CN106844990A - 大体积混凝土基础温差应力和上下层温差应力估算方法 - Google Patents

大体积混凝土基础温差应力和上下层温差应力估算方法 Download PDF

Info

Publication number
CN106844990A
CN106844990A CN201710068253.6A CN201710068253A CN106844990A CN 106844990 A CN106844990 A CN 106844990A CN 201710068253 A CN201710068253 A CN 201710068253A CN 106844990 A CN106844990 A CN 106844990A
Authority
CN
China
Prior art keywords
concrete
temperature difference
temperature
water flowing
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710068253.6A
Other languages
English (en)
Other versions
CN106844990B (zh
Inventor
张国新
朱振泱
汪娟
王振红
刘有志
侯文倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Water Resources and Hydropower Research
Original Assignee
China Institute of Water Resources and Hydropower Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Water Resources and Hydropower Research filed Critical China Institute of Water Resources and Hydropower Research
Publication of CN106844990A publication Critical patent/CN106844990A/zh
Application granted granted Critical
Publication of CN106844990B publication Critical patent/CN106844990B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明提供一种大体积混凝土基础温差应力和上下层温差应力估算方法。依据混凝土最高温度、混凝土弹性模量、浇筑块长度、基础弹性模量、通水冷却情况,如一期二期通水冷却、一期通水冷却及不通水冷却等多项因素,分别对基础温差应力和上下层温差应力进行综合全面的估算。采用朱伯芳院士总结的典型的混凝土热力学参数及工程常用的通水冷却措施,并利用有限元计算方法对估算结果进行验证。估算结果较现有的估算方法更为准确、合理,可应用于实际的工程中,对工程实践进行科学的指导,提高工程质量。

Description

大体积混凝土基础温差应力和上下层温差应力估算方法
技术领域
本发明涉及一种大体积混凝土基础温差应力和上下层温差应力估算方法,属于水利水电技术领域。
背景技术
基础温差应力和上下层温差应力是混凝土坝温度控制的重要指标。基础温差一般指基础约束范围内混凝土最高温度和稳定温度之差,当坝块结构高宽比小于0.5或在基础约束范围内长期间歇的浇筑块或基础弹性模量与混凝土弹性模量相差较大时,应对基础允许温差进行论证。降低基础温差最有效的方法是降低浇筑温度或坝内通水冷却,如尽量利用低温季节浇筑基础部分混凝土,以减小基础温差。上下层温差指在老混凝土上面(龄期超过28d)上下各L/4范围内,上层混凝土最高平均温度与新混凝土开始浇筑时下层实际平均温度之差,上下层温差的产生有两种情况:一是混凝土浇筑温度年变化引起的上下层温差,在没有预冷骨料等特殊温度控制的条件下,混凝土浇筑温度随着气温而变化,因此混凝土最高温度也随着气温而变化,夏季温度高,冬季温度低;二是老混凝土上浇筑新混凝土时的上下层温差,停歇很久的老混凝土,水化热已散失完毕,温度较低,在它上面浇筑新混凝土,新老混凝土之间可能形成比较大的温差,而且温度梯度较大,由于老混凝土的弹性模量往往超过岩基的弹性模量,这种情况下,上下层温差产生的拉应力有可能超过基岩约束引起的拉应力,从而产生裂缝,可采取降低浇筑温度、仓面保温等措施降低上下层温差。
根据现有的研究成果,坝体混凝土最大应力估算相关的因素主要包括最高温度、坝块的长度和混凝土的性质(常态混凝土或碾压混凝土),且应力和坝块长度的关系需要通过查询图的方式得到。基础温差计算中,一般情况下,混凝土的温度峰值先降低到浇筑时的基础温度,再由浇筑时的基础温度降低到准稳定温度;而混凝土的温度峰值降低到浇筑时的基础温度时单位温度形成的应力和基础温度降低到准稳定温度时单位温度形成的应力差别很大,需要分别考虑。
另外,研究表明,大坝最大应力和通水过程有着密切的关系,在通水冷却和未通水冷却两种情况下,单位温降形成的拉应力差别较大,而现有技术未考虑通水冷却影响因素和且未精确基础弹性模量的影响因素,应力估算结果存在误差。
发明内容
鉴于上述原因,本发明的目的在于提供一种大体积混凝土基础温差应力和上下层温差应力估算方法,综合混凝土最高温度、混凝土弹性模量、浇筑块长度、基础弹性模量、通水冷却等多项因素,对基础温差应力和上下层温差应力进行估算,估算结果更为准确合理。
为实现上述目的,本发明采用以下技术方案:
一种大体积混凝土基础温差应力估算方法,
考虑一期和二期通水冷却,二期冷却结束时,混凝土应力计算方法为:
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;E1为二期冷却中期时混凝土的弹性模量;E2为二期冷却结束时混凝土的弹性模量;α为线膨胀系数;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为浇筑温度和二期冷结束时温度的差值;ΔG为等效混凝土自身体积变形;
不考虑二期通水冷却时,混凝土达到稳定温度时混凝土应力计算方法为:
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;α为线膨胀系数;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为浇筑温度和浇筑时建基面以下3米基础的年平均温度的温差;Ec为混凝土的最终弹性模量;ΔG为等效混凝土自身体积变形。
考虑一期和二期通水冷却的情况,即公式(1)中,
对于常态混凝土:
对于碾压混凝土:
其中,L为浇筑块的最长边长,E为基础弹性模量。
不考虑二期通水冷却的情况,即公式(2)中,
对于常态混凝土进行一期冷却:
对于常态混凝土不进行通水冷却:
不考虑二期通水冷却的情况,即公式(2)中,
对于碾压混凝土进行一期冷却:
对于碾压混凝土不进行通水冷却:
所述等效混凝土自身体积变形的计算方法为:
其中:ΔG为等效混凝土自身体积变形量,ΔG计算值大于0时取值为0;G(t)为龄期为t天时的混凝土自身体积变形;G为混凝土自身体积变形终值;E(t)为龄期为t天时的混凝土的弹性模量。
一种大体积混凝土上下层温差应力估算方法,其特征在于,
考虑一期和二期冷却,上下层温差应力计算方法为:
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;E1为二期冷却中期时混凝土的弹性模量;E2为二期冷却结束时混凝土的最终弹性模量;α为线膨胀系数;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为新混凝土浇筑温度和新混凝土浇筑时老混凝土温度的温差;ΔG为等效混凝土自身体积变形;
不考虑二期通水冷却时,混凝土应力计算方法为:
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;Ec为混凝土的最终弹性模量;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为新混凝土浇筑温度和新混凝土浇筑时老混凝土温度的温差;ΔG为等效混凝土自身体积变形。
考虑一期和二期通水冷却的情况,即公式(4)中,
对于常态混凝土:
A2=545
对于碾压混凝土:
A2=545
其中,L为浇筑块的最长边长。
不考虑二期通水冷却的情况,即公式(5)中,
对于常态混凝土进行一期冷却:
A2=588
