 国能大渡河检修安装有限公司 | Magnetic vibration piezoelectric combined triboelectric energy collection testing system and method thereof |
CN113992062A (en) * | 2021-12-29 | 2022-01-28 | 清华大学 | Hybrid squirrel cage energy harvesting device |
CN117890050A (en) * | 2024-03-15 | 2024-04-16 | 中北大学 | Self-driven composite multi-source vibration sensor suitable for aircraft |
Also Published As
Publication number | Publication date |
---|---|
CN106849599B (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106849599B (en) | Electromagnetic friction piezoelectric combined type energy collector | |
Iqbal et al. | Vibration‐based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review | |
CN206673809U (en) | A kind of electromagnet-friction Piezoelectric anisotropy formula energy collecting device | |
CN110932591B (en) | Pendulum-type friction nano generator, energy supply device and sensor | |
CN108429428B (en) | Electromagnetic friction composite multi-directional vibration energy harvester and manufacturing method thereof | |
CN103296923B (en) | Exempt from magnet bistable state PZT (piezoelectric transducer) | |
CN105680720B (en) | The multi-direction wideband kinetic energy collector of multiple degrees of freedom piezoelectricity electromagnetism combined type | |
CN104836478A (en) | Piezoelectric-electromagnetic composite low-frequency broadband energy harvester | |
CN103346696A (en) | Array-type compound energy collector | |
CN107453647A (en) | Wide speed domain magnetic couple piezoelectricity wind energy collector | |
CN107086649B (en) | Electromagnetic and piezoelectric composite wave energy collecting device | |
CN108023501A (en) | A kind of combined-type magnetic suspension wideband vibration energy collector using structure for amplifying | |
CN109560721B (en) | A composite vibration energy harvester | |
CN103178744A (en) | A Composite Nanogenerator Based on Piezoelectric Triboelectromagnetic | |
CN104953785B (en) | A kind of energy collecting device | |
CN101764532A (en) | Piezoelectric giant magnetostrictive combined wideband vibration energy collector | |
CN110492788A (en) | A kind of multi-direction vibration prisoner energy device of the up-conversion of piezoelectricity-electromagnetic coupling | |
CN107598893A (en) | A kind of piezoelectricity electromagnetism energy composite energy collector based on parallel institution | |
CN103337988A (en) | Piezoelectricity and electromagnetic coupling-based composite wideband vibration energy collector | |
CN210380694U (en) | Piezoelectric-electromagnetic coupling up-conversion multi-directional vibration energy harvesting device | |
CN106849597A (en) | A kind of new multi-directional energy gathering apparatus | |
CN202663271U (en) | Vibration energy collector based on micro electromechanical system (MEMS) | |
CN206481204U (en) | A kind of double freedom magnetic suspension type vibration energy collecting device | |
CN209057124U (en) | A composite vibration energy harvester | |
CN209151027U (en) | A New Piezoelectric Vibration Energy Harvester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |