CN106845705A - The Echo State Networks load forecasting model of subway power supply load prediction system - Google Patents
The Echo State Networks load forecasting model of subway power supply load prediction system Download PDFInfo
- Publication number
- CN106845705A CN106845705A CN201710038445.2A CN201710038445A CN106845705A CN 106845705 A CN106845705 A CN 106845705A CN 201710038445 A CN201710038445 A CN 201710038445A CN 106845705 A CN106845705 A CN 106845705A
- Authority
- CN
- China
- Prior art keywords
- load
- output
- module
- data
- forecast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 claims abstract description 37
- 239000011159 matrix material Substances 0.000 claims description 34
- 238000012549 training Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 7
- 230000005284 excitation Effects 0.000 claims description 6
- 238000012417 linear regression Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 3
- 238000011160 research Methods 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Biomedical Technology (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Operations Research (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种地铁供电系统短期负荷预测系统,包括负荷统计模块,负荷数据调用模块,负荷数据预测模块,预测误差统计模块,图形输出模块以及数据输出模块;其中负荷统计模块用于统计历史负荷数据,负荷数据调用模块调用负荷统计模块中的历史负荷数据并发送给负荷数据预测模块,负荷数据预测模块根据历史负荷数据对未来的负荷进行预测并输出预测数据,预测误差统计模块对输出的预测数据进行校准后,通过图形输出模块以及数据输出模块输出修正后的预测的数据;其中所述负荷数据预测模块是采用基于回声状态神经网络的地铁供电系统短期负荷预测模型而构建的。基于回声状态神经网络的预测模型具有良好的预测精度和预测稳定性。
A short-term load forecasting system for a subway power supply system, including a load statistics module, a load data call module, a load data forecast module, a forecast error statistics module, a graph output module, and a data output module; wherein the load statistics module is used to count historical load data, load The data call module calls the historical load data in the load statistics module and sends it to the load data prediction module. The load data prediction module predicts the future load according to the historical load data and outputs the forecast data. The forecast error statistics module calibrates the output forecast data. Afterwards, output the corrected forecast data through the graphic output module and the data output module; wherein the load data forecast module is constructed by using the short-term load forecast model of the subway power supply system based on the echo state neural network. The prediction model based on echo state neural network has good prediction accuracy and prediction stability.
Description
技术领域technical field
本发明涉及地铁供电系统短期负荷预测领域,尤其涉及一种基于回声状态神经网络负荷预测模型的地铁供电系统短期负荷预测系统。The invention relates to the field of short-term load forecasting of a subway power supply system, in particular to a short-term load forecasting system for a subway power supply system based on an echo state neural network load forecasting model.
背景技术Background technique
城市地铁交通是城市现代化标志,是现代化城市中理想的、能满足市民出行需求的一种公共交通工具。它在给我们带来快捷、方便的同时,也会给电网带来负面影响,地铁作为大功率非线性负荷,其运行的特点及投运后对地区电网的影响应是电力部门重点关注的问题。对预估较为严重的问题,应采取适当的防范措施,使其负面影响控制在允许范围内。地铁供电系统负荷具有随机性、波动性及不稳定性的特点,这些特点导致地铁供电系统负荷对电网产生冲击,干扰电网的安全、稳定及经济运行。通过对地铁供电系统负荷进行预测能够有效降低对电网产生的不利影响,以保证电力系统能够安全稳定地运行。Urban subway transportation is a symbol of urban modernization, and it is an ideal public transportation tool in a modern city that can meet the travel needs of citizens. While it brings us quickness and convenience, it will also bring negative impacts to the power grid. As a high-power nonlinear load, the characteristics of the operation of the subway and the impact on the regional power grid after it is put into operation should be the focus of the power sector. . For the estimated serious problems, appropriate preventive measures should be taken to control the negative impact within the allowable range. The load of the subway power supply system has the characteristics of randomness, volatility and instability. These characteristics cause the load of the subway power supply system to have an impact on the power grid and interfere with the safety, stability and economic operation of the power grid. By predicting the load of the subway power supply system, the adverse impact on the power grid can be effectively reduced to ensure the safe and stable operation of the power system.
