CN106841821A - 一种薄膜覆盖海面等效介电常数计算方法 - Google Patents

一种薄膜覆盖海面等效介电常数计算方法 Download PDF

Info

Publication number
CN106841821A
CN106841821A CN201710232566.0A CN201710232566A CN106841821A CN 106841821 A CN106841821 A CN 106841821A CN 201710232566 A CN201710232566 A CN 201710232566A CN 106841821 A CN106841821 A CN 106841821A
Authority
CN
China
Prior art keywords
epsiv
theta
dielectric constant
film
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710232566.0A
Other languages
English (en)
Inventor
谢涛
何宜军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201710232566.0A priority Critical patent/CN106841821A/zh
Publication of CN106841821A publication Critical patent/CN106841821A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种薄膜覆盖海面等效介电常数计算方法,将薄膜‑海水复合海面等效为介电常数为εe的单层反射介质,根据布拉格(Bragg)散射机制公式,求出仅与雷达入射角、反射面介电常数有关的极化比参数。真实的极化比可用空气‑薄膜‑海水多层介质散射理论公式计算,该极化比为雷达入射角和空气、薄膜、海水的相对介电常数的函数。由两种极化比相等所得公式,可用求解出等效介电常数,包括水平极化和垂直极化下的两种等效介电常数计算方法。本发明计算方法为污染物自动监测技术提供一种物理识别方法。

Description

一种薄膜覆盖海面等效介电常数计算方法
技术领域
本发明属于海洋技术领域,具体涉及一种基于双极化多层薄膜覆盖海面等效介电常数计算方法。
背景技术
为了防止、减少溢油灾害,对海面全天候、大范围、高分辨卫星遥感实时监测必不可少。对海面溢油监测主要采用卫星SAR遥感监测技术,但现有的溢油自动识别技术物理机制尚不完善,监测结果主要有两个方面不足,一是对于低风速区域海面和薄冰海面等非溢油海面误报为溢油污染,二是尚不能对海表面污染物进行区分,如矿物油,植物油,赤潮等污染物,形成当前污染物自动监测的技术瓶颈。我们提出一种基于海面多层电磁散射机制的薄膜覆盖海面等效介电常数计算方法,为污染物自动监测技术提供一种物理识别方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于双极化多层薄膜覆盖海面等效介电常数计算方法,计算结果用于区别不同海面污染物。
本发明采用的技术方案为:一种薄膜覆盖海面等效介电常数计算方法,将薄膜-海水复合海面等效为介电常数为εe的单层反射介质,根据布拉格(Bragg)散射机制公式,求出仅与雷达入射角、反射面介电常数有关的极化比参数。真实的极化比可用空气-薄膜-海水多层介质散射理论公式计算,该极化比为雷达入射角和空气、薄膜、海水的相对介电常数的函数。由两种极化比相等所得公式,可用求解出等效介电常数,包括水平极化和垂直极化下的两种等效介电常数计算方法。具体包括以下步骤:
步骤:1:考虑空气-薄膜-海水三层复合介质海面,它们的介电常数和磁导率分别为:ε00、ε11和ε22,三种介质均为非铁磁质,磁导率可近似为μ1=μ2=μ0,薄膜厚度为h,波数为的电磁波,波长为λ,ki入射角为θi入射到薄膜表面,透射角为当透射波透入海水中是透射角为在空气-薄膜界面即z=0处,HH和VV极化反射系数和透射系数其中p=HH,VV,分别为:
在薄膜-海水界面即z=-h处:
其中由公式(1)-(8),根据多层散射理论,在空气-薄膜界面的反射系数为:
步骤2:将薄膜-海水等效为一层等效介质,等效介电常数和等效磁导率为εee,其中等效介质为非铁磁介质磁导率μe=μ0;在空气-等效介质界面即z=0处,HH和VV极化等效反射系数分别为:
步骤3:水平极化和垂直极化介电常数分别为他们分别由公式(12)和(13)计算。
有益效果:本发明提出的薄膜覆盖海面等效介电常数计算方法,是基于海面多层电磁散射机制的薄膜覆盖海面等效介电常数计算方法,为污染物自动监测技术提供一种物理识别方法。
附图说明
图1为薄膜覆盖海冰结构示意图;其中(a)部分为厚度为h的薄膜覆盖海面,(b)部分为与(a)部分等效的海面示意图;
图2为有效介电常数随薄膜相对介电常数的变化。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的说明。
本发明考虑水平极化(HH)和垂直极化(VV)两种情形,提出一种基于多层散射理论的薄膜覆盖海面等效介电常数计算方法,具体步骤主要包含:
步骤:1:考虑空气-薄膜-海水三层复合介质海面(见图1的a部分),它们的介电常数和磁导率分别为:ε00、ε11和ε22,三种介质均为非铁磁质,磁导率可近似为μ1=μ2=μ0,薄膜厚度为h,波数为的电磁波,波长为λ,ki入射角为θi入射到薄膜表面,透射角为当透射波透入海水中是透射角为在空气-薄膜界面即z=0处,HH和VV极化反射系数和透射系数其中p=HH,VV,分别为:
在薄膜-海水界面即z=-h处:
其中由公式(1)-(8),根据多层散射理论,在空气-薄膜界面的反射系数为:
步骤2:将图1的a部分中薄膜-海水等效为一层等效介质(见图1的b部分),等效介电常数和等效磁导率为εee,其中等效介质为非铁磁介质磁导率μe=μ0;在空气-等效介质界面即z=0处,HH和VV极化等效反射系数分别为:
步骤3:水平极化和垂直极化介电常数分别为他们分别由公式(12)和(13)计算。
当薄膜厚度为0.01m,海水相对介电常数为80,模拟Radarsat2雷达波长为0.0595m,薄膜相对介电常数从1变为35,雷达入射角为θi=30°。根据公式(12)和(13),计算出的水平极化和垂直极化等效介电常数随薄膜的相对介电常数变化曲线如图2所示。
以上结合附图对本发明的实施方式做出详细说明,但本发明不局限于所描述的实施方式。对本领域的普通技术人员而言,在本发明的原理和技术思想的范围内,对这些实施方式进行多种变化、修改、替换和变形仍落入本发明的保护范围内。