对于常态混凝土不进行通水冷却:
A2=588
不考虑二期通水冷却的情况,即公式(5)中,
对于碾压混凝土进行一期冷却:
A2=588
对于碾压混凝土不进行通水冷却:
A2=588
所述等效混凝土自身体积变形,计算公式为:
ΔG=G-G(t) (6)
其中,ΔG为等效混凝土自身体积变形量,ΔG计算值大于0时取值为0;G为混凝土自身体积变形终值;t为新老混凝土浇筑间歇期;G(t)为龄期t时的混凝土自身体积变形。
本发明的优点是:
本发明的大体积混凝土基础温差应力和上下层温差应力估算方法,根据混凝土最高温度、混凝土弹性模量、浇筑块长度、基础弹性模量、通水冷却等综合因素,对基础温差应力和上下层温差应力进行估算,较现有的估算方法更为准确、合理,可应用于指导工程实践。
附图说明
图1是常态混凝土考虑一期和二期通水冷却,基础温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图2是图1所示估算结果的误差分析示意图。
图3是常态混凝土仅考虑一期通水冷却,基础温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图4是图3所示估算结果的误差分析示意图。
图5是常态混凝土不进行通水冷却,基础温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图6是图5所示估算结果的误差分析示意图。
图7碾压混凝土考虑一期和二期通水冷却,基础温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图8是图7所示估算结果的误差分析示意图。
图9是碾压混凝土仅考虑一期通水冷却,基础温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图10是图9所示估算结果的误差分析示意图。
图11是碾压混凝土不进行通水冷却,基础温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图12是图11所示估算结果的误差分析示意图。
图13是考虑一期和二期通水冷却,基础温差应力中的浇筑温度差应力的公式估算值和有限元计算验证值对比结果示意图。
图14是图13所示估算结果的误差分析示意图。
图15是不考虑二期通水冷却时(含只考虑一期通水冷却和不通水冷却两种情况),基础温差应力中的浇筑温度差应力的公式估算值和有限元计算验证值对比结果示意图。
图16是图15所示估算结果的误差分析示意图。
图17是常态混凝土考虑一期和二期通水冷却,上下层温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图18是图17所示估算结果的误差分析示意图。
图19是常态混凝土仅考虑一期通水冷却,上下层温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图20是图19所示估算结果的误差分析示意图。
图21是常态混凝土不进行通水冷却,上下层温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图22是图21所示估算结果的误差分析示意图。
图23是碾压混凝土考虑一期和二期通水冷却,上下层温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图24是图23所示估算结果的误差分析示意图。
图25是碾压混凝土仅考虑一期通水冷却,上下层温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图26是图25所示估算结果的误差分析示意图。
图27是碾压混凝土不进行通水冷却,上下层温差应力中的水化热温差应力的公式估算值和有限元计算验证值对比结果示意图。
图28是图27所示估算结果的误差分析示意图。
图29是考虑一期和二期通水冷却,上下层温差应力中的浇筑温度差应力的公式估算值和有限元计算验证值对比结果示意图。
图30是图29所示估算结果的误差分析示意图。
图31是不考虑二期通水冷却时(含只考虑一期通水冷却和不通水冷却两种情况),上下层温差应力中的浇筑温度差应力的公式估算值和有限元计算验证值对比结果示意图。
图32是图31所示估算结果的误差分析示意图。
具体实施方式
以下结合附图和实施例对本发明作进一步详细的描述。
一、基础温差应力估算
1、考虑一期和二期冷却,基础温差应力:
常态混凝土:
碾压混凝土:
其中:F为基础温差应力,单位为MPa;A1为水化热温差影响系数;A2为浇筑温度差影响系数;E1为二期冷却中期时混凝土的弹性模量,单位为GPa;E2为二期冷却结束时混凝土的弹性模量,单位为GPa;Ec为混凝土的最终弹性模量,单位为GPa;α为线膨胀系数,单位为1/℃;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差,单位为℃;ΔTp为浇筑温度差,此处为浇筑温度和二期通水冷却结束时温度的差值,单位为℃;L为浇筑块最长边的长度,单位为米(m);E为基础的弹性模量,单位为GPa;ΔG为等效混凝土自身体积变形,单位为米(m)。
2、不考虑二期冷却,基础温差应力:
常态混凝土,考虑一期冷却:
常态混凝土,不考虑通水冷却:
碾压混凝土,考虑一期冷却:
碾压混凝土,不考虑通水冷却:
其中:F为基础温差应力,单位为MPa;A1为水化热温差影响系数;A2为浇筑温度差影响系数;Ec为混凝土的最终弹性模量,单位为GPa;α为线膨胀系数,单位为1/℃;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差,单位为℃;ΔTp为浇筑温度差,此处为浇筑温度和浇筑时建基面以下3m基础的年平均温度的温差,单位为℃;L为浇筑块最长边的长度,单位为米(m);E为基础的弹性模量,单位为GPa;ΔG为等效混凝土自身体积变形,单位为米(m)。
3、基础温差形成的等效混凝土自身体积变形,计算公式为:
其中:ΔG为等效混凝土自身体积变形,计算值大于0时取值为0,单位为米(m);G(t)为龄期为td(天)时的混凝土自身体积变形,单位为米(m),例如:G(6)表示龄期为6d时的混凝土自身体积变形;G为混凝土自身体积变形终值,单位为米(m);E(t)为龄期为td时的混凝土的弹性模量,单位为GPa;Ec为混凝土的最终弹性模量,单位为GPa。
二、上下层温差应力估算
1、考虑一期和二期冷却,上下层温差应力:
常态混凝土:
A2=545
碾压混凝土:
A2=545
其中:F为上下层温差应力,单位为MPa;A1为水化热温差影响系数;A2为浇筑温度差影响系数;E1为二期冷却中期时混凝土的弹性模量,单位为GPa;E2为二期冷却结束时混凝土的弹性模量,单位为GPa;α为线膨胀系数,单位为1/℃;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为新混凝土浇筑温度和新混凝土浇筑时老混凝土温度的温差;L为浇筑块最长边的长度,单位为米(m);ΔG为等效混凝土自身体积变形,单位为米(m)。
2、不考虑二期冷却,上下层温差应力:
常态混凝土进行一期冷却:
A2=588
常态混凝土不进行通水冷却:
A2=588
碾压混凝土进行一期冷却:
A2=588
碾压混凝土不通水:
A2=588
其中:F为上下层温差应力,单位为MPa;A1为水化热温差影响系数;A2为浇筑温度差影响系数;α为线膨胀系数,单位为1/℃;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为新混凝土浇筑温度和新混凝土浇筑时老混凝土温度的温差;Ec为混凝土的最终弹性模量,单位为GPa;L为浇筑块最长边的长度,单位为米(m);ΔG为等效混凝土自身体积变形,单位为米(m)。
3、新老混凝土温差形成的等效混凝土自身体积变形,计算公式为:
ΔG=G-G(t) (6)
其中:ΔG为等效混凝土自身体积变形,计算值大于0时取值为0,单位为米(m);G为混凝土自身体积变形终值,单位为米(m);t为新老混凝土浇筑间歇期;G(t)为龄期为t天时的混凝土自身体积变形。
需要说明的是,新老混凝土温差指老混凝土面上下层0.25L范围内,上层混凝土的最高温度与新混凝土开始浇筑时老混凝土实际平均温度之差。在老混凝土面上浇筑混凝土时,应采取短间歇均匀上升的浇筑方式,经论证可采用薄层连续上升的浇筑方式。当因仓面越冬,过水或灌浆等形成老混凝土面时,应根据温度应力的计算结果确定上下层温差(新老混凝土温差)的控制标准。
三、基础温差应力估算方法的验证
根据公式(1),二期通水冷却结束时,混凝土应力包括三部分,水化热温差应力A1E1αΔTr、浇筑温度差应力A2E2αΔTp、等效混凝土自身体积变形形成的应力A2E2ΔG。
根据公式(2),不考虑二期通水冷却时,混凝土达到稳定温度时混凝土应力包括三部分,即水化热温差应力A1EcαΔTr、浇筑温度差应力A2EcαΔTp、等效混凝土自身体积变形形成的应力A2EcΔG。
本申请验证算例所采用的混凝土热力学性能参数为朱伯芳院士总结的常态混凝土或碾压混凝土代表性能参数;所采用的通水冷却措施为实际施工普遍采用的通水冷却措施。
1、水化热温差影响系数A1的取值与验证
1)常态混凝土
A、计算条件(对应实际的施工条件):一期、二期通水冷却情况下,绝热温升作用引起的常态混凝土应力。
浇筑温度和基础温度按0℃考虑,模型上下游面散热,地面散热,其余面绝热,表面放热系数为250kJ/m2.d.℃;进行一期和二期通水,通水水温0℃,一期通水时间为龄期0d-20d,二期为80d-120d。绝热温升按20℃考虑,半熟龄期为2d;弹性模量计算公式为:
根据公式(1),采用下式估算单位温降引起的混凝土块体最大应力:
F=A1E1α (8)
其中:E1为二期冷却中期时混凝土的弹性模量,根据已知条件即为龄期为100天时的弹性模量,E1为25.56Gpa,α为线膨胀系数,其为常数。
同时,利用有限元计算方法对上述估算结果进行验证,有限元计算基础弹性模量为8-28Gpa,块体长度为20m-110m情况下,单位温降引起的混凝土块体最大应力F(有限元计算的最大应力和温度峰值的比值),有限元计算方法为现有技术,本发明不作详细说明。
计算结果及误差分析结果如图1、2所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
B、计算条件:只考虑一期通水冷却情况下,绝热温升作用引起的常态混凝土应力。
浇筑温度和基础温度按0℃考虑,模型上下游面散热,地面散热,其余面绝热,表面放热系数为250kJ/m2.d·℃;只进行一期冷却,通水水温0℃,一期通水时间为龄期0d-20d。绝热温升按20℃考虑,半熟龄期为2d;弹性模量根据公式(7)计算。
根据公式(2),采用下式估算单位温降引起的混凝土块体最大应力:
F=A1Ecα (9)