回声状态神经网络由输入层、储备池、输出层构成,储备池为动态网络,由大量随机稀疏连接的神经元构成。储备池的应用克服了传统神经网络收敛速度慢和易陷入局部极小的问题。回声状态神经网络已应用于光伏发电功率预测等多个研究领域。然而地铁供电系统负荷预测研究是当前的一个研究空白,尤其是采用回声状态神经网络对地铁供电系统负荷进行预测处于研究真空。The echo state neural network consists of an input layer, a reserve pool, and an output layer. The reserve pool is a dynamic network consisting of a large number of randomly connected neurons. The application of the reserve pool overcomes the problems of slow convergence speed and easy to fall into local minimum of the traditional neural network. The echo state neural network has been applied in many research fields such as photovoltaic power prediction. However, the research on load forecasting of subway power supply system is a research blank at present, especially the use of echo state neural network to forecast the load of subway power supply system is in a research vacuum.
发明内容Contents of the invention
为了填补现有技术的空白,本发明提出了一种地铁供电系统短期负荷预测系统,包括负荷统计模块,负荷数据调用模块,负荷数据预测模块,预测误差统计模块,图形输出模块以及数据输出模块;其中负荷统计模块用于统计历史负荷数据,负荷数据调用模块调用负荷统计模块中的历史负荷数据并发送给负荷数据预测模块,负荷数据预测模块根据历史负荷数据对未来的负荷进行预测并输出预测数据,预测误差统计模块对输出的预测数据进行校准后,通过图形输出模块以及数据输出模块输出修正后的预测的数据;其中所述负荷数据预测模块是采用基于回声状态神经网络的地铁供电系统短期负荷预测模型而构建的。In order to fill the gaps in the prior art, the present invention proposes a short-term load forecasting system for a subway power supply system, including a load statistics module, a load data call module, a load data forecast module, a forecast error statistics module, a graphic output module and a data output module; The load statistics module is used to count historical load data, the load data call module calls the historical load data in the load statistics module and sends it to the load data prediction module, and the load data prediction module predicts the future load according to the historical load data and outputs the forecast data After the forecast error statistics module calibrates the output forecast data, the revised forecast data is output through the graphic output module and the data output module; wherein the load data forecast module adopts the short-term load of the subway power supply system based on the echo state neural network built predictive models.
进一步的,所述基于回声状态神经网络的地铁供电系统短期负荷预测模型采用下述算法获得:构建回声状态神经网络,包括输入层、储备池、输出层;网络模型中输入层有k个输入节点,储备池有n个内部节点,输出层有l个输出节点;Further, the short-term load forecasting model of the subway power supply system based on the echo state neural network is obtained using the following algorithm: construct the echo state neural network, including an input layer, a reserve pool, and an output layer; the input layer in the network model has k input nodes , the reserve pool has n internal nodes, and the output layer has l output nodes;
在t时刻时,网络的输入向量为u(t)=[u1(t),u2(t),···,uk(t)]T,内部状态向量为x(t)=[x1(t),x2(t),···,xn(t)]T,输出向量为y(t)=[y1(t),y2(t),···,yl(t)]T,则ESN预测模型的状态方程和输出方程分别为:At time t, the input vector of the network is u(t)=[u 1 (t),u 2 (t),···,u k (t)] T , and the internal state vector is x(t)=[ x 1 (t),x 2 (t),···,x n (t)] T , the output vector is y(t)=[y 1 (t),y 2 (t),···,y l (t)] T , then the state equation and output equation of the ESN prediction model are:
x(t+1)=f(winu(t+1)+wx(t)+wbacky(t)) (1)x(t+1)=f(w in u(t+1)+wx(t)+w back y(t)) (1)
y(t+1)=fout(wout(u(t+1),x(t+1),y(t+1))) (2)y(t+1)=f out (w out (u(t+1),x(t+1),y(t+1))) (2)