Claims (1)

1.一种薄膜覆盖海面等效介电常数计算方法,其特征在于:包括以下步骤:
步骤:1:考虑空气-薄膜-海水三层复合介质海面,它们的介电常数和磁导率分别为:ε00、ε11和ε22,三种介质均为非铁磁质,磁导率可近似为μ1=μ2=μ0,薄膜厚度为h,波数为的电磁波,波长为λ,ki入射角为θi入射到薄膜表面,透射角为当透射波透入海水中是透射角为在空气-薄膜界面即z=0处,HH和VV极化反射系数和透射系数其中p=HH,VV,分别为:
F H H 01 = k z 0 - k z 1 k z 0 + k z 1 - - - ( 1 )
F V V 01 = ϵ 1 k z 0 - ϵ 0 k z 1 ϵ 1 k z 0 + ϵ 0 k z 1 - - - ( 2 )
T H H 01 = 2 k z 0 k z 0 + k z 1 - - - ( 3 )
T V V 01 = 2 ϵ 1 k z 0 ϵ 1 k z 0 + ϵ 0 k z 1 - - - ( 4 )
在薄膜-海水界面即z=-h处:
F H H 12 = k z 1 - k z 2 k z 1 + k z 2 - - - ( 5 )
F V V 12 = ϵ 2 k z 1 - ϵ 1 k z 2 ϵ 2 k z 1 + ϵ 1 k z 2 - - - ( 6 )
T H H 12 = 2 k z 1 k z 1 + k z 2 - - - ( 7 )
T V V 12 = 2 ϵ 2 k z 1 ϵ 2 k z 1 + ϵ 1 k z 2 - - - ( 8 )
其中由公式(1)-(8),根据多层散射理论,在空气-薄膜界面的反射系数为:
R p = F p 01 + F p 12 e j ( 2 k z 1 h ) 1 + F p 01 F p 12 e j ( 2 k z 1 h ) - - - ( 9 )
步骤2:将薄膜-海水等效为一层等效介质,等效介电常数和等效磁导率为εee,其中等效介质为非铁磁介质磁导率μe=μ0;在空气-等效介质界面即z=0处,HH和VV极化等效反射系数分别为:
F H H e = cosθ i - ( ϵ e - sin 2 θ i ) 1 / 2 cosθ i + ( ϵ e - sin 2 θ i ) 1 / 2 - - - ( 10 )
F V V e = ϵ e cosθ i - ( ϵ e - sin 2 θ i ) 1 / 2 ϵ e cosθ i + ( ϵ e - sin 2 θ i ) 1 / 2 - - - ( 11 )
步骤3:水平极化和垂直极化介电常数分别为他们分别由公式(12)和(13)计算。
cosθ i - ( ϵ H H e - sin 2 θ i ) 1 / 2 cosθ i + ( ϵ H H e - sin 2 θ i ) 1 / 2 = F H H 01 + F H H 12 e j ( 2 k z 1 h ) 1 + F H H 01 F H H 12 e j ( 2 k z 1 h ) - - - ( 12 )
ϵ V V e cosθ i - ( ϵ V V e - sin 2 θ i ) 1 / 2 ϵ V V e cosθ i + ( ϵ V V e - sin 2 θ i ) 1 / 2 = F V V 01 + F V V 12 e j ( 2 k z 1 h ) 1 + F V V 01 F V V 12 e j ( 2 k z 1 h ) - - - ( 13 )
CN201710232566.0A 2017-04-11 2017-04-11 一种薄膜覆盖海面等效介电常数计算方法 Pending CN106841821A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710232566.0A CN106841821A (zh) 2017-04-11 2017-04-11 一种薄膜覆盖海面等效介电常数计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710232566.0A CN106841821A (zh) 2017-04-11 2017-04-11 一种薄膜覆盖海面等效介电常数计算方法

Publications (1)

Publication Number Publication Date
CN106841821A true CN106841821A (zh) 2017-06-13

Family

ID=59147442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710232566.0A Pending CN106841821A (zh) 2017-04-11 2017-04-11 一种薄膜覆盖海面等效介电常数计算方法

Country Status (1)

Country Link
CN (1) CN106841821A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012767A1 (en) * 2009-07-27 2011-02-03 Aalto-Korkeakoulusäätiö Broadband reference-plane invariant method and algorithm for measuring electromagnetic parameters of materials
CN103336104A (zh) * 2013-06-08 2013-10-02 北京航空航天大学 Gnss卫星反射信号用于土壤介电常数的精确反演方法
CN104750917A (zh) * 2015-03-11 2015-07-01 西安电子科技大学 分层介质粗糙面电磁散射系数的确定方法
CN104808074A (zh) * 2014-01-27 2015-07-29 北京宇航系统工程研究所 高空电磁脉冲在海水中传播特性的计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012767A1 (en) * 2009-07-27 2011-02-03 Aalto-Korkeakoulusäätiö Broadband reference-plane invariant method and algorithm for measuring electromagnetic parameters of materials
CN103336104A (zh) * 2013-06-08 2013-10-02 北京航空航天大学 Gnss卫星反射信号用于土壤介电常数的精确反演方法
CN104808074A (zh) * 2014-01-27 2015-07-29 北京宇航系统工程研究所 高空电磁脉冲在海水中传播特性的计算方法
CN104750917A (zh) * 2015-03-11 2015-07-01 西安电子科技大学 分层介质粗糙面电磁散射系数的确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAO XIE ET AL.: ""Effective dielectric constant model of electromagnetic backscattering from stratified air–sea surface film–sea water medium "", 《CHINESE PHYSICS B》 *

Similar Documents

Publication Publication Date Title
Bondur Complex satellite monitoring of coastal water areas
Zhang et al. Trace metals distribution in Huanghe (Yellow River) estuarine sediments
Hollinger et al. Oil spills: Measurements of their distributions and volumes by multifrequency microwave radiometry
Qiao et al. Heavy metal and clay mineral analyses in the sediments of Upper Gulf of Thailand and their implications on sedimentary provenance and dispersion pattern
CN100470215C (zh) 视频波浪测量方法和测量系统
Ivanov et al. Characterization of oil pollution around the oil rocks production site in the Caspian Sea using spaceborne polarimetric SAR imagery
Galley et al. Summer sea ice concentration, motion, and thickness near areas of proposed offshore oil and gas development in the Canadian Beaufort Sea—2009
Zhang et al. Wind‐modulated buoyancy circulation over the Texas‐Louisiana shelf
Hilbert et al. Morphologic and sedimentologic patterns of active aeolian dune‐fields on the east coast of Maranhão, northeast Brazil
CN106841821A (zh) 一种薄膜覆盖海面等效介电常数计算方法
Khalturin et al. Features of oil spills monitoring on the water surface by the Russian Federation in the Arctic region
Ju et al. Mathematical physics modelling and prediction of oil spill trajectory for a Catenary Anchor Leg Mooring (CALM) System
Kostianoy et al. Satellite instrumentation and technique for oil pollution monitoring of the seas
CN105445233B (zh) 华南沿海赤潮灾害应急监测与预警方法
Wang et al. A dynamic marine oil spill prediction model based on deep learning
CA3092274A1 (en) Digital technology of cultural relics, calligraphy, painting and original commodities
Lindsley et al. Mapping surface oil extent from the Deepwater Horizon oil spill using ASCAT backscatter
Bondur et al. Registering from space the features of deep wastewater outfalls into coastal water areas due to discharge collector breaks
Daniel et al. Forecasting the Erika oil spills
Uto et al. Ship-borne electromagnetic induction sounding of sea-ice thickness in the southern Sea of Okhotsk
Zheng et al. Retrieving Oil-Water Mixture Ratios of Marine Oil Spills From L-Band SAR Imagery
Choi et al. Accuracy improvement of particle tracking model using 2-D current measurement (HF-radar) data
KR101502329B1 (ko) 전기 저항을 이용한 해상 유출유 검출 방법
Daniel et al. Further improvement of drift forecast at sea based on operational oceanography systems
Wang et al. Numerical simulation of Bohai oil spill in the winter sea ice period

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170613

WD01 Invention patent application deemed withdrawn after publication