CN106847892B - Thin film transistor, preparation method thereof, array substrate and display device - Google Patents

Thin film transistor, preparation method thereof, array substrate and display device Download PDF

Info

Publication number
CN106847892B
CN106847892B CN201710131890.3A CN201710131890A CN106847892B CN 106847892 B CN106847892 B CN 106847892B CN 201710131890 A CN201710131890 A CN 201710131890A CN 106847892 B CN106847892 B CN 106847892B
Authority
CN
China
Prior art keywords
layer
ohmic contact
metal layer
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710131890.3A
Other languages
Chinese (zh)
Other versions
CN106847892A (en
Inventor
张慧
林允植
严允晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201710131890.3A priority Critical patent/CN106847892B/en
Publication of CN106847892A publication Critical patent/CN106847892A/en
Application granted granted Critical
Publication of CN106847892B publication Critical patent/CN106847892B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78666Amorphous silicon transistors with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate

Abstract

The embodiment of the application provides a thin film transistor and a preparation method thereof, an array substrate and a display device, which are used for enabling an active layer to be connected with a source metal layer and a drain metal layer in the thin film transistor through ohmic contact layers, so that ohmic contact resistance between the active layer and the source metal layer and between the active layer and the drain metal layer is reduced, ohmic contact effects between the active layer and the source metal layer and between the active layer and the drain metal layer in the thin film transistor are improved, and further the working stability of the thin film transistor can be improved. The embodiment of the application provides a thin film transistor, including: a source metal layer, a first insulating layer over the source metal layer, a drain metal layer over the first insulating layer; the active layer is connected with the source metal layer and the drain metal layer through the ohmic contact layer; the ohmic contact layer includes a first ohmic contact layer including a first partial region and a second partial region on both sides of the first insulating layer, and a second ohmic contact layer including a second partial region and a second partial region on both sides of the first insulating layer.

Description

Thin film transistor, preparation method thereof, array substrate and display device
Technical Field
The application relates to the technical field of communication, in particular to a thin film transistor, a preparation method of the thin film transistor, an array substrate and a display device.
Background
Currently, high resolution display products are becoming the mainstream trend of the market, and the requirement for the pixel aperture ratio of the liquid crystal display panel is becoming higher and higher to realize the high resolution display of the liquid crystal display panel, so that the size reduction of a Thin Film Transistor (TFT) becomes more and more critical. In the related art, there is a vertical type TFT structure that can greatly reduce the size of a TFT, as shown in fig. 1, the vertical type TFT structure including: the pixel electrode includes a glass substrate 1, a buffer layer 2, a pixel layer 3, a source metal layer 4, a first insulating layer 5, a drain metal layer 6, an oxide (IGZO) layer 7, a second insulating layer 8, and a gate metal layer 9, wherein the oxide (IGZO) layer 7 belongs to an active layer. Although the vertical-type TFT structure shown in fig. 1 can greatly reduce the size of the TFT, the vertical-type TFT structure is currently only suitable for an oxide TFT, and an amorphous silicon TFT in which amorphous silicon is used as an active layer has poor ohmic contact due to direct contact between the active layer and a source metal layer and a drain metal layer, resulting in poor stability of the amorphous silicon TFT.
Disclosure of Invention
The embodiment of the application provides a thin film transistor and a preparation method thereof, an array substrate and a display device, which are used for enabling an active layer to be connected with a source electrode metal layer and a drain electrode metal layer in the thin film transistor through ohmic contact layers, so that ohmic contact resistance between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer is reduced, ohmic contact effects between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer in the thin film transistor are improved, and further the working stability of the thin film transistor can be improved.
The embodiment of the application provides a thin film transistor, including: a source metal layer, a first insulating layer over the source metal layer, a drain metal layer over the first insulating layer; the thin film transistor further includes: the active layer is connected with the source electrode metal layer and the drain electrode metal layer through the ohmic contact layer; wherein the ohmic contact layer comprises a first ohmic contact layer and a second ohmic contact layer, and the first ohmic contact layer comprises a first partial region and a second partial region which are positioned at two sides of the first insulating layer.
According to the thin film transistor provided by the embodiment of the application, the ohmic contact layer is arranged, so that the source electrode layer is connected with the source electrode metal layer and the drain electrode metal layer through the ohmic contact layer, namely the active layer is not in direct contact with the source electrode metal layer and the drain electrode metal layer, the ohmic contact resistance between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer in the thin film transistor is reduced, the ohmic contact effect between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer is improved, and the working stability of the vertical amorphous silicon thin film transistor can be improved.
Preferably, the second ohmic contact layer is located between the first insulating layer and the drain metal layer.
Preferably, the active layer includes a first partial active layer and a second partial active layer respectively located at two sides of the first insulating layer, the first partial active layer is located between the first partial region of the first ohmic contact layer and the second ohmic contact layer, and the second partial active layer is located between the second partial region of the first ohmic contact layer and the second ohmic contact layer.
Preferably, the active layer includes amorphous silicon, and/or the first and second ohmic contact layers include electron-type-doped amorphous silicon.
Preferably, the thin film transistor further includes:
a second insulating layer over the active layer;
a gate metal layer over the second insulating layer.
The array substrate provided by the embodiment of the application comprises the thin film transistor provided by the embodiment of the application.
The display device provided by the embodiment of the application comprises the array substrate provided by the embodiment of the application.
The preparation method of the thin film transistor provided by the embodiment of the application comprises the following steps: a first insulating layer is arranged on the source metal layer; providing a drain metal layer over the first insulating layer; the method further comprises the following steps: an active layer and an ohmic contact layer are arranged, and the active layer is connected with the source metal layer and the drain metal layer through the ohmic contact layer; wherein the ohmic contact layer comprises a first ohmic contact layer and a second ohmic contact layer, and the first ohmic contact layer comprises a first partial region and a second partial region which are positioned at two sides of the first insulating layer.
Preferably, the first ohmic contact layer and the second ohmic contact layer are formed in the same process flow.
Preferably, the active layer is formed after the ohmic contact layer and the drain metal layer are formed.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings needed to be used in the description of the embodiments are briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present application, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without creative efforts.
FIG. 1 is a schematic diagram of a vertical oxide TFT in the prior art;
fig. 2 is a schematic structural diagram of a first thin film transistor provided in an embodiment of the present application;
fig. 3 is a schematic structural diagram of a second thin film transistor provided in the embodiment of the present application;
fig. 4 is a schematic structural diagram of a third thin film transistor provided in the embodiment of the present application;
fig. 5 is a schematic flow chart of a method for manufacturing a thin film transistor according to an embodiment of the present disclosure;
fig. 6 is a schematic flowchart of a first method for manufacturing the thin film transistor shown in fig. 4 according to an embodiment of the present disclosure;
fig. 7 is a schematic flowchart of a second method for manufacturing the thin film transistor shown in fig. 4 according to an embodiment of the present disclosure.
Detailed Description
The embodiment of the application provides a thin film transistor, an array substrate, a display panel, a display device and a preparation method, which are used for enabling a source electrode metal layer and a drain electrode metal layer in an active layer and the thin film transistor to be connected through an ohmic contact layer, so that ohmic contact resistance between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer is reduced, ohmic contact effects between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer in the thin film transistor are improved, and further working stability of the thin film transistor can be improved.
A thin film transistor provided in an embodiment of the present application, as shown in fig. 2, includes: a source metal layer 4, a first insulating layer 5 on the source metal layer 4, a drain metal layer 6 on the first insulating layer 5; an active layer 12 and an ohmic contact layer 16, a second insulating layer 8 on the active layer 12, and a gate metal layer 9 on the second insulating layer 8, wherein the active layer 12 is connected to the source metal layer 4 and the drain metal layer 6 through the ohmic contact layer 16, the ohmic contact layer 16 includes a first ohmic contact layer 10 and a second ohmic contact layer 11, and the first ohmic contact layer 10 includes a first partial region 17 and a second partial region 18 on both sides of the first insulating layer 5.
According to the thin film transistor provided by the embodiment of the application, the ohmic contact layer is arranged, so that the source electrode layer is connected with the source electrode metal layer and the drain electrode metal layer through the ohmic contact layer, namely the active layer is not in direct contact with the source electrode metal layer and the drain electrode metal layer, the ohmic contact resistance between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer is reduced, the ohmic contact effect between the active layer and the source electrode metal layer and between the active layer and the drain electrode metal layer is improved, and the working stability of the thin film transistor can be improved.
In the thin film transistor shown in fig. 2, the second ohmic contact layer 11 is located between the first insulating layer 5 and the drain metal layer 6, that is, there is an overlapping portion of the second ohmic contact layer and the first insulating layer in the projection direction in the vertical direction, and the second ohmic contact layer may be a continuous whole layer that is located between the first insulating layer and the drain metal layer, or may be a discontinuous layer that is located between the first insulating layer and the drain metal layer, as shown in fig. 3, in which the second ohmic contact layer 11 is divided into two partial regions that are located between the first insulating layer 5 and the drain metal layer 6. The cross section of the first insulating layer may be a trapezoid as shown in fig. 2 and 3 or a rectangle, and the present application will be described by taking the example in which the cross section of the first insulating layer is a trapezoid.
In the thin film transistor as shown in fig. 2, the active layer includes a first partial active layer 19 and a second partial active layer 20 respectively located at both sides of the first insulating layer, the first partial active layer 19 is located between the first partial region 17 of the first ohmic contact layer 10 and the second ohmic contact layer 11, and the second partial active layer 20 is located between the second partial region 18 of the first ohmic contact layer 10 and the second ohmic contact layer 11.
Preferably, the active layer includes amorphous silicon (a-Si).
Preferably, the first and second ohmic contact layers include electron-type doped amorphous silicon (n + a-Si).
Taking the case where the first and second active layers 19 and 20 are all the a-Si layers 15, the first ohmic contact layer, and the second ohmic contact layer is n + a-Si as an example, the thin film transistor structure provided in the embodiment of the present application is as shown in fig. 4, the second n + a-Si layer 14 is located between the first insulating layer 5 and the drain metal layer 6, and the a-Si layer 15 is in contact with the first n + a-Si layer 13 and the second n + a-Si layer 14 on both sides of the first insulating layer 5.
It should be noted that, in the thin film transistor shown in fig. 2, 3, and 4 provided in the embodiments of the present application, the active layer is not in contact with the source metal layer and the drain metal layer, but only when the active layer is in contact with the source metal layer and the drain metal layer through the ohmic contact layer, the ohmic contact resistance between the active layer and the source metal layer and the drain metal layer may be reduced, so as to improve the ohmic contact effect between the active layer and the source metal layer and the drain metal layer. Therefore, in practical cases, the active layer may be partially in contact with the source metal layer and the drain metal layer while the active layer is in contact with the source metal layer and the drain metal layer through the ohmic contact layer, that is, while the active layer is in good ohmic contact with the source metal layer and the drain metal layer.
The array substrate provided by the embodiment of the application comprises the thin film transistor provided by the embodiment of the application.
The display device provided by the embodiment of the application comprises the array substrate provided by the embodiment of the application.
For example, the display device provided in the embodiments of the present application may be a liquid crystal display panel, an Organic Light-Emitting Diode (OLED) display panel, or the like, or may be a device such as a mobile phone, a television, a computer, or the like.
Corresponding to the thin film transistor provided in the embodiment of the present application, the embodiment of the present application further provides a method for manufacturing a thin film transistor, as shown in fig. 5, the method includes:
s501, arranging a first insulating layer on the source metal layer;
s502, arranging a drain metal layer on the first insulating layer;
s503, an active layer and an ohmic contact layer are arranged, and the active layer is connected with the source metal layer and the drain metal layer through the ohmic contact layer;
wherein the ohmic contact layer comprises a first ohmic contact layer and a second ohmic contact layer, and the first ohmic contact layer comprises a first partial region and a second partial region which are positioned at two sides of the first insulating layer.
The thin film transistor preparation method provided by the embodiment of the application,
preferably, the first ohmic contact layer and the second ohmic contact layer are formed in the same process flow.
According to the thin film transistor manufacturing method provided by the embodiment of the application, the first ohmic contact layer and the second ohmic contact layer are formed in the same process flow, so that the thin film transistor manufacturing steps can be simplified, and the thin film transistor manufacturing process flow can be reduced.
Preferably, the active layer is formed after the ohmic contact layer and the drain metal layer are formed.