式中,win表示输入层到储备池的输入连接权值矩阵,w表示储备池内部连接权值矩阵,wback表示输出层到储备池的反馈连接权值矩阵,wout表示储备池到输出层的输出连接权值矩阵,f表示储备池单元的激励函数,取双曲正切函数;fout表示输出单元的激励函数,取恒等函数; In the formula, win represents the input connection weight matrix from the input layer to the reserve pool, w represents the internal connection weight matrix of the reserve pool, w back represents the feedback connection weight matrix from the output layer to the reserve pool, and w out represents the connection weight matrix from the reserve pool to the output The output connection weight matrix of the layer, f represents the excitation function of the reserve pool unit, which takes the hyperbolic tangent function; f out represents the excitation function of the output unit, which takes the identity function;
其中输出连接权值矩阵wout通过给定的训练样本(u(t),y(t),(t=1,2,···,q))来确定,其训练过程可分为两个阶段:The output connection weight matrix w out is determined by the given training samples (u(t),y(t),(t=1,2,···,q)), and its training process can be divided into two stage:
(1)采样阶段(1) Sampling stage
首先对网络的初始状态进行赋值,通常情况下网络的初始状态为0,即x(t)=0。然后将训练样本(u(t),t=1,2,···,q)通过win输入到动态储备池中,按照式(1)和式(2)依次完成网络状态向量x(t)和输出向量y(t)的计算;First, assign a value to the initial state of the network, usually the initial state of the network is 0, that is, x(t)=0. Then the training samples (u(t), t= 1,2 ,...,q) are input into the dynamic reserve pool through win, and the network state vector x(t ) and the calculation of the output vector y(t);
从某一时刻h开始记录回声状态神经网络系统内部状态变量和相应的样本数据,然后用相量([u1(j),u2(j),···,uk(j)]T;[x1(j),x2(j),···,xn(j)]T)来构成矩阵B(q-h+1),并用相量([y1(j),y2(j),···,y3(j)]T)来构成矩阵T(q-h+1,l)。其中j=h,h+1,···,q;From a certain moment h, the internal state variables and corresponding sample data of the echo state neural network system are recorded, and then the phasor ([u 1 (j),u 2 (j),···,u k (j)] T ;[x 1 (j),x 2 (j),···,x n (j)] T ) to form the matrix B(q-h+1), and use the phasor ([y 1 (j),y 2 (j),···,y 3 (j)] T ) to form a matrix T(q-h+1,l). Where j=h, h+1,...,q;
(2)权值计算阶段(2) Weight calculation stage
根据采样过程中回声状态神经网络系统记录的内部状态数据和样本数据,通过最小二乘法线性回归计算得到输出连接权值矩阵wout。由于网络的内部的状态变量x(t)与网络的实际输出之间为线性关系,所以利用网络的实际输出来逼近网络的理想输出y(t):According to the internal state data and sample data recorded by the echo state neural network system in the sampling process, the output connection weight matrix w out is obtained through least square linear regression calculation. Due to the internal state variable x(t) of the network and the actual output of the network There is a linear relationship between them, so the actual output of the network is used To approximate the ideal output y(t) of the network:
在计算权值wi out的过程需要保证上述公式的均方根误差最小,于是问题可以转化为求解下面公式的优化问题:In the process of calculating the weight w i out , it is necessary to ensure that the root mean square error of the above formula is the smallest, so the problem can be transformed into an optimization problem for solving the following formula:
从数学的角度来看,这是一个线性回归的问题,可以转换为求矩阵B的逆矩阵问题,即wout=B-1T,回声状态神经网络训练结束。From a mathematical point of view, this is a linear regression problem, which can be transformed into the problem of finding the inverse matrix of matrix B, that is, w out = B -1 T, and the training of the echo state neural network is over.
