CN106022521A - Hadoop framework-based short-term load prediction method for distributed BP neural network - Google Patents
Hadoop framework-based short-term load prediction method for distributed BP neural network Download PDFInfo
- Publication number
- CN106022521A CN106022521A CN201610334920.6A CN201610334920A CN106022521A CN 106022521 A CN106022521 A CN 106022521A CN 201610334920 A CN201610334920 A CN 201610334920A CN 106022521 A CN106022521 A CN 106022521A
- Authority
- CN
- China
- Prior art keywords
- neural network
- layer
- value
- distributed
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims description 27
- 238000012937 correction Methods 0.000 claims abstract description 42
- 238000003062 neural network model Methods 0.000 claims abstract description 11
- 238000013277 forecasting method Methods 0.000 claims abstract description 8
- 238000012549 training Methods 0.000 claims description 17
- 210000002569 neuron Anatomy 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Operations Research (AREA)
- Primary Health Care (AREA)
- Life Sciences & Earth Sciences (AREA)
- Quality & Reliability (AREA)
- Biomedical Technology (AREA)
- Entrepreneurship & Innovation (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于Hadoop架构的分布式BP神经网络的短期负荷预测方法,具体为:获取初始负荷数据集;将负荷数据集拆分为小型数据集,存储在分布式文件系统的数据节点中;初始化BP神经网络参数,并将参数集合上传至分布式文件系统中;依据当前负荷样本,训练BP神经网络,获取BP神经网络的权值、阈值在当前数据集下的修正量;依据键值对的key值统计该网络各层及层与层之间的权值、阈值参数的总和;判断当前迭代任务下,是否达到收敛精度或达到最大迭代次数,若是,建立分布式BP神经网络模型,若不是,进行BP神经网络权值、阈值参数的修正;输入预测日数据,得到预测日的负荷功率数据。本发明提高了负荷预测速度,满足了负荷预测精度的要求。
The invention discloses a short-term load forecasting method of a distributed BP neural network based on Hadoop architecture, specifically: obtaining an initial load data set; splitting the load data set into small data sets, and storing them in data nodes of a distributed file system Middle; initialize the BP neural network parameters, and upload the parameter set to the distributed file system; train the BP neural network according to the current load sample, and obtain the correction value of the weight and threshold of the BP neural network under the current data set; according to the key The key value of the value pair counts the sum of the weights and threshold parameters of each layer of the network and between layers; judge whether the current iteration task has reached the convergence accuracy or the maximum number of iterations, and if so, establish a distributed BP neural network model , if not, modify the weights and threshold parameters of the BP neural network; input the forecast day data to obtain the load power data of the forecast day. The invention improves the speed of load forecasting and meets the requirement of load forecasting accuracy.
Description
技术领域technical field
本发明涉及电力系统与大数据结合场景下短期负荷预测应用技术领域,特别涉及一种基于Hadoop架构的分布式BP神经网络的短期负荷预测方法。The invention relates to the technical field of short-term load forecasting application in the scene of combining power system and big data, and in particular to a short-term load forecasting method based on a distributed BP neural network of Hadoop architecture.
背景技术Background technique
电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义。随着现代技术的不断进步和智能电网的深入,负荷预测理论和技术已有很大的发展。多年来,电力负荷预测方法和理论不断涌现,时间序列法、模糊理论、回归分析法、回归支持向量机、贝叶斯和神经网络等技术为电力负荷预测提供了很好的技术支撑。Power load forecasting is of great significance in ensuring power system planning, reliable and economical operation. With the continuous progress of modern technology and the deepening of smart grid, the theory and technology of load forecasting have been greatly developed. Over the years, power load forecasting methods and theories have emerged continuously. Technologies such as time series method, fuzzy theory, regression analysis method, regression support vector machine, Bayesian and neural network have provided good technical support for power load forecasting.
现有算法仍存在一定的局限性。时间序列法:对历史数据准确性较高,短期负荷预测时对天气因素不敏感,难以解决因气象因素引起的短期负荷预测精度不高的问题。回归分析法:从统计平均意义视角定量地描述所观察变量之间的数量关系,但很受负荷数据量规模的限制。回归支持向量机:该方法在具有很好的泛化能力,同时,也会因对惩罚系数c、损失函数的e值和核函数的γ值的寻优而导致训练时间过分地冗长,尤其在训练样本集规模较大时,体现得越突出。Existing algorithms still have certain limitations. Time series method: It has high accuracy for historical data, and is not sensitive to weather factors in short-term load forecasting, so it is difficult to solve the problem of low accuracy of short-term load forecasting caused by meteorological factors. Regression analysis method: Quantitatively describe the quantitative relationship between observed variables from the perspective of statistical average significance, but it is very limited by the scale of load data. Regression support vector machine: This method has good generalization ability, but at the same time, the training time is too long due to the optimization of the penalty coefficient c, the e value of the loss function and the gamma value of the kernel function, especially in The larger the training sample set, the more prominent it is.
随着智能用电海量数据的涌现,已有预测算法无法满足预测速度和预测精度的要求,因此,有必要寻找一种能满足海量用电大数据分析的新方法。BP神经网络具有很强的非线性映射能力、自学习能力和容错能力,将其应用于负荷小数据集时,具有预测精度较高、训练速度快等优点。但是由于该算法针对每一个负荷输入输出序列都会进行一轮训练,以计算获取网络各层权值、阈值的修正量,当数据量非常大时,运算量将变很大,单机串行训练时间将可能达到几个小时,甚至更大。因此,海量数据基础上的短期负荷预测问题仍是一个亟待解决的问题。With the emergence of massive data on smart power consumption, the existing forecasting algorithms cannot meet the requirements of forecasting speed and forecasting accuracy. Therefore, it is necessary to find a new method that can meet the analysis of massive power consumption big data. BP neural network has strong nonlinear mapping ability, self-learning ability and fault-tolerant ability. When it is applied to small load data sets, it has the advantages of high prediction accuracy and fast training speed. However, since the algorithm will conduct a round of training for each load input and output sequence to calculate and obtain the correction amount of the weights and thresholds of each layer of the network, when the amount of data is very large, the amount of calculation will become very large, and the single-machine serial training time It will be possible to reach several hours, or even greater. Therefore, the problem of short-term load forecasting based on massive data is still an urgent problem to be solved.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种基于Hadoop架构的分布式BP神经网络的短期负荷预测方法,所述方法基于Hadoop集群平台,发挥BP神经网络强大的非线性映射能力,提高负荷预测速度,满足负荷预测精度的要求。The technical problem to be solved by the present invention is to provide a short-term load forecasting method based on the distributed BP neural network of the Hadoop architecture. The method is based on the Hadoop cluster platform, and exerts the powerful nonlinear mapping ability of the BP neural network to improve the load forecasting speed. Meet the requirements of load forecasting accuracy.
为解决上述技术问题,本发明采用的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
一种基于Hadoop架构的分布式BP神经网络的短期负荷预测方法,包括以下步骤:A kind of short-term load forecasting method of distributed BP neural network based on Hadoop framework, comprises the following steps:
步骤一:获取初始负荷数据集;Step 1: Obtain the initial load data set;
步骤二:依据Hadoop架构的MapReduce框架,将负荷数据集拆分为小型数据集,存储在分布式文件系统的数据节点中;所述小型数据集用键值对<key,value>表示,key值为该行的首字符相对于文本文件首地址的偏移量,value值将被解析成当前BP神经网络各层权值、阈值;Step 2: According to the MapReduce framework of the Hadoop architecture, split the load data set into small data sets and store them in the data nodes of the distributed file system; the small data sets are represented by key-value pairs <key, value>, and the key value is the offset of the first character of the line relative to the first address of the text file, and the value value will be parsed into the weights and thresholds of each layer of the current BP neural network;
步骤三:初始化BP神经网络参数,包含输入层、隐含层和输出层的层数,输入层与隐含层之间的权值、隐含层神经元的阈值、隐含层与输出层之间的权值、输出层神经元的阈值,将参数集合上传至分布式文件系统中;Step 3: Initialize the parameters of the BP neural network, including the number of layers of the input layer, hidden layer and output layer, the weight between the input layer and the hidden layer, the threshold value of the hidden layer neurons, the distance between the hidden layer and the output layer The weights between the neurons in the output layer and the threshold of the neurons in the output layer are uploaded to the distributed file system;
步骤四:在Map阶段,读取分布式文件系统中的参数,包括权值、阈值,在每个子任务开始时,还原BP神经网络;依据子任务所分配数据进行BP神经网络的输入信号的正向传递和误差信号的反向传播,获取BP神经网络的权值、阈值在当前数据集下的修正量,依据键值对形式作为Reduce阶段的输入参数;Step 4: In the Map stage, read the parameters in the distributed file system, including weights and thresholds, and restore the BP neural network at the beginning of each subtask; perform normalization of the input signal of the BP neural network according to the data assigned by the subtasks. To the backpropagation of the transfer and error signals, obtain the weights and threshold corrections of the BP neural network under the current data set, and use the key-value pairs as the input parameters of the Reduce stage;
步骤五:在Reduce阶段,BP神经网络对所有数据集训练后,依据标识输入层、隐含层与输出层神经元相应权值和阈值的键值对<key,value>中的key值,统计全体负荷数据样本训练结束后对各神经元权值、阈值的影响量,将结果输出至分布式文件系统中;Step 5: In the Reduce phase, after the BP neural network trains all data sets, according to the key value in the key-value pair <key, value> that identifies the corresponding weights and thresholds of neurons in the input layer, hidden layer, and output layer, statistics The influence of all load data samples on the weights and thresholds of each neuron after training is completed, and the results are output to the distributed file system;
步骤六:判断当前迭代任务下,是否达到收敛精度或达到最大迭代次数;若是,依据BP神经网络的输入层、隐含层和输出层的层数,及其分布式文件系统中权值、阈值参数建立分布式BP神经网络模型,若不是,进行BP神经网络权值、阈值参数的修正;Step 6: Determine whether the convergence accuracy or the maximum number of iterations is reached under the current iteration task; if so, according to the number of layers of the input layer, hidden layer and output layer of the BP neural network, and the weights and thresholds in the distributed file system Parameters to establish a distributed BP neural network model, if not, modify the weights and threshold parameters of the BP neural network;
步骤七:依据分布式BP神经网络模型,输入预测日数据进行预测,得到预测日的负荷功率数据。Step 7: According to the distributed BP neural network model, input the forecast day data for forecasting, and obtain the load power data of the forecast day.
根据上述方案,所述步骤四中,计算获取BP神经网络的权值、阈值在当前数据集下的修正量,具体为:According to the above-mentioned scheme, in the step 4, calculate and obtain the weight of the BP neural network, the correction amount of the threshold under the current data set, specifically:
Δw′ki(τ+1)=(1-ρ)ηΔwki(τ+1)+ρΔwki(τ),Δw′ ki (τ+1)=(1-ρ)ηΔw ki (τ+1)+ρΔw ki (τ),
Δ′αk(τ+1)=(1-ρ)ηΔαk(τ+1)+ρΔαk(τ),Δ′α k (τ+1)=(1-ρ)ηΔα k (τ+1)+ρΔα k (τ),
Δ′wij(τ+1)=(1-ρ)ηΔwij(τ+1)+ρΔwij(τ),Δ′w ij (τ+1)=(1-ρ)ηΔw ij (τ+1)+ρΔw ij (τ),
Δ′θi(τ+1)=(1-ρ)ηΔθi(τ+1)+ρΔθi(τ),Δ′θ i (τ+1)=(1-ρ)ηΔθ i (τ+1)+ρΔθ i (τ),
其中,Δw′ki为示输出层第k个节点到隐含层第i个节点之间的最终权值修正量;Δ′αk为输出层第k个节点的最终阈值修正量;Δ′wij表示隐含层第i个节点到输入层第j个节点之间的最终权值修正量;Δ′θi为隐含层第i个节点的最终阈值修正量;ρ为动量因子;τ为迭代次数。Among them, Δw' ki is the final weight correction value between the kth node in the output layer and the i-th node in the hidden layer; Δ'α k is the final threshold correction value of the kth node in the output layer; Δ'w ij represents the final weight correction amount between the i-th node in the hidden layer and the j-th node in the input layer; Δ′θ i is the final threshold value correction amount of the i-th node in the hidden layer; ρ is the momentum factor; τ is number of iterations.
根据上述方案,还包括对分布式BP神经网络模型进行改进,即引入动量因子,采用多次计算求平均值的方式对分布式BP神经网络模型进行改进。According to the above scheme, it also includes improving the distributed BP neural network model, that is, introducing a momentum factor, and improving the distributed BP neural network model by means of multiple calculations and averaging.
与现有技术相比,本发明的有益效果是:采用有效处理海量大数据的Hadoop集群平台,发挥BP神经网络强大的非线性映射能力,提高了负荷预测速度,满足了负荷预测精度的要求。Compared with the prior art, the invention has the beneficial effects of adopting the Hadoop cluster platform for effectively processing massive big data, exerting the powerful nonlinear mapping capability of the BP neural network, increasing the speed of load forecasting, and meeting the requirements of load forecasting accuracy.
附图说明Description of drawings
图1为典型的三层BP神经网络结构示意图。Figure 1 is a schematic diagram of a typical three-layer BP neural network structure.
图2为本发明中分布式BP神经网络预测模型结构示意图。Fig. 2 is a schematic structural diagram of a distributed BP neural network prediction model in the present invention.
图3为本发明中实验室Hadoop集群平台拓扑图。Fig. 3 is the topological diagram of the laboratory Hadoop cluster platform in the present invention.
图4为本发明中MapReduce-BP负荷预测结果和传统BP预测结果对比图。Fig. 4 is a comparison chart of the MapReduce-BP load prediction result in the present invention and the traditional BP prediction result.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明作进一步详细的说明。本发明特点有三:一、充分解析传统BP神经网络的输入信号的正向传递、误差信号的反向传播过程;二、将BP神经网络的训练过程与MapReduce框架相结合,研究并通过Java语言实现基于MapReduce框架的分布式BP神经网络模型,后简称MapReduce-BP模型;三、引入了动量因子,采用多次计算求平均值的方式,改善BP神经网络易陷入局部收敛的问题,提高其抗振荡能力。详述如下:The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. The present invention has three characteristics: one, fully analyze the forward transmission of the input signal of the traditional BP neural network, and the reverse propagation process of the error signal; two, combine the training process of the BP neural network with the MapReduce framework, research and realize it by Java language The distributed BP neural network model based on the MapReduce framework, hereinafter referred to as the MapReduce-BP model; 3. The momentum factor is introduced, and the method of calculating the average value for multiple times is used to improve the problem that the BP neural network is easy to fall into local convergence and improve its anti-oscillation ability. The details are as follows:
1、传统BP神经网络预测原理解析1. Analysis of traditional BP neural network prediction principle
1)BP神经网络基本模型1) Basic model of BP neural network
在1986年,以Rumelhart和McCelland为首的科学家提出BP神经网络,其是一种能学习和存储大量的输入-输出模式映射关系,无需事前揭示这种映射关系的数学方程的多层前馈神经网络,由输入层、隐含层和输出层组成。图1为一个典型的三层BP神经网络的结构图,层与层之间采用全互连方式,同一层之间不存在相互连接,隐含层可以一层或多层。图1中,xj表示输入层第j个节点的输入;wij表示隐含层第i个节点到输入层第j个节点之间的权值;θi为隐含层第i个节点的阈值;φ为隐含层的激励函数;wki表示输出层第k个节点到隐含层第i个节点之间的权值;αk为输出层第k个节点的阈值;ψ为输出层的激励函数;ok表示第k个节点的输出。In 1986, scientists headed by Rumelhart and McCelland proposed the BP neural network, which is a multi-layer feed-forward neural network that can learn and store a large number of input-output pattern mapping relationships without revealing the mathematical equations of the mapping relationship in advance. , which consists of an input layer, a hidden layer and an output layer. Figure 1 is a typical structural diagram of a three-layer BP neural network. Layers are fully interconnected. There is no interconnection between the same layer. The hidden layer can be one or more layers. In Figure 1, x j represents the input of the j-th node in the input layer; w ij represents the weight between the i-th node in the hidden layer and the j-th node in the input layer; θ i is the weight of the i-th node in the hidden layer Threshold; φ is the activation function of the hidden layer; w ki represents the weight between the kth node in the output layer and the i-th node in the hidden layer; α k is the threshold of the kth node in the output layer; ψ is the output layer The activation function of ; ok represents the output of the kth node.
2)BP神经网络信号传递和误差修正2) BP neural network signal transmission and error correction
基本BP神经网络算法由信号的正向传递和误差的反向传播两部分组成,即计算实际输出时按输入到输出的方向进行,各层权值、阈值的修正过程则从输出到输入的方向进行。根据图1所示参数,对BP神经网络的输出信号、各层权值和阈值进行计算与调整。The basic BP neural network algorithm consists of two parts: the forward transmission of the signal and the backpropagation of the error. That is, the calculation of the actual output is carried out in the direction from input to output, and the correction process of the weights and thresholds of each layer is from the direction of output to input. conduct. According to the parameters shown in Figure 1, the output signal, weights and thresholds of each layer of the BP neural network are calculated and adjusted.
(1)输入信号的正向传递过程(1) The forward transfer process of the input signal
依据图1中BP神经网络的结构图,可得知所关心的隐含层第i个节点的输入neti与输出量oi、输出层第k个节点的输入量netk与输出量ok分别为According to the structure diagram of BP neural network in Figure 1, we can know the input net i and output o i of the i-th node of the concerned hidden layer, the input net k and output o k of the k-th node in the output layer respectively
(2)误差信号的反向传播过程(2) The backpropagation process of the error signal
首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法调节各层的权值和阈值,使调节后网络映射的最终输出能接近期望值。依据误差梯度下降法,依次修正隐含层至输出层权值修正量Δwki、输出层阈值修正量Δαk、输入层至隐含层权值修正量Δwij和隐含层阈值修正量Δθi,如式(5)-式(8)所示,式中,η为学习速率;P为训练样本总数。Firstly, the output error of neurons in each layer is calculated layer by layer from the output layer, and then the weights and thresholds of each layer are adjusted according to the error gradient descent method, so that the final output of the adjusted network map can be close to the expected value. According to the error gradient descent method, correct the hidden layer to output layer weight correction Δw ki , the output layer threshold correction Δα k , the input layer to the hidden layer weight correction Δw ij and the hidden layer threshold correction Δθ i , as shown in Equation (5)-Equation (8), where η is the learning rate; P is the total number of training samples.
2、基于MapReduce框架的分布式BP神经网络实现2. Realization of distributed BP neural network based on MapReduce framework
BP神经网络权值、阈值的更新跟样本的输入顺序没有直接关系,因此,BP神经网络训练过程可以采用将训练数据划分在集群的不同PC机上,各PC机针对不同的数据进行训练的方式,此方式与MapReduce编程框架的原理很类似。为此,结合MapReduce框架和BP神经网络数据可并行的特点,建立基于MapReduce框架的BP神经网络的分布式预测模型,主要包含Map阶段、Reduce阶段和驱动函数三部分。The update of BP neural network weights and thresholds has no direct relationship with the input order of samples. Therefore, the training process of BP neural network can adopt the method of dividing the training data into different PCs in the cluster, and each PC trains for different data. This method is very similar to the principle of the MapReduce programming framework. To this end, combined with the parallel characteristics of MapReduce framework and BP neural network data, a distributed prediction model of BP neural network based on MapReduce framework is established, which mainly includes three parts: Map stage, Reduce stage and driving function.
1)Map阶段1) Map stage
将上传至分布式文件系统HDFS的存储表征BP神经网络的各层权值、阈值的文本数据集合划分为若干个数据子集,数据子集用键值对<key,value>表示。key值为该行的首字符相对于文本文件首地址的偏移量,value值将被解析成当前BP神经网络各层权值、阈值。该阶段针对当前负荷样本进行输入信号的正向传递和误差信号的反向传播,以获取权值、阈值的修正量。此处的权值、阈值的修正量对应着Map阶段的输出键值对的value,而key值即为各层权值、阈值的别名。生成权值、阈值修正量的Map阶段关键要点如下:Divide the text data set uploaded to the distributed file system HDFS and store the weights and thresholds of each layer of the BP neural network into several data subsets, and the data subsets are represented by key-value pairs <key, value>. The key value is the offset of the first character of the line relative to the first address of the text file, and the value value will be parsed into the weights and thresholds of each layer of the current BP neural network. In this stage, the forward transmission of the input signal and the back propagation of the error signal are carried out for the current load sample to obtain the correction value of the weight and threshold. The weight and threshold correction here correspond to the value of the output key-value pair in the Map stage, and the key value is the alias of the weight and threshold of each layer. The key points of the Map stage for generating weights and threshold corrections are as follows:
输入:当前负荷数据样本和BP神经网络的各层权值、阈值。Input: the current load data sample and the weights and thresholds of each layer of the BP neural network.
输出:当前样本的权值、阈值的修正量。Output: the weight of the current sample and the correction amount of the threshold.
方法:按照输入信号正向传递和误差信号反向传播,计算获取权值、阈值的修正量,具体如下:Method: According to the forward propagation of the input signal and the reverse propagation of the error signal, calculate the correction value of the weight and threshold, as follows:
(1)setup函数(1) setup function
根据在HDFS文件系统中,存储权值、阈值的文本,按存储原则和顺序解析出当前BP神经网络各层权值(wki和wij)、阈值量(αk和θi)。According to the text of storing weights and thresholds in the HDFS file system, the weights (w ki and w ij ) and thresholds (α k and θ i ) of each layer of the current BP neural network are analyzed according to the storage principle and order.
(2)权值、阈值的修正(2) Correction of weight and threshold
引入动量因子后,各层权值、阈值的更新公式将转变为式(9)-式(12)。其中,Δw′ki为示输出层第k个节点到隐含层第i个节点之间的最终权值修正量;Δ′αk为输出层第k个节点的最终阈值修正量;Δ′wij为隐含层第i个节点到输入层第j个节点之间的最终权值修正量;Δ′θi为隐含层第i个节点的最终阈值修正量;ρ为动量因子;τ为迭代次数。更新后调整公式具体如下:After the momentum factor is introduced, the update formulas of the weights and thresholds of each layer will be transformed into Equation (9)-Equation (12). Among them, Δw' ki is the final weight correction value between the kth node in the output layer and the i-th node in the hidden layer; Δ'α k is the final threshold correction value of the kth node in the output layer; Δ'w ij is the final weight correction amount between the i-th node in the hidden layer and the j-th node in the input layer; Δ′θ i is the final threshold value correction amount of the i-th node in the hidden layer; ρ is the momentum factor; τ is number of iterations. The updated adjustment formula is as follows:
Δw′ki(τ+1)=(1-ρ)ηΔwki(τ+1)+ρΔwki(τ) (9)Δw′ ki (τ+1)=(1-ρ)ηΔw ki (τ+1)+ρΔw ki (τ) (9)
Δ′αk(τ+1)=(1-ρ)ηΔαk(τ+1)+ρΔαk(τ) (10)Δ′α k (τ+1)=(1-ρ)ηΔα k (τ+1)+ρΔα k (τ) (10)
Δ′wij(τ+1)=(1-ρ)ηΔwij(τ+1)+ρΔwij(τ) (11)Δ′w ij (τ+1)=(1-ρ)ηΔw ij (τ+1)+ρΔw ij (τ) (11)
Δ′θi(τ+1)=(1-ρ)ηΔθi(τ+1)+ρΔθi(τ) (12)Δ′θ i (τ+1)=(1-ρ)ηΔθ i (τ+1)+ρΔθ i (τ) (12)
可通过式(1)-式(4)、式(9)-式(12)分别完成负荷输入信号的正向传递和误差信号的反向传播,以此获取当前负荷序列下,BP神经网络各层的权值、阈值的修正量。The forward transmission of the load input signal and the backpropagation of the error signal can be completed through formula (1)-(4), formula (9)-(12), respectively, so as to obtain the current load sequence, each of the BP neural network The weight of the layer and the correction amount of the threshold.
(3)map函数(3) map function
map函数主要结合(1)和(2)部分,在完成权值、阈值修正量的计算后,采用上下文方式将权值、阈值修正量以键值对<key,value>输出,具体形式为<IntWritable,Text>。The map function mainly combines parts (1) and (2). After completing the calculation of weights and threshold corrections, the context mode is used to output the weights and threshold corrections as key-value pairs <key,value>, the specific form is < IntWritable, Text>.
2)Reduce阶段2) Reduce stage
依据键值对中的key值,结合value完成BP神经网络整体权值、阈值更新量的统计。注意两点:一、此时value形式为Iterable<Text>集合,集合维度为负荷序列训练样本的总数,因此在修正前需逐步遍历取得当前样本的修正量字符串Text;二、此阶段是完成神经网络权值、阈值修正量的求和,求和是数值的累加,因此需将表示权值、阈值的修正量的字符串文本解析成数值形式。求和统计权值、阈值修正量的Reduce阶段关键要点如下:According to the key value in the key-value pair, combined with the value, the statistics of the overall weight of the BP neural network and the update amount of the threshold are completed. Pay attention to two points: 1. At this time, the value form is an Iterable<Text> collection, and the collection dimension is the total number of load sequence training samples. Therefore, it is necessary to traverse step by step to obtain the correction amount string Text of the current sample before correction; 2. This stage is completed The sum of neural network weights and threshold corrections is the accumulation of numerical values. Therefore, the string text representing the corrections of weights and thresholds needs to be parsed into numerical form. The key points of the Reduce phase of summing statistical weights and threshold corrections are as follows:
输入:Map阶段输出的表征单个负荷序列样本对BP神经网络权值、阈值调整后的修正量键值对<IntWritable,Text>。Input: The key-value pair <IntWritable, Text> representing the single load sequence sample pair BP neural network weights and threshold-adjusted correction value output by the Map stage.
输出:BP神经网络整体权值、阈值的更新量。Output: The update amount of the overall weight and threshold of the BP neural network.
方法:按照BP神经网络各层权值、阈值的别名,也是此阶段的输入键值对的key,分别累加统计整体权值、阈值的更新量。而此阶段的重要点在于reduce函数中,先后完成对输入键值对的value,即Iterable<Text>的遍历,取得当前样本的权值、阈值修正量字符串和将Text文本转化为数值形态后,按照key值完成相应权值、阈值修正量的累加。Method: According to the aliases of the weights and thresholds of each layer of the BP neural network, which is also the key of the input key-value pair at this stage, the update amounts of the overall weights and thresholds are accumulated and counted respectively. The important point of this stage is that in the reduce function, the traversal of the value of the input key-value pair, that is, Iterable<Text> is completed successively, and the weight value of the current sample, the threshold value correction string and the conversion of the Text text into a numerical form are obtained. , complete the accumulation of corresponding weights and threshold corrections according to the key value.
3)驱动函数3) Driver function
驱动函数可理解为整个程序的配置文件,主要完成Job作业的相关设置。本发明在驱动函数中,主要完成三个相关设置:一、生成初始BP神经网络的权值、阈值文本,并将其上传至HDFS分布式文件系统中;二、创建MapReduce作业,并设置Mapper类的map函数、输出键值对<key,value>的数据类型,和Reducer类的reduce函数、输出键值对<key,value>的数据类型;三、考虑到BP神经网络是一个迭代求解的过程,因此对应作业类型为迭代MapReduce计算任务,因此需设置迭代结束标准,即设定最大迭代次数和训练的误差容限。The driver function can be understood as the configuration file of the whole program, which mainly completes the relevant settings of the job. In the driving function of the present invention, three related settings are mainly completed: one, generate the weight and threshold text of the initial BP neural network, and upload it to the HDFS distributed file system; two, create a MapReduce job, and set the Mapper class The map function, the data type of the output key-value pair <key, value>, and the reduce function of the Reducer class, the data type of the output key-value pair <key, value>; 3. Considering that the BP neural network is an iterative solution process , so the corresponding job type is an iterative MapReduce computing task, so it is necessary to set the iteration end standard, that is, set the maximum number of iterations and the error tolerance for training.
下面通过具体实例对本发明技术方案及技术效果进行进一步说明。The technical solutions and technical effects of the present invention will be further described below through specific examples.
1、算例系统及数据处理1. Calculation system and data processing
本发明数据来源于某实际电网所采集的负荷数据和天气数据,每个设备的采样时间间隔周期为1h,天气信息为干球温度、露点温度。实验室数据量虽然没有达到大数据的规模,但可以用此实验数据验证本发明方法的正确性,从而为大数据环境下的负荷预测提供一种新的方法。训练范围为2014年1月1日至2014年3月31日的用电数据。预测日为2014年4月1日不同时刻的电力负荷,如表1所示。对负荷数据的研究发现这些数据呈现一种延续性、周期性、相关性的特点,根据这些特点和大量文献的研究成果确定样本属性为日前两周同时刻负荷、日前一周同时刻负荷、日前两天同时刻负荷、日前一天同时刻负荷、日前一天同时刻干球温度、日前一天同时刻露点温度、预测当天同时刻干球温度和预测当天同时刻露点温度,预测日同时刻实际负荷,其样本数据如表2所示。The data of the present invention come from load data and weather data collected by an actual power grid. The sampling time interval of each device is 1h, and the weather information includes dry bulb temperature and dew point temperature. Although the amount of laboratory data has not reached the scale of big data, the experimental data can be used to verify the correctness of the method of the present invention, thereby providing a new method for load forecasting in a big data environment. The training range is the electricity consumption data from January 1, 2014 to March 31, 2014. The forecast date is the power load at different times on April 1, 2014, as shown in Table 1. The research on the load data found that these data present the characteristics of continuity, periodicity and correlation. According to these characteristics and the research results of a large number of literatures, the sample attributes are determined as the load at the same time two weeks before the day, the load at the same time one week before the day, and the load at the same time two days before the day. Load at the same moment of the day, load at the same moment the day before, dry bulb temperature at the same moment the day before, dew point temperature at the same moment the day before, predicted dry bulb temperature at the same moment of the day and dew point temperature at the same moment of the day, predicted actual load at the same moment of the day, and its samples The data are shown in Table 2.
表1 2014年4月1日的实际负荷数据Table 1 Actual load data on April 1, 2014
表2负荷训练数据样本集Table 2 Load training data sample set
值得注意的是,BP神经网络对数值介于0与1之间的数比较敏感,因此,在将原始负荷序列输入分布式BP神经网络模型前,需先对数据进行归一化处理,训练结束后再进行反归一化处理,得到实际负荷预测值。It is worth noting that the BP neural network is sensitive to numbers between 0 and 1. Therefore, before inputting the original load sequence into the distributed BP neural network model, the data needs to be normalized. Afterwards, the denormalization process is performed to obtain the actual load forecast value.
2、实验结果和分析2. Experimental results and analysis
本次实验是将MapReduce-BP神经网络与传统BP神经网络算法进行比较,以证实两点,一、BP神经网络权值、阈值的修正过程与负荷输入序列的训练先后顺序确实没有关联,即BP神经网络训练过程是可转化为数据并行的;二、验证了基于MapReduce框架编写BP神经网络负荷预测模型的思路的正确性。图4为本发明中MapReduce-BP负荷预测结果和传统BP预测结果对比图。可知,基于并行MapReduce-BP神经网络对预测日负荷的预测曲线同预测日实际负荷曲线比较吻合,和传统BP神经网络预测值预测效果相近。其中,MapReduce-BP负荷预测的平均相对误差、均方根误差分别为3.95%和1.97%;传统BP神经网络预测的平均相对误差、均方根误差为3.92%和1.93%。由此,证实了所提MapReduce-BP负荷分布式预测模型的正确性。This experiment is to compare the MapReduce-BP neural network with the traditional BP neural network algorithm to confirm two points. First, the correction process of the BP neural network weight and threshold is not related to the training sequence of the load input sequence, that is, BP The neural network training process can be transformed into data parallelism; secondly, the correctness of the idea of writing BP neural network load forecasting model based on the MapReduce framework is verified. Fig. 4 is a comparison chart of the MapReduce-BP load prediction result in the present invention and the traditional BP prediction result. It can be seen that the forecast curve based on the parallel MapReduce-BP neural network for the forecasted daily load is relatively consistent with the forecasted daily actual load curve, and is similar to the forecast effect of the traditional BP neural network forecast value. Among them, the average relative error and root mean square error of MapReduce-BP load forecasting are 3.95% and 1.97% respectively; the average relative error and root mean square error of traditional BP neural network forecasting are 3.92% and 1.93%. Thus, the correctness of the proposed MapReduce-BP load distribution forecasting model is confirmed.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610334920.6A CN106022521B (en) | 2016-05-19 | 2016-05-19 | Short-term load prediction method of distributed BP neural network based on Hadoop architecture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610334920.6A CN106022521B (en) | 2016-05-19 | 2016-05-19 | Short-term load prediction method of distributed BP neural network based on Hadoop architecture |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106022521A true CN106022521A (en) | 2016-10-12 |
CN106022521B CN106022521B (en) | 2020-05-19 |
Family
ID=57096033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610334920.6A Expired - Fee Related CN106022521B (en) | 2016-05-19 | 2016-05-19 | Short-term load prediction method of distributed BP neural network based on Hadoop architecture |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106022521B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106845705A (en) * | 2017-01-19 | 2017-06-13 | 国网山东省电力公司青岛供电公司 | The Echo State Networks load forecasting model of subway power supply load prediction system |
CN107229693A (en) * | 2017-05-22 | 2017-10-03 | 哈工大大数据产业有限公司 | The method and system of big data system configuration parameter tuning based on deep learning |
CN108090025A (en) * | 2018-01-19 | 2018-05-29 | 福州瑞芯微电子股份有限公司 | The neutral net SOC chip of dynamic multichannel and its channel resource distribution method |
CN108182490A (en) * | 2017-12-27 | 2018-06-19 | 南京工程学院 | A Short-term Load Forecasting Method in Big Data Environment |
CN108211268A (en) * | 2018-01-25 | 2018-06-29 | 武汉中体智美科技有限公司 | Exercise load monitoring and sports fatigue method for early warning and system based on training data |
CN108734355A (en) * | 2018-05-24 | 2018-11-02 | 国网福建省电力有限公司 | A kind of short-term electric load method of parallel prediction and system applied to power quality harnessed synthetically scene |
CN109118365A (en) * | 2017-06-26 | 2019-01-01 | 平安科技(深圳)有限公司 | Income calculation method, apparatus and computer readable storage medium |
CN109543814A (en) * | 2018-08-31 | 2019-03-29 | 南京理工大学 | A kind of each equipment fault prediction technique of subway signal system |
CN109614384A (en) * | 2018-12-04 | 2019-04-12 | 上海电力学院 | Short-term load forecasting method of power system under Hadoop framework |
CN110288127A (en) * | 2019-05-31 | 2019-09-27 | 武汉烽火富华电气有限责任公司 | A kind of energy big data processing method |
CN111753997A (en) * | 2020-06-28 | 2020-10-09 | 北京百度网讯科技有限公司 | Distributed training method, system, device and storage medium |
CN112365074A (en) * | 2020-11-18 | 2021-02-12 | 贵州电网有限责任公司 | Artificial intelligence decision-making method based on power grid regulation and control data |
CN113515896A (en) * | 2021-08-06 | 2021-10-19 | 红云红河烟草(集团)有限责任公司 | Data missing value filling method for real-time cigarette acquisition |
US20220094464A1 (en) * | 2019-01-07 | 2022-03-24 | Nokia Technologies Oy | Detecting control information communicated in frame using a neural network |
CN115099526A (en) * | 2022-07-28 | 2022-09-23 | 广东电网有限责任公司江门供电局 | Mass distributed renewable energy power prediction method and related device |
CN115330016A (en) * | 2022-06-29 | 2022-11-11 | 王禹 | Regional water consumption data analysis method based on cloud platform |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001216287A (en) * | 2000-01-31 | 2001-08-10 | Toshiba Corp | Short term demand prediction device |
CN103544528A (en) * | 2013-11-15 | 2014-01-29 | 南京大学 | BP neural-network classification method based on Hadoop |
CN103559205A (en) * | 2013-10-09 | 2014-02-05 | 山东省计算中心 | Parallel feature selection method based on MapReduce |
CN103793438A (en) * | 2012-11-05 | 2014-05-14 | 山东省计算中心 | MapReduce based parallel clustering method |
CN105184424A (en) * | 2015-10-19 | 2015-12-23 | 国网山东省电力公司菏泽供电公司 | Mapreduced short period load prediction method of multinucleated function learning SVM realizing multi-source heterogeneous data fusion |
CN105427184A (en) * | 2015-11-06 | 2016-03-23 | 南京信息工程大学 | Hadoop-based electricity consumption feedback implementation method |
-
2016
- 2016-05-19 CN CN201610334920.6A patent/CN106022521B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001216287A (en) * | 2000-01-31 | 2001-08-10 | Toshiba Corp | Short term demand prediction device |
CN103793438A (en) * | 2012-11-05 | 2014-05-14 | 山东省计算中心 | MapReduce based parallel clustering method |
CN103559205A (en) * | 2013-10-09 | 2014-02-05 | 山东省计算中心 | Parallel feature selection method based on MapReduce |
CN103544528A (en) * | 2013-11-15 | 2014-01-29 | 南京大学 | BP neural-network classification method based on Hadoop |
CN105184424A (en) * | 2015-10-19 | 2015-12-23 | 国网山东省电力公司菏泽供电公司 | Mapreduced short period load prediction method of multinucleated function learning SVM realizing multi-source heterogeneous data fusion |
CN105427184A (en) * | 2015-11-06 | 2016-03-23 | 南京信息工程大学 | Hadoop-based electricity consumption feedback implementation method |
Non-Patent Citations (1)
Title |
---|
张素香 等: "海量数据下的电力负荷短期预测", 《中国电机工程学报》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106845705A (en) * | 2017-01-19 | 2017-06-13 | 国网山东省电力公司青岛供电公司 | The Echo State Networks load forecasting model of subway power supply load prediction system |
CN107229693A (en) * | 2017-05-22 | 2017-10-03 | 哈工大大数据产业有限公司 | The method and system of big data system configuration parameter tuning based on deep learning |
CN107229693B (en) * | 2017-05-22 | 2018-05-01 | 哈工大大数据产业有限公司 | The method and system of big data system configuration parameter tuning based on deep learning |
CN109118365A (en) * | 2017-06-26 | 2019-01-01 | 平安科技(深圳)有限公司 | Income calculation method, apparatus and computer readable storage medium |
CN108182490A (en) * | 2017-12-27 | 2018-06-19 | 南京工程学院 | A Short-term Load Forecasting Method in Big Data Environment |
CN108090025A (en) * | 2018-01-19 | 2018-05-29 | 福州瑞芯微电子股份有限公司 | The neutral net SOC chip of dynamic multichannel and its channel resource distribution method |
CN108090025B (en) * | 2018-01-19 | 2021-08-27 | 瑞芯微电子股份有限公司 | Dynamic multichannel neural network SOC chip and channel resource allocation method thereof |
CN108211268A (en) * | 2018-01-25 | 2018-06-29 | 武汉中体智美科技有限公司 | Exercise load monitoring and sports fatigue method for early warning and system based on training data |
CN108211268B (en) * | 2018-01-25 | 2019-12-10 | 武汉中体智美科技有限公司 | Method and system for monitoring exercise load and early warning of exercise fatigue based on exercise training data |
CN108734355A (en) * | 2018-05-24 | 2018-11-02 | 国网福建省电力有限公司 | A kind of short-term electric load method of parallel prediction and system applied to power quality harnessed synthetically scene |
CN109543814A (en) * | 2018-08-31 | 2019-03-29 | 南京理工大学 | A kind of each equipment fault prediction technique of subway signal system |
CN109614384A (en) * | 2018-12-04 | 2019-04-12 | 上海电力学院 | Short-term load forecasting method of power system under Hadoop framework |
US11811527B2 (en) * | 2019-01-07 | 2023-11-07 | Nokia Technologies Oy | Detecting control information communicated in frame using a neural network |
US20220094464A1 (en) * | 2019-01-07 | 2022-03-24 | Nokia Technologies Oy | Detecting control information communicated in frame using a neural network |
CN110288127A (en) * | 2019-05-31 | 2019-09-27 | 武汉烽火富华电气有限责任公司 | A kind of energy big data processing method |
CN111753997A (en) * | 2020-06-28 | 2020-10-09 | 北京百度网讯科技有限公司 | Distributed training method, system, device and storage medium |
CN112365074A (en) * | 2020-11-18 | 2021-02-12 | 贵州电网有限责任公司 | Artificial intelligence decision-making method based on power grid regulation and control data |
CN112365074B (en) * | 2020-11-18 | 2023-08-18 | 贵州电网有限责任公司 | Artificial intelligence decision-making method based on power grid regulation and control data |
CN113515896A (en) * | 2021-08-06 | 2021-10-19 | 红云红河烟草(集团)有限责任公司 | Data missing value filling method for real-time cigarette acquisition |
CN113515896B (en) * | 2021-08-06 | 2022-08-09 | 红云红河烟草(集团)有限责任公司 | Data missing value filling method for real-time cigarette acquisition |
CN115330016A (en) * | 2022-06-29 | 2022-11-11 | 王禹 | Regional water consumption data analysis method based on cloud platform |
CN115099526A (en) * | 2022-07-28 | 2022-09-23 | 广东电网有限责任公司江门供电局 | Mass distributed renewable energy power prediction method and related device |
Also Published As
Publication number | Publication date |
---|---|
CN106022521B (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106022521A (en) | Hadoop framework-based short-term load prediction method for distributed BP neural network | |
CN106022954B (en) | Multiple BP neural network load prediction method based on grey correlation degree | |
CN110705743B (en) | New energy consumption electric quantity prediction method based on long-term and short-term memory neural network | |
CN111461463B (en) | Short-term load prediction method, system and equipment based on TCN-BP | |
CN104217258B (en) | A Method for Predicting Electric Load Condition Density | |
CN110751318A (en) | IPSO-LSTM-based ultra-short-term power load prediction method | |
CN102479339A (en) | Method and system for short-term wind speed prediction of wind farm based on hybrid neural network | |
CN108091135A (en) | Parking position multistep forecasting method based on Optimization of Wavelet neutral net | |
CN107609667B (en) | Heating load prediction method and system based on Box_cox transform and UFCNN | |
CN108764540A (en) | Water supply network pressure prediction method based on parallel LSTM series connection DNN | |
CN105160423A (en) | Photovoltaic power generation prediction method based on Markov residual error correction | |
CN109978253B (en) | A Short-term Load Forecasting Method of Power System Based on Incremental Learning | |
CN101894185A (en) | A Lifetime Prediction Method for Small Sample Data Objects Based on Dynamic Bipolar MPNN | |
CN107704970A (en) | A kind of Demand-side load forecasting method based on Spark | |
CN110212551B (en) | Microgrid Automatic Reactive Power Control Method Based on Convolutional Neural Network | |
CN103927460A (en) | Wind power plant short-term wind speed prediction method based on RBF | |
CN108182490A (en) | A Short-term Load Forecasting Method in Big Data Environment | |
CN106503833A (en) | Photovoltaic generation short term power rolling forecast method based on algorithm of support vector machine | |
CN106570594A (en) | Similar day photovoltaic power generation short period prediction method based on TMBP | |
CN105160441A (en) | Real-time power load forecasting method based on integrated network of incremental transfinite vector regression machine | |
CN101587154A (en) | Quick mode estimation mode estimating method suitable for complicated node and large scale metric data | |
CN105259754B (en) | A kind of plate thickness intelligent control method based on Active Learning | |
Lu et al. | An adaptive neural architecture search design for collaborative edge-cloud computing | |
CN116937565A (en) | Distributed photovoltaic power generation power prediction method, system, equipment and medium | |
CN104361399A (en) | Solar irradiation intensity minute-scale predication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200519 |