It should be noted that, if the active layer is disposed before the ohmic contact layer and the drain metal layer are formed, the active layer may be etched in the subsequent etching process of the ohmic contact layer and the drain metal layer, which may result in over-etching the active layer and affect the operation stability of the thin film transistor. According to the thin film transistor manufacturing method provided by the embodiment of the application, the active layer is arranged behind the first ohmic contact layer, the second ohmic contact layer and the drain electrode metal layer, so that the poor working stability of the thin film transistor caused by over-etching of the active layer is avoided.
The following describes a method for manufacturing a thin film transistor provided in the embodiments of the present application, taking the manufacturing of the thin film transistor structure shown in fig. 4 as an example.
Preferably, the thin film transistor further comprises a glass substrate.
In a first mode, as shown in fig. 6, the method for manufacturing a thin film transistor specifically includes the following steps:
s601, depositing a source electrode metal layer on the glass substrate 1, and etching to form a source electrode metal layer 4 after exposure;
s602, depositing a first insulating layer on the source metal layer 4, and etching to form a first insulating layer 5 after exposure;
s603, depositing an n + a-Si layer, and etching to form a first n + a-Si layer 13 and a second n + a-Si layer 14 after exposure; the second n + a-Si layer 14 is positioned on the first insulating layer 5, and the first n + a-Si layers 13 are positioned on two sides of the first insulating layer 5 and positioned on the source metal layer 4;
s604, depositing a drain metal layer on the second n + a-Si layer 14, and etching to form a drain metal layer 6 after exposure;
s605, depositing an a-Si layer after the step S604, and etching to form an a-Si layer 15 after exposure; the a-Si layer 15 is in contact with the first n + a-Si layer 13 and the second n + a-Si layer 14 on both sides of the first insulating layer 5;
s606, arranging a second insulating layer 8 on the a-Si layer 15, and etching a through hole (not shown in the figure) on the second insulating layer;
and S607, depositing a gate metal layer on the second insulating layer 8, and etching to form a gate metal layer 9 after exposure.
In a second mode, as shown in fig. 7, the method for manufacturing a thin film transistor specifically includes the following steps:
s701, depositing a source metal layer on the glass substrate 1, and etching to form a source metal layer 4 after exposure;
s702, depositing a first insulating layer on the source metal layer 4, and etching to form a first insulating layer 5 after exposure;
s703, depositing an n + a-Si layer, depositing a drain metal layer on the n + a-Si layer, etching the metal layer and the n + a-Si layer by adopting a half-transparent mask (HTM) to form a first n + a-Si layer 13 and a second n + a-Si layer 14, and further etching the metal layer by adopting photoresist ashing to form a drain metal layer 6; the second n + a-Si layer 14 is positioned on the first insulating layer 5, the drain metal layer 6 is positioned on the second n + a-Si layer 14, and the first n + a-Si layers 13 are positioned on both sides of the first insulating layer 5 and on the source metal layer 4;
s704, depositing an a-Si layer, and etching to form an a-Si layer 15 after exposure; the a-Si layer 15 is in contact with the first n + a-Si layer 13 and the second n + a-Si layer 14 on both sides of the first insulating layer 5;
s705, arranging a second insulating layer 8 on the a-Si layer 15, and etching a via hole (not shown in the figure) on the second insulating layer;
and S706, depositing a gate metal layer on the second insulating layer 8, and etching to form a gate metal layer 9 after exposure.
By adopting the two preparation methods of the thin film transistor provided by the embodiment of the application, the first n + a-Si layer and the second n + a-Si layer are arranged between the a-Si layer and the source metal layer and between the a-Si layer and the drain metal layer, so that the ohmic contact resistance between the a-Si layer and the source metal layer and between the a-Si layer and the drain metal layer can be reduced, and the ohmic contact effect between the a-Si layer and the source metal layer and between the a-Si layer and the drain metal layer can be improved. Meanwhile, in the two thin film transistor preparation modes, the first n + a-Si layer and the second n + a-Si layer are arranged on the same layer and are formed in the same process flow, so that the steps for preparing the thin film transistor are simplified. And the a-Si layer is etched after the n + a-Si layer and the drain electrode metal layer are etched, so that the etching time and the etching rate of the a-Si layer can be controlled, and the working stability of the TFT (thin film transistor) caused by over-etching the a-Si layer is not deteriorated.
It should be noted that, the two ways of manufacturing the thin film transistor provided in the embodiments of the present application are different only in the etching sequence of each layer of the thin film transistor during the manufacturing process of the thin film transistor, but the thin film transistor shown in fig. 4 can be formed, and the two different ways of manufacturing the thin film transistor have no influence on the performance of the thin film transistor. In addition, compared with the first mode, the thin film transistor preparation method provided by the second mode adopts the semi-permeable mask process to etch the drain metal layer and the n + a-Si layer, so that a mask (mask) can be reduced, the production cost is reduced, the one-step exposure process is reduced, the process time is shortened, and the productivity can be increased.
To sum up, according to the thin film transistor, the array substrate, the display panel, the display device and the method for manufacturing the thin film transistor provided by the embodiment of the present application, by providing the ohmic contact layer, the source layer is connected to the source metal layer and the drain metal layer through the ohmic contact layer, that is, the active layer is not in complete direct contact with the source metal layer and the drain metal layer, so that ohmic contact resistance between the active layer and the source metal layer and the drain metal layer is reduced, ohmic contact effect between the active layer and the source metal layer and between the active layer and the drain metal layer is improved, and thus the working stability of the thin film transistor can be improved. In addition, according to the thin film transistor manufacturing method provided by the embodiment of the application, the first ohmic contact layer and the second ohmic contact layer are formed in the same process flow, so that the steps of manufacturing the thin film transistor are simplified. In addition, as the active layer is etched after the ohmic contact layer and the drain electrode metal layer, the etching time and the etching rate of the active layer can be controlled, and the stability of the thin film transistor caused by over-etching the active layer is not deteriorated.
It will be apparent to those skilled in the art that various changes and modifications may be made in the present application without departing from the spirit and scope of the application. Thus, if such modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is intended to include such modifications and variations as well.