本发明设计了统计与预测一体的地铁供电系统短期负荷预测系统,提出了基于回声状态神经网络的地铁供电系统短期负荷预测模型及其构建方法。回声状态神经网络由输入层、储备池、输出层构成,储备池为动态网络,由大量随机稀疏连接的神经元构成。储备池的应用克服了传统神经网络收敛速度慢和易陷入局部极小的问题。利用实际地铁供电系统的历史数据进行仿真验证,仿真结果表明基于回声状态神经网络的预测模型具有良好的预测精度和预测稳定性。The present invention designs a short-term load forecasting system for a subway power supply system integrating statistics and prediction, and proposes a short-term load forecasting model and a construction method for the subway power supply system based on an echo state neural network. The echo state neural network consists of an input layer, a reserve pool, and an output layer. The reserve pool is a dynamic network consisting of a large number of randomly connected neurons. The application of the reserve pool overcomes the problems of slow convergence speed and easy to fall into local minimum of the traditional neural network. The historical data of the actual subway power supply system is used for simulation verification. The simulation results show that the prediction model based on the echo state neural network has good prediction accuracy and prediction stability.
附图说明Description of drawings
图1是本发明的地铁供电系统短期负荷预测系统的示意图;Fig. 1 is the schematic diagram of short-term load forecasting system of subway power supply system of the present invention;
图2是本发明的地铁供电系统短期负荷预测系统的回声状态神经网络预测模型的示意图;Fig. 2 is the schematic diagram of the echo state neural network prediction model of the subway power supply system short-term load forecasting system of the present invention;
图3是本发明的地铁供电系统短期负荷预测系统与BP-NN预测模型的预测比较曲线图。Fig. 3 is a graph showing the comparison between the short-term load forecasting system of the subway power supply system of the present invention and the BP-NN forecasting model.
具体实施方式detailed description
在全面深入的地铁供电系统负荷特性分析和精确先进的负荷预测模型研究的基础上,设计了统计与预测一体的地铁供电系统短期负荷预测系统。如图1所示,本发明的地铁供电系统短期负荷预测系统包括负荷统计模块,负荷数据调用模块,负荷数据预测模块,预测误差统计模块,图形输出模块以及数据输出模块。其中负荷统计模块用于统计历史负荷数据,负荷数据调用模块调用负荷统计模块中的统计数据并发送给负荷数据预测模块,负荷数据预测模块根据历史负荷数据对未来的负荷进行预测并输出预测数据,预测误差统计模块对输出的预测数据进行校准后,通过图形输出模块以及数据输出模块输出修正后的预测的数据。Based on the comprehensive and in-depth analysis of the load characteristics of the subway power supply system and the research on the precise and advanced load forecasting model, a short-term load forecasting system for the subway power supply system integrating statistics and forecasting is designed. As shown in Figure 1, the short-term load forecasting system of the subway power supply system of the present invention includes a load statistics module, a load data call module, a load data forecast module, a forecast error statistics module, a graphic output module and a data output module. The load statistics module is used to count historical load data, the load data calling module calls the statistical data in the load statistics module and sends it to the load data prediction module, and the load data prediction module predicts the future load according to the historical load data and outputs the forecast data, After the prediction error statistics module calibrates the output prediction data, the corrected prediction data is output through the graphic output module and the data output module.
在所述地铁供电系统短期负荷预测系统中,负荷预测模块是核心模块,基于回声状态神经网络的地铁供电系统短期负荷预测模型为该模块的一种核心算法。In the short-term load forecasting system of the subway power supply system, the load forecasting module is a core module, and the short-term load forecasting model of the subway power supply system based on the echo state neural network is a core algorithm of the module.
回声状态神经网络是一种新型递归神经网络,它的网络结构由输入层、储备池、输出层构成。储备池是一个动态网络,它是由大量随机稀疏连接的神经元构成的,当输入信号进入储备池内部时,会激发其内部复杂的非线性状态空间,然后通过输出层输出网络信号。传统递归神经网络训练算法复杂,计算量大,而在回声状态神经网络预测模型中建立储备池和完成网络训练是分别进行的,在网络训练时只需要调整储备池到输出层的权值,其它权值在网络初始化后便不再改变,训练算法简单,计算量小,可有效解决局部最优问题,回声状态神经网络预测模型如图2所示。The echo state neural network is a new type of recurrent neural network, and its network structure consists of an input layer, a reserve pool, and an output layer. The reserve pool is a dynamic network, which is composed of a large number of randomly connected neurons. When the input signal enters the reserve pool, it will excite the complex nonlinear state space inside, and then output the network signal through the output layer. The traditional recursive neural network training algorithm is complex and the amount of calculation is large. In the echo state neural network prediction model, the establishment of the reserve pool and the completion of network training are carried out separately. During network training, only the weights from the reserve pool to the output layer need to be adjusted, and other The weight value will not change after the network is initialized. The training algorithm is simple and the calculation amount is small, which can effectively solve the local optimal problem. The echo state neural network prediction model is shown in Figure 2.