其中,设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图3、4所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
C、计算条件:不通水冷却情况下,绝热温升作用引起的常态混凝土应力。
浇筑温度和基础温度按0℃考虑,模型上下游面散热,地面散热,其余面绝热,表面放热系数为250kJ/m2.d·℃;不通水冷却。绝热温升按20℃考虑,半熟龄期为2d;弹性模量根据公式(7)计算。
根据公式(9),设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图5、6所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
2)、碾压混凝土
A、计算条件:一期、二期通水冷却情况下,绝热温升作用引起的碾压混凝土应力。
浇筑温度和基础温度按0℃考虑,模型上下游面散热,地面散热,其余面绝热,表面放热系数为250kJ/m2.d·℃;进行一期和二期通水,通水水温0℃,一期通水时间为龄期0d-20d,二期为80d-120d。绝热温升按20℃考虑,半熟龄期为3.5;弹性模量计算公式为:
根据公式(8),设定E1为二期冷却中期时混凝土的弹性模量,根据已知条件即为龄期为100天时的弹性模量,E1为23.65Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图7、8所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
B、只考虑一期通水冷却情况下,绝热温升作用引起的碾压混凝土应力。
浇筑温度和基础温度按0℃考虑,模型上下游面散热,地面散热,其余面绝热,表面放热系数为250kJ/m2·d·℃;只进行一期冷却,通水水温0℃,一期通水时间为龄期0d-20d。绝热温升按20℃考虑,半熟龄期为3.5;弹性模量根据公式(10)计算。
根据公式(9),设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图9、10所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
C、不通水冷却情况下,绝热温升作用引起的碾压混凝土应力。
浇筑温度和基础温度按0℃考虑,模型上下游面散热,地面散热,其余面绝热,表面放热系数为250kJ/m2.d·℃;不进行通水冷却。绝热温升按20℃考虑,半熟龄期为3.5;弹性模量根据公式(10)计算。
根据公式(9),设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图11、12所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
2、浇筑温度差影响系数A2的取值与验证
A、计算条件:浇筑温度和基础温度差值按7℃考虑,不考虑绝热温升,根据公式(7)计算,通水水温为0℃,通水时长为40d,外界温度取值为0℃,基础仅考虑底面约束,不考虑徐变。
根据公式(1),采用下式估算浇筑温度差引起的单位温降引起的混凝土块体最大应力:
F=A2E2α (11)
其中:设定E2为二期冷却结束时混凝土的弹性模量,根据已知条件即为龄期为120天时的弹性模量,E2为26.09Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图13、14所示,根据计算结果,浇筑温度差影响系数A2的取值满足精度要求。
B、计算条件:浇筑温度和基础温度差值按7℃考虑,不考虑绝热温升,混凝土弹性模量取值为30Gpa,考虑弹性模量发展,浇筑21d内不考虑温度降低,不考虑徐变。
根据公式(2),采用下式估算浇筑温度差引起的单位温降引起的混凝土块体最大应力:
F=A2Ecα (12)
其中:设定
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图15、16所示,根据计算结果,浇筑温度差影响系数A2的取值满足精度要求。
四、上下层温差应力估算方法的验证
根据公式(4),二期通水冷却结束时,混凝土应力包括三部分,水化热温差应力A1E1αΔTr、浇筑温度差应力A2E2αΔTp、等效混凝土自身体积变形形成的应力A2E2ΔG。
根据公式(5),不考虑二期通水冷却时,混凝土达到稳定温度时混凝土应力包括三部分,即水化热温差应力A1EcαΔTr、浇筑温度差应力A2EcαΔTp、等效混凝土自身体积变形形成的应力A2EcΔG。
1、水化热温差影响系数A1的取值与验证
1)常态混凝土
A、计算条件:一期、二期通水冷却情况下,绝热温升作用引起的常态混凝土应力。
浇筑温度和老混凝土温度均按0℃考虑,模型上下游面散热,其余面绝热,表面放热系数为250kJ/m2·d·℃;进行一期和二期通水,通水水温0℃,一期通水时间为龄期0-20d,二期为80-120d。绝热温升按20℃考虑,半熟龄期为2d;弹性模量根据公式(7)计算。
根据公式(4),采用下式估算单位温降引起的混凝土块体最大应力:
F=A1E1α (13)
其中:设定E1为二期冷却中期时混凝土的弹性模量,根据已知条件即为龄期为100天时的弹性模量,E1为25.56Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图17、18所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
B、计算条件:只考虑一期通水冷却情况下,绝热温升作用引起的常态混凝土应力。
浇筑温度和老混凝土温度均按0℃考虑,模型上下游面散热,其余面绝热,表面放热系数为250kJ/m2·d·℃;只考虑一期通水冷却,通水水温0℃,一期通水时间为龄期0-20d。绝热温升按20℃考虑,半熟龄期为2d;弹性模量根据公式(7)计算。
根据公式(5),采用下式估算单位温降引起的混凝土块体最大应力:
F=A1Ecα (14)
其中,设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图19、20所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
C、计算条件:不通水冷却情况下,绝热温升作用引起的常态混凝土应力。
浇筑温度和老混凝土温度均按0℃考虑,模型上下游面散热,其余面绝热,表面放热系数为250kJ/m2·d·℃;不考虑通水冷却。绝热温升按20℃考虑,半熟龄期为2d;弹性模量根据公式(7)计算。
根据公式(14),设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图21、22所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
2)、碾压混凝土
A、计算条件:一期、二期通水冷却情况下,绝热温升作用引起的碾压混凝土应力。
浇筑温度和老混凝土温度均按0℃考虑,模型上下游面散热,其余面绝热,表面放热系数为250kJ/m2·d·℃;进行一期和二期通水,通水水温0℃,一期通水时间为龄期0-20d,二期为80-120d。绝热温升按20℃考虑,半熟龄期为3.5d;弹性模量根据公式(10)计算。
根据公式(13),设定E1为二期冷却中期时混凝土的弹性模量,根据已知条件即为龄期为100天时的弹性模量,碾压混凝土弹性模量E1为23.65Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图23、24所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
B、只考虑一期通水冷却情况下,绝热温升作用引起的碾压混凝土应力。
浇筑温度和老混凝土温度均按0℃考虑,模型上下游面散热,其余面绝热,表面放热系数为250kJ/m2·d·℃;只进行一期通水冷却,通水水温0℃,一期通水时间为龄期0-20d。绝热温升按20℃考虑,半熟龄期为3.5d;弹性模量根据公式(10)计算。
根据公式(14),设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图25、26所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
C、不通水冷却情况下,绝热温升作用引起的碾压混凝土应力。
浇筑温度和老混凝土温度均按0℃考虑,模型上下游面散热,其余面绝热,表面放热系数为250kJ/m2·d·℃;不进行通水冷却。绝热温升按20℃考虑,半熟龄期为3.5d;弹性模量根据公式(10)计算。
根据公式(14),设定混凝土最终弹模E为30Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图27、28所示,根据计算结果,水化热温差影响系数A1的取值满足精度要求。
2、浇筑温度差影响系数A2的取值与验证
A、计算条件:浇筑温度和老混凝土的温度差值按6℃考虑,不考虑绝热温升,弹性模量根据公式(7)计算,通水水温为0℃,一期通水时间为龄期0-20d,二期为80-120d,外界温度取值为0℃,基础仅考虑底面约束,不考虑徐变。
根据公式(4),采用下式估算浇筑温度差引起的单位温降混凝土块体最大应力:
F=A2E2α (15)
其中:设定A2=545,E2为二期冷却结束时混凝土的弹性模量,根据已知条件即为龄期为120天时的弹性模量,E2=26.09Gpa。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图29、30所示,根据计算结果,浇筑温度差影响系数A2的取值A2=545满足精度要求。
B、计算条件:浇筑温度和基础温度差值按6℃考虑,不考虑绝热温升,混凝土弹性模量取值为30Gpa,考虑弹性模量发展,浇筑21d内不考虑温度降低,不考虑徐变。
根据公式(5),采用下式估算浇筑温度差引起的单位温降引起的混凝土块体最大应力:
F=A2Ecα (16)
其中:设定A2=588。
同时,利用有限元计算方法对上述估算结果进行验证,计算结果及误差分析结果如图31、32所示,根据计算结果,浇筑温度差影响系数A2的取值A2=588满足精度要求。
综上所述,本发明的大体积混凝土基础温差应力和上下层温差应力估算方法,依据混凝土最高温度、混凝土弹性模量、浇筑块长度、基础弹性模量、通水冷却情况(一期二期通水冷却、一期通水冷却及不通水冷却)等多项因素,分别对基础温差应力和上下层温差应力进行综合全面的估算,并利用有限元计算方法对估算结果进行验证,估算结果较现有的估算方法更为准确、合理,可应用于实际的工程中,对工程实践进行科学的指导,提高工程质量。
以上所述是本发明的较佳实施例及其所运用的技术原理,对于本领域的技术人员来说,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案基础上的等效变换、简单替换等显而易见的改变,均属于本发明保护范围之内。

Claims (10)

1.大体积混凝土基础温差应力估算方法,其特征在于,
考虑一期和二期通水冷却,二期冷却结束时,混凝土应力计算方法为:
F = A 1 E 1 αΔT r + A 2 E 2 α ( ΔT p - Δ G α ) - - - ( 1 )
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;E1为二期冷却中期时混凝土的弹性模量;E2为二期冷却结束时混凝土的弹性模量;α为线膨胀系数;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为浇筑温度和二期冷结束时温度的差值;ΔG为等效混凝土自身体积变形;
不考虑二期通水冷却时,混凝土达到稳定温度时混凝土应力计算方法为:
F = A 1 E c αΔT r + A 2 E c α ( ΔT p - Δ G α ) - - - ( 2 )
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;α为线膨胀系数;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为浇筑温度和浇筑时建基面以下3米基础的年平均温度的温差;Ec为混凝土的最终弹性模量;ΔG为等效混凝土自身体积变形。
2.根据权利要求1所述的大体积混凝土基础温差应力估算方法,其特征在于,考虑一期和二期通水冷却的情况,即公式(1)中,
对于常态混凝土:
A 1 = 422 ( 1 - e - 0.40 L 0.39 ) ( 1 - e - 0.27 E 0.60 ) ( 1 + 1 1 + 0.08 L E )
A 2 = 741 ( 1 - e - 0.42 L 0.4 ) ( 1 - e - 0.17 E 0.75 ) ( 1 - 1 1 + 0.12 L E )
对于碾压混凝土:
A 1 = 456 ( 1 - e - 0.26 L 0.50 ) ( 1 - e - 0.22 E 0.65 ) ( 1 + 1 1 + 0.08 L E )
A 2 = 741 ( 1 - e - 0.42 L 0.40 ) ( 1 - e - 0.17 E 0.75 ) ( 1 - 1 1 + 0.12 L E )
其中,L为浇筑块的最长边长,E为基础弹性模量。
3.根据权利要求1所述的大体积混凝土基础温差应力估算方法,其特征在于,不考虑二期通水冷却的情况,即公式(2)中,
对于常态混凝土进行一期冷却:
A 1 = 548 ( 1 - e - 0.23 L 0.49 ) ( 1 - e - 0.25 E 0.62 ) ( 1 + 1 1 + 0.08 L E )
A 2 = 953 ( 1 - e - 0.17 E 0.75 ) ( 1 - 1 1 + 0.10 L E )
对于常态混凝土不进行通水冷却:
A 1 = 504 ( 1 - e - 0.32 L 0.40 ) ( 1 - e - 0.22 E 0.66 ) ( 1 + 1 1 + 0.035 L E )
A 2 = 953 ( 1 - e - 0.17 E 0.75 ) ( 1 - 1 1 + 0.10 L E )
4.根据权利要求1所述的大体积混凝土基础温差应力估算方法,其特征在于,不考虑二期通水冷却的情况,即公式(2)中,
对于碾压混凝土进行一期冷却:
A 1 = 618 ( 1 - e - 0.23 L 0.48 ) ( 1 - e - 0.23 E 0.64 ) ( 1 + 1 1 + 0.045 L E )
A 2 = 953 ( 1 - e - 0.17 E 0.75 ) ( 1 - 1 1 + 0.10 L E )
对于碾压混凝土不进行通水冷却:
A 1 = 453 ( 1 - e - 0.28 L 0.45 ) ( 1 - e - 0.22 E 0.66 ) ( 1 + 1 1 + 0.04 L E )
A 2 = 953 ( 1 - e - 0.17 E 0.75 ) ( 1 - 1 1 + 0.10 L E )
5.根据权利要求1所述的大体积混凝土基础温差应力估算方法,其特征在于,所述等效混凝土自身体积变形的计算方法为:
Δ G = G ( 6 ) E ( 3 ) + [ G ( 18 ) - G ( 6 ) ] E ( 12 ) + [ G ( 36 ) - G ( 18 ) ] E ( 27 ) + [ G - G ( 36 ) ] E c E c - - - ( 3 )
其中:ΔG为等效混凝土自身体积变形量,ΔG计算值大于0时取值为0;G(t)为龄期为t天时的混凝土自身体积变形;G为混凝土自身体积变形终值;E(t)为龄期为t天时的混凝土的弹性模量。
6.大体积混凝土上下层温差应力估算方法,其特征在于,
考虑一期和二期冷却,上下层温差应力计算方法为:
F = A 1 E 1 αΔT r + A 2 E 2 α ( ΔT p - Δ G α ) - - - ( 4 )
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;E1为二期却中期时混凝土的弹性模量;E2为二期冷却结束时混凝土的最终弹性模量;
为线膨胀系数;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为新混凝土浇筑温度和新混凝土浇筑时老混凝土温度的温差;ΔG为等效混凝土自身体积变形;
不考虑二期通水冷却时,混凝土应力计算方法为:
F = A 1 E c αΔT r + A 2 E c α ( ΔT p - Δ G α ) - - - ( 5 )
其中:A1为水化热温差影响系数;A2为浇筑温度差影响系数;Ec为混凝土的最终弹性模量;ΔTr为水化热温差,此处为最高温度和浇筑温度的温差;ΔTp为浇筑温度差,此处为新混凝土浇筑温度和新混凝土浇筑时老混凝土温度的温差;ΔG为等效混凝土自身体积变形。
7.根据权利要求6所述的大体积混凝土上下层温差应力估算方法,其特征在于,考虑一期和二期通水冷却的情况,即公式(4)中,
对于常态混凝土:
A 1 = 272 ( 1 - e - 0.80 L 0.26 )
A2=545
对于碾压混凝土:
A 1 = 277 ( 1 - e - 0.98 L 0.21 )
A2=545
其中,L为浇筑块的最长边长。
8.根据权利要求6所述的大体积混凝土上下层温差应力估算方法,其特征在于,不考虑二期通水冷却的情况,即公式(5)中,
对于常态混凝土进行一期冷却:
A 1 = 314 ( 1 - e - 0.88 L 0.23 )
A2=588
对于常态混凝土不进行通水冷却:
A 1 = 335 ( 1 - e - 0.77 L 0.26 )
A2=588
9.根据权利要求6所述的大体积混凝土上下层温差应力估算方法,其特征在于,不考虑二期通水冷却的情况,即公式(5)中,
对于碾压混凝土进行一期冷却:
A 1 = 328 ( 1 - e - 0.90 L 0.23 )
A2=588
对于碾压混凝土不进行通水冷却:
A 1 = 317 ( 1 - e - 0.88 L 0.22 )
A2=588
10.根据权利要求6所述的大体积混凝土上下层温差应力估算方法,其特征在于,所述等效混凝土自身体积变形,计算公式为:
ΔG=G-G(t) (6)
其中,ΔG为等效混凝土自身体积变形量,ΔG计算值大于0时取值为0;G为混凝土自身体积变形终值;t为新老混凝土浇筑间歇期;G(t)为龄期t天时的混凝土自身体积变形。
CN201710068253.6A 2016-12-15 2017-02-07 大体积混凝土基础温差应力和上下层温差应力估算方法 Expired - Fee Related CN106844990B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016111643916 2016-12-15
CN201611164391 2016-12-15

Publications (2)

Publication Number Publication Date
CN106844990A true CN106844990A (zh) 2017-06-13
CN106844990B CN106844990B (zh) 2019-08-09

Family

ID=59122875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710068253.6A Expired - Fee Related CN106844990B (zh) 2016-12-15 2017-02-07 大体积混凝土基础温差应力和上下层温差应力估算方法

Country Status (1)

Country Link
CN (1) CN106844990B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110409609A (zh) * 2019-07-18 2019-11-05 中交武汉港湾工程设计研究院有限公司 一种超长间隔期混凝土防开裂的浇筑方法
CN110502826A (zh) * 2019-08-19 2019-11-26 华能澜沧江水电股份有限公司 混凝土坝溢流面抗冲磨混凝土温控标准的确定方法
CN113591194A (zh) * 2021-08-13 2021-11-02 中国水利水电科学研究院 大体积混凝土允许最高温度的动态调整方法
CN113591358A (zh) * 2021-08-13 2021-11-02 中国水利水电科学研究院 大体积混凝土浇筑温度和允许最高温度的动态调整方法
CN113738135A (zh) * 2021-08-05 2021-12-03 青建集团股份公司 一种超长混凝土结构温度应力计算方法及应力抵抗装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125801A (zh) * 1994-11-30 1996-07-03 E.R.C.株式会社 控制大体积混凝土结构物温度应力的混凝土浇筑方法
WO2004108623A2 (en) * 2003-06-04 2004-12-16 Verline Inc. A method and apparatus of curing concrete structures
CN103593502A (zh) * 2013-10-16 2014-02-19 中国水利水电科学研究院 一种用于混凝土坝防裂的温度应力分析和反分析方法
JP2015010459A (ja) * 2013-07-02 2015-01-19 大成建設株式会社 座屈耐力算定方法
CN105544578A (zh) * 2015-12-18 2016-05-04 中冶建筑研究总院有限公司 一种确定大体积混凝土结构施工养护方法的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125801A (zh) * 1994-11-30 1996-07-03 E.R.C.株式会社 控制大体积混凝土结构物温度应力的混凝土浇筑方法
WO2004108623A2 (en) * 2003-06-04 2004-12-16 Verline Inc. A method and apparatus of curing concrete structures
JP2015010459A (ja) * 2013-07-02 2015-01-19 大成建設株式会社 座屈耐力算定方法
CN103593502A (zh) * 2013-10-16 2014-02-19 中国水利水电科学研究院 一种用于混凝土坝防裂的温度应力分析和反分析方法
CN105544578A (zh) * 2015-12-18 2016-05-04 中冶建筑研究总院有限公司 一种确定大体积混凝土结构施工养护方法的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
强晟等: "《快速施工条件下基于变形法的混凝土坝应力分析》", 《河海大学学报(自然科学版)》 *
王振红等: "《水闸闸墩施工期温度场和应力场的仿真计算分析》", 《天津大学学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110409609A (zh) * 2019-07-18 2019-11-05 中交武汉港湾工程设计研究院有限公司 一种超长间隔期混凝土防开裂的浇筑方法
CN110409609B (zh) * 2019-07-18 2020-10-02 中交武汉港湾工程设计研究院有限公司 一种超长间隔期混凝土防开裂的浇筑方法
CN110502826A (zh) * 2019-08-19 2019-11-26 华能澜沧江水电股份有限公司 混凝土坝溢流面抗冲磨混凝土温控标准的确定方法
CN110502826B (zh) * 2019-08-19 2022-08-02 华能澜沧江水电股份有限公司 混凝土坝溢流面抗冲磨混凝土温控标准的确定方法
CN113738135A (zh) * 2021-08-05 2021-12-03 青建集团股份公司 一种超长混凝土结构温度应力计算方法及应力抵抗装置
CN113738135B (zh) * 2021-08-05 2023-07-28 青建集团股份公司 一种超长混凝土结构温度应力计算方法及应力抵抗装置
CN113591194A (zh) * 2021-08-13 2021-11-02 中国水利水电科学研究院 大体积混凝土允许最高温度的动态调整方法
CN113591358A (zh) * 2021-08-13 2021-11-02 中国水利水电科学研究院 大体积混凝土浇筑温度和允许最高温度的动态调整方法
CN113591358B (zh) * 2021-08-13 2023-09-29 中国水利水电科学研究院 大体积混凝土浇筑温度和允许最高温度的动态调整方法
CN113591194B (zh) * 2021-08-13 2023-10-20 中国水利水电科学研究院 大体积混凝土允许最高温度的动态调整方法

Also Published As

Publication number Publication date
CN106844990B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN106844990A (zh) 大体积混凝土基础温差应力和上下层温差应力估算方法
CN105155542B (zh) 一种用于圆形断面结构衬砌混凝土温控防裂设计计算方法
CN102979307B (zh) 一种混凝土结构温控防裂施工方法
CN105672187B (zh) 一种用于门洞形断面结构衬砌混凝土温控防裂设计计算方法
CN105260531B (zh) 一种圆形断面衬砌混凝土施工期内部最高温度的计算方法
CN103942407B (zh) 一种基于浇筑块的混凝土温度场仿真计算方法
CN105133615A (zh) 一种青藏高原地区大温差环境大体积混凝土冷却循环水温控施工方法
CN105842278B (zh) 一种室内测量混凝土表面放热系数的方法
Malla et al. Analysis of an arch–gravity dam with a horizontal crack
Ding et al. Simulation and feedback analysis of the temperature field in massive concrete structures containing cooling pipes
JP6022826B2 (ja) パイプクーリングシステム、及びパイプクーリング方法
CN105669246B (zh) 一种地下侧墙结构混凝土温度裂缝防裂方法
CN105005632A (zh) 多层耐火砖炉墙结构的高炉炉缸侵蚀预测方法
CN108446505B (zh) 一种漏斗结晶器内铸坯凝固传热计算方法
Salazar et al. A review on thermo-mechanical modelling of arch dams during construction and operation: Effect of the reference temperature on the stress field
CN103257153A (zh) 一种补偿混凝土膨胀加强带应力变化状态的监测方法
CN106677115B (zh) 混凝土坝下游面水膜智能保温方法
CN201622199U (zh) 一种土样反复冻融变形的量测装置
CN110263490B (zh) 混凝土坝体临时面应力分析方法
CN217916029U (zh) 一种混凝土抗压及抗渗试块制备装置
CN107357332B (zh) 一种混凝土最高温度控制方法
CN108647463A (zh) 基于midas的桥梁拱座混凝土浇筑水化热分析方法
CN103063337B (zh) 先后两次浇筑混凝土在施工缝处应力的测量方法
Ishikawa et al. Development of FEM thermal analysis for concrete structures with pipe cooling system
CN110569551B (zh) 端部自由衬砌板混凝土温度裂缝控制抗裂k值设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190809

CF01 Termination of patent right due to non-payment of annual fee