Claims (7)

1. A thin film transistor, comprising: a source metal layer, a first insulating layer over the source metal layer, a drain metal layer over the first insulating layer, wherein the thin film transistor further comprises: the active layer is connected with the source electrode metal layer and the drain electrode metal layer through the ohmic contact layer; the first ohmic contact layer comprises a first partial area and a second partial area which are positioned on two sides of the first insulating layer;
the second ohmic contact layer is positioned between the first insulating layer and the drain metal layer;
the thin film transistor further includes:
a second insulating layer over the active layer;
a gate metal layer over the second insulating layer;
the first ohmic contact layer and the second ohmic contact layer are formed in the same process flow.
2. The thin film transistor of claim 1, wherein the active layer comprises a first partial active layer and a second partial active layer respectively disposed on both sides of the first insulating layer, the first partial active layer being disposed between the first partial region of the first ohmic contact layer and the second ohmic contact layer, and the second partial active layer being disposed between the second partial region of the first ohmic contact layer and the second ohmic contact layer.
3. The thin film transistor of claim 1, wherein the active layer comprises amorphous silicon, and/or the first and second ohmic contact layers comprise electron-type doped amorphous silicon.
4. An array substrate comprising the thin film transistor according to any one of claims 1 to 3.
5. A display device comprising the array substrate according to claim 4.
6. A method for preparing a thin film transistor comprises the following steps: a first insulating layer is arranged on the source metal layer; providing a drain metal layer over the first insulating layer, wherein the method further comprises: an active layer and an ohmic contact layer are arranged, and the active layer is connected with the source metal layer and the drain metal layer through the ohmic contact layer; the first ohmic contact layer comprises a first partial area and a second partial area which are positioned on two sides of the first insulating layer; the second ohmic contact layer is positioned between the first insulating layer and the drain metal layer;
the method further includes the steps of forming a second insulating layer over the active layer and forming a gate electrode over the second insulating layer;
the first ohmic contact layer and the second ohmic contact layer are formed in the same process flow.
7. The method of manufacturing a thin film transistor according to claim 6, wherein the active layer is formed after the ohmic contact layer and the drain metal layer are formed.
CN201710131890.3A 2017-03-07 2017-03-07 Thin film transistor, preparation method thereof, array substrate and display device Active CN106847892B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710131890.3A CN106847892B (en) 2017-03-07 2017-03-07 Thin film transistor, preparation method thereof, array substrate and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710131890.3A CN106847892B (en) 2017-03-07 2017-03-07 Thin film transistor, preparation method thereof, array substrate and display device