图2中实线连接表示预测模型的必要连接权值,虚线连接对于构成预测模型不是必需的,是根据不同情况来选择的连接权值。由图2可知,网络模型中输入层有k个输入节点,储备池有n个内部节点,输出层有l个输出节点。在t时刻时,网络的输入向量为u(t)=[u1(t),u2(t),···,uk(t)]T,内部状态向量为x(t)=[x1(t),x2(t),···,xn(t)]T,输出向量为y(t)=[y1(t),y2(t),···,yl(t)]T。则ESN预测模型的状态方程和输出方程分别为:In Fig. 2, the solid line connection represents the necessary connection weight of the prediction model, and the dotted line connection is not necessary for forming the prediction model, but is a connection weight selected according to different situations. It can be seen from Figure 2 that the input layer in the network model has k input nodes, the reserve pool has n internal nodes, and the output layer has l output nodes. At time t, the input vector of the network is u(t)=[u 1 (t),u 2 (t),···,u k (t)] T , and the internal state vector is x(t)=[ x 1 (t),x 2 (t),···,x n (t)] T , the output vector is y(t)=[y 1 (t),y 2 (t),···,y l (t)] T . Then the state equation and output equation of the ESN prediction model are:
x(t+1)=f(winu(t+1)+wx(t)+wbacky(t)) (1)x(t+1)=f(w in u(t+1)+wx(t)+w back y(t)) (1)
y(t+1)=fout(wout(u(t+1),x(t+1),y(t+1))) (2)y(t+1)=f out (w out (u(t+1),x(t+1),y(t+1))) (2)
式中,win表示输入层到储备池的输入连接权值矩阵,w表示储备池内部连接权值矩阵,wback表示输出层到储备池的反馈连接权值矩阵,wout表示储备池到输出层的输出连接权值矩阵。f表示储备池单元的激励函数,一般取双曲正切函数;fout表示输出单元的激励函数,一般取恒等函数。 In the formula, win represents the input connection weight matrix from the input layer to the reserve pool, w represents the internal connection weight matrix of the reserve pool, w back represents the feedback connection weight matrix from the output layer to the reserve pool, and w out represents the connection weight matrix from the reserve pool to the output The output connection weight matrix of the layer. f represents the excitation function of the reserve pool unit, and generally takes the hyperbolic tangent function; f out represents the excitation function of the output unit, and generally takes the identity function.
回声状态神经网络预测模型只需通过给定的训练样本(u(t),y(t),(t=1,2,···,q))来确定网络输出连接权值矩阵wout即可,其训练过程可分为两个阶段:采样阶段和权值计算阶段。The echo state neural network prediction model only needs to determine the network output connection weight matrix w out through the given training samples (u(t), y(t), (t=1,2,···,q)), namely Yes, the training process can be divided into two stages: the sampling stage and the weight calculation stage.
(1)采样阶段(1) Sampling stage
首先对网络的初始状态进行赋值,通常情况下网络的初始状态为0,即x(t)=0。然后将训练样本(u(t),t=1,2,···,q)通过win输入到动态储备池中,按照式(1)和式(2)依次完成网络状态向量x(t)和输出向量y(t)的计算。First, assign a value to the initial state of the network, usually the initial state of the network is 0, that is, x(t)=0. Then the training samples (u(t), t= 1,2 ,...,q) are input into the dynamic reserve pool through win, and the network state vector x(t ) and the calculation of the output vector y(t).
通过计算得到输出连接权值矩阵wout,回声状态神经网络系统需要从某一时刻h开始记录其内部状态变量和相应的样本数据,然后用相量([u1(j),u2(j),···,uk(j)]T;[x1(j),x2(j),···,xn(j)]T)来构成矩阵B(q-h+1),并用相量([y1(j),y2(j),···,y3(j)]T)来构成矩阵T(q-h+1,l)。其中j=h,h+1,···,q。By calculating the output connection weight matrix w out , the echo state neural network system needs to record its internal state variables and corresponding sample data from a certain moment h, and then use the phasor ([u 1 (j),u 2 (j ),···,u k (j)] T ; [x 1 (j),x 2 (j),···,x n (j)] T ) to form matrix B(q-h+1) , and use the phasor ([y 1 (j),y 2 (j),···,y 3 (j)] T ) to form the matrix T(q-h+1,l). Where j=h, h+1, . . . , q.
(2)权值计算阶段(2) Weight calculation stage
根据采样过程中回声状态神经网络系统记录的内部状态数据和样本数据,通过最小二乘法线性回归计算得到输出连接权值矩阵wout。由于网络的内部的状态变量x(t)与网络的实际输出之间为线性关系,所以利用网络的实际输出来逼近网络的理想输出y(t):According to the internal state data and sample data recorded by the echo state neural network system in the sampling process, the output connection weight matrix w out is obtained through least square linear regression calculation. Due to the internal state variable x(t) of the network and the actual output of the network There is a linear relationship between them, so the actual output of the network is used To approximate the ideal output y(t) of the network:
在计算权值wi out的过程需要保证上述公式的均方根误差最小,于是问题可以转化为求解下面公式的优化问题:In the process of calculating the weight w i out , it is necessary to ensure that the root mean square error of the above formula is the smallest, so the problem can be transformed into an optimization problem for solving the following formula:
从数学的角度来看,这是一个线性回归的问题,可以转换为求矩阵B的逆矩阵问题,即wout=B-1T,回声状态神经网络训练结束。From a mathematical point of view, this is a linear regression problem, which can be transformed into the problem of finding the inverse matrix of matrix B, that is, w out = B -1 T, and the training of the echo state neural network is over.
以某城市地铁供电系统作为研究对象,对该地铁供电系统的历史负荷数据进行相关的仿真分析,通过对地铁供电系统的负荷特性分析可知,日类型因素对地铁供电系统的负荷的影响比较大。因此本专利预测模型采用的输入量包括预测日的日类型以及预测日前一天同一时刻的负荷,以及前三小时和后三小时的负荷,以及预测日前一周同一时刻的负荷。预测模型的输出量为预测日预测时刻的负荷值。Taking a city's subway power supply system as the research object, the historical load data of the subway power supply system is simulated and analyzed. Through the analysis of the load characteristics of the subway power supply system, it can be known that the day type factor has a greater impact on the load of the subway power supply system. Therefore, the input quantity used in the forecast model of this patent includes the day type of the forecast day, the load at the same time of the day before the forecast day, the load of the first three hours and the next three hours, and the load at the same time of the week before the forecast day. The output of the forecast model is the load value at the forecast time of the forecast day.
由于样本数据中有奇异值的存在,变量的量纲也不同,对于预测模型的预测进精度产生影响,因此在网络训练之前需要对原始数据进行归一化处理。日类型数据分为三类,周一取1,周二至周五取0.2,周六和周日取0.1。Due to the existence of singular values in the sample data, the dimensions of the variables are also different, which will affect the prediction accuracy of the prediction model. Therefore, the original data needs to be normalized before network training. Day type data is divided into three categories, 1 is used for Monday, 0.2 is used for Tuesday to Friday, and 0.1 is used for Saturday and Sunday.
构建回声状态神经网络预测模型和BP预测模型分别对地铁供电系统某日的负荷进行仿真预测,仿真结果如图3所示,并把预测值和实际值与BP预测模型的预测值进行比较,其误差比较结果如表1所示。Construct the echo state neural network prediction model and the BP prediction model to simulate and predict the load of the subway power supply system on a certain day, the simulation results are shown in Figure 3, and compare the predicted value and actual value with the predicted value of the BP prediction model. The error comparison results are shown in Table 1.
表1 两种模型预测误差比较Table 1 Comparison of prediction errors of two models
从图1和表1可以看出,回声状态神经网络预测模型的平均预测误差比BP-NN预测模型的平均预测误差提高了2.65%,回声状态神经网络预测模型的最大预测误差比BP-NN预测模型的最大预测误差提高了2.90%,表明了ESN预测模型的预测精度明显高于BP-NN预测模型的预测精度。It can be seen from Figure 1 and Table 1 that the average prediction error of the echo state neural network prediction model is 2.65% higher than that of the BP-NN prediction model, and the maximum prediction error of the echo state neural network prediction model is higher than that of the BP-NN prediction model. The maximum prediction error of the model is increased by 2.90%, indicating that the prediction accuracy of the ESN prediction model is significantly higher than that of the BP-NN prediction model.
尽管已经结合实施例对本发明进行了详细地描述,但是本领域技术人员应当理解地是,在不背离本发明精神和实质下的各种修正、形变都是允许的,它们都落入本发明权利要求的保护范围之中。Although the present invention has been described in detail in conjunction with the embodiments, those skilled in the art should understand that various modifications and variations are allowed without departing from the spirit and essence of the present invention, and they all fall into the rights of the present invention. within the scope of protection requested.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710038445.2A CN106845705A (en) | 2017-01-19 | 2017-01-19 | The Echo State Networks load forecasting model of subway power supply load prediction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710038445.2A CN106845705A (en) | 2017-01-19 | 2017-01-19 | The Echo State Networks load forecasting model of subway power supply load prediction system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106845705A true CN106845705A (en) | 2017-06-13 |
Family
ID=59123404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710038445.2A Pending CN106845705A (en) | 2017-01-19 | 2017-01-19 | The Echo State Networks load forecasting model of subway power supply load prediction system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106845705A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107766986A (en) * | 2017-10-31 | 2018-03-06 | 天津大学 | Leak integral form echo state network on-line study photovoltaic power Forecasting Methodology |
CN109726691A (en) * | 2018-12-30 | 2019-05-07 | 杭州铭智云教育科技有限公司 | A kind of monitoring method |
CN112308327A (en) * | 2020-11-09 | 2021-02-02 | 金陵科技学院 | Smart city power load estimation method based on self-adaptive characteristic weight |
CN112712216A (en) * | 2021-01-18 | 2021-04-27 | 南京电力设计研究院有限公司 | Subway power supply system load prediction method based on cyclic neural network |
CN117674143A (en) * | 2024-02-01 | 2024-03-08 | 西华大学 | Short-term photovoltaic power prediction method and device based on echo pulse neural P system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105069525A (en) * | 2015-07-30 | 2015-11-18 | 广西大学 | All-weather 96-point daily load curve prediction and optimization correction system |
CN105205563A (en) * | 2015-09-28 | 2015-12-30 | 国网山东省电力公司菏泽供电公司 | Short-term load predication platform based on large data |
CN105844371A (en) * | 2016-05-19 | 2016-08-10 | 北京中电普华信息技术有限公司 | Electricity customer short-term load demand forecasting method and device |
CN106022521A (en) * | 2016-05-19 | 2016-10-12 | 四川大学 | Hadoop framework-based short-term load prediction method for distributed BP neural network |
-
2017
- 2017-01-19 CN CN201710038445.2A patent/CN106845705A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105069525A (en) * | 2015-07-30 | 2015-11-18 | 广西大学 | All-weather 96-point daily load curve prediction and optimization correction system |
CN105205563A (en) * | 2015-09-28 | 2015-12-30 | 国网山东省电力公司菏泽供电公司 | Short-term load predication platform based on large data |
CN105844371A (en) * | 2016-05-19 | 2016-08-10 | 北京中电普华信息技术有限公司 | Electricity customer short-term load demand forecasting method and device |
CN106022521A (en) * | 2016-05-19 | 2016-10-12 | 四川大学 | Hadoop framework-based short-term load prediction method for distributed BP neural network |
Non-Patent Citations (2)
Title |
---|
YU LITAO等: ""Short-term Load Forecasting Model for Metro Power Supply System Based on Echo State Neural Network"", 《2016 7TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE》 * |
彭光虎等: "基于 ESN 的光伏发电功率预测模型研究", 《青岛大学学报(工程技术版 )》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107766986A (en) * | 2017-10-31 | 2018-03-06 | 天津大学 | Leak integral form echo state network on-line study photovoltaic power Forecasting Methodology |
CN109726691A (en) * | 2018-12-30 | 2019-05-07 | 杭州铭智云教育科技有限公司 | A kind of monitoring method |
CN112308327A (en) * | 2020-11-09 | 2021-02-02 | 金陵科技学院 | Smart city power load estimation method based on self-adaptive characteristic weight |
CN112308327B (en) * | 2020-11-09 | 2023-06-16 | 金陵科技学院 | Smart City Electric Load Estimation Method Based on Adaptive Feature Weight |
CN112712216A (en) * | 2021-01-18 | 2021-04-27 | 南京电力设计研究院有限公司 | Subway power supply system load prediction method based on cyclic neural network |
CN117674143A (en) * | 2024-02-01 | 2024-03-08 | 西华大学 | Short-term photovoltaic power prediction method and device based on echo pulse neural P system |
CN117674143B (en) * | 2024-02-01 | 2024-04-12 | 西华大学 | Short-term photovoltaic power prediction method and device based on echo pulse nerve P system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106845705A (en) | The Echo State Networks load forecasting model of subway power supply load prediction system | |
CN110298501B (en) | Electrical load prediction method based on long-time and short-time memory neural network | |
CN103279804B (en) | The Forecasting Methodology of super short-period wind power | |
WO2018157691A1 (en) | Active distribution network safety quantifying method | |
CN113762625B (en) | A distribution network state assessment method and system based on graph convolutional network | |
WO2023216576A1 (en) | Photovoltaic power generation short-term power prediction method and system | |
CN110889527B (en) | Electric vehicle charging load prediction method based on LSTM neural network | |
CN103198235B (en) | Based on the wind power prediction value Pre-Evaluation method of the longitudinal moment probability distribution of wind power | |
CN105911476B (en) | A kind of battery energy storage system SOC prediction techniques based on data mining | |
CN103882827B (en) | Based on flood control by reservoir regulation relative risk Forecasting Methodology and the reservoir regulation for flood control schemes evaluation method of runoff DATA PROCESSING IN ENSEMBLE PREDICTION SYSTEM | |
WO2020118586A1 (en) | Energy consumption prediction method and device | |
CN106251008A (en) | A kind of photovoltaic power Forecasting Methodology chosen based on combining weights similar day | |
CN105490310A (en) | Real-time dynamic economical scheduling method for generally-distributed electric power system containing wind power | |
CN106203693A (en) | A kind of system and method for Power Output for Wind Power Field climbing event prediction | |
CN103971175A (en) | Short-term load prediction method of multistage substations | |
CN108564228A (en) | A method of based on the temporal aspect predicted orbit traffic OD volumes of the flow of passengers | |
CN107219469A (en) | Suitable for the continuation of the journey power predicating method of unmanned machine battery | |
CN112700050B (en) | Method and system for predicting ultra-short-term 1 st point power of photovoltaic power station | |
CN114757548B (en) | A method for evaluating the regulation performance of wind power storage equipment using scenario construction | |
CN111104298A (en) | LSTM-based power grid server running state prediction device | |
CN104252647B (en) | Electro-load forecast method based on anti-distance weighting interpolation method | |
CN112766598A (en) | Electric energy quality steady-state index prediction and early warning method based on LSTM neural network | |
CN106056254B (en) | A wind power forecast error simulation method considering the influence of output level | |
CN110598171B (en) | Wavelet neural network satellite clock error forecasting method based on Shannon entropy-energy ratio | |
CN116244894B (en) | A power system transient simulation method and system based on large step size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170613 |
|
RJ01 | Rejection of invention patent application after publication |