Publications (2)

Publication Number Publication Date
CN106847892A CN106847892A (en) 2017-06-13
CN106847892B true CN106847892B (en) 2020-03-31

Family

ID=59137356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710131890.3A Active CN106847892B (en) 2017-03-07 2017-03-07 Thin film transistor, preparation method thereof, array substrate and display device

Country Status (1)

Country Link
CN (1) CN106847892B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397721A (en) * 1993-01-29 1995-03-14 Goldstar Electron Co., Ltd. Method for fabricating vertical thin film transistor
CN101097871A (en) * 2007-07-05 2008-01-02 友达光电股份有限公司 Thin film transistor, pixel structure and method of manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397721A (en) * 1993-01-29 1995-03-14 Goldstar Electron Co., Ltd. Method for fabricating vertical thin film transistor
CN101097871A (en) * 2007-07-05 2008-01-02 友达光电股份有限公司 Thin film transistor, pixel structure and method of manufacture thereof

Also Published As

Publication number Publication date
CN106847892A (en) 2017-06-13

Similar Documents

Publication Publication Date Title
US11257849B2 (en) Display panel and method for fabricating the same
US10254876B2 (en) Array substrate, fabricating method thereof and display device
CN106981520B (en) Thin film transistor, preparation method thereof, array substrate and display device
KR102080065B1 (en) Thin film transistor array substrate and method for fabricating the same
US8952384B2 (en) TFT, mask for manufacturing the TFT, array substrate and display device
WO2018099052A1 (en) Method for manufacturing array substrate, array substrate and display apparatus
US20160276376A1 (en) Array substrate, method for fabricating the same, and display device
US10249652B2 (en) Manufacturing method of flexible TFT substrate
US9530800B2 (en) Array substrate, display panel and method for preparing array substrate
US10290661B2 (en) Thin film transistor and method of fabricating the same, array substrate and display apparatus
US9653496B2 (en) Preparation method of poly-silicon TFT array substrate and array substrate thereof
US11049889B2 (en) Method for preparing array substrate by stripping first photo-resist layer through wet etching before forming ohm contact layer and active layer
US10923512B2 (en) Array substrate, preparation method thereof, and display device
US20210225883A1 (en) Ltps array substrate and method for manufacturing same
CN109494257B (en) Thin film transistor, manufacturing method thereof, array substrate and display device
US20170213916A1 (en) Dual-Gate TFT Array Substrate and Manufacturing Method Thereof, and Display Device
EP3550409A1 (en) Array substrate and manufacturing method therefor, and display panel
CN110620119A (en) Array substrate and preparation method thereof
US20230246036A1 (en) Touch array substrate and manufacturing method thereof
WO2016011755A1 (en) Thin film transistor and preparation method therefor, display substrate, and display apparatus
US10134765B2 (en) Oxide semiconductor TFT array substrate and method for manufacturing the same
US20160322388A1 (en) Array substrate, its manufacturing method and display device
US10651205B2 (en) Array substrate, display panel and display device
US20160351670A1 (en) Thin film transistor structure and manufacturing method thereof, array substrate, and mask
CN106206615B (en) Manufacturing method of array substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant