CN106841786B - 基于硅基悬臂梁t型结间接加热式毫米波信号检测器 - Google Patents

基于硅基悬臂梁t型结间接加热式毫米波信号检测器 Download PDF

Info

Publication number
CN106841786B
CN106841786B CN201710052649.1A CN201710052649A CN106841786B CN 106841786 B CN106841786 B CN 106841786B CN 201710052649 A CN201710052649 A CN 201710052649A CN 106841786 B CN106841786 B CN 106841786B
Authority
CN
China
Prior art keywords
port
junction
cantilever beam
indirect heating
heating type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710052649.1A
Other languages
English (en)
Other versions
CN106841786A (zh
Inventor
廖小平
严嘉彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710052649.1A priority Critical patent/CN106841786B/zh
Publication of CN106841786A publication Critical patent/CN106841786A/zh
Application granted granted Critical
Publication of CN106841786B publication Critical patent/CN106841786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明的基于硅基悬臂梁T型结间接加热式毫米波信号检测器,主要实现结构包括由悬臂梁耦合结构、T型结、间接加热式微波功率传感器和开关。悬臂梁耦合结构包括两组悬臂梁,每组悬臂梁由两个对称的悬臂梁构成,两个悬臂梁之间CPW传输线的电长度在所测信号频率范围内的中心频率35GHz处为λ/4。功率通过第一间接加热式微波功率传感器进行检测;频率检测通过利用间接加热式微波功率传感器测量两路在中心频率处相位差为90度的耦合信号的合成功率实现;相位检测通过将两路在中心频率处相位差为90度的耦合信号,分别同两路等分后的参考信号合成,同样利用间接加热式微波功率传感器检测合成功率,从而获得待测信号的相位。

Description

基于硅基悬臂梁T型结间接加热式毫米波信号检测器
技术领域
本发明提出了一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器,属于微电子机械系统(MEMS)的技术领域。
背景技术
毫米波属于较高频段的微波,在通信、雷达、制导、遥感技术、射电天文学、临床医学和波谱学方面都有重大的意义。作为微波信号的三大基本参数,功率、频率和相位的检测在毫米波系统中扮演者重要角色。基于不断发展和成熟的MEMS技术,很多电子元件和机械元件都成功实现了小型化,同时性能上也不亚于传统元件,对于微波信号检测器也不例外。然而,目前现有的微波信号检测器,包括功率检测器、频率检测器和相位检测器,都是相对独立的器件,而在微波系统中需要同时测量功率、相位和频率的场合,独立器件所占的电路尺寸较大,同时存在着电磁兼容问题,所以研究毫米波信号集成检测系统成为未来发展的趋势。
发明内容
技术问题:本发明的目的是提供一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器,利用间接式微波功率传感器实现毫米波功率的检测,通过悬臂梁耦合结构耦合部分待测信号,分别进行毫米波频率和相位的检测,实现了功率、频率和相位的集成检测,具有结构简单、版图面积小的优点。
技术方案:为解决上述技术问题,本发明提出了一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器。该相位检测器由悬臂梁耦合结构、T型结、间接加热式微波功率传感器和开关构成;其中,悬臂梁耦合结构上下、左右对称,由CPW中央信号线、传输线地线、悬臂梁、悬臂梁锚区构成,悬臂梁置于CPW中央信号线的上方,在悬臂梁的下方有一层Si3N4介电层覆盖中央信号线;待测信号由悬臂梁耦合结构的第一端口输入,第二端口接第一间接加热式微波功率传感器;上方两个悬臂梁耦合的信号由第三端口和第四端口输出,第三端口与第一开关的第七端口相连,第四端口与第二开关的第十端口相连,第一开关的第八端口与第二间接加热式微波功率传感器相连,第九端口与第一T型结的第十三端口相连,第二开关的第十一端口与第三间接加热式微波功率传感器相连,第十二端口与第一T型结的第十四端口相连,最后,第一T型结的第十五端口接第四间接加热式微波功率传感器;下方两个悬臂梁耦合的信号由第五端口和第六端口输出,第五端口与第三T型结的第十九端口相连,第六端口与第四T型结的第二十二端口相连,待测信号从第二T型结的第十六端口输入,第二T型结的第十七端口与第三T型结的第二十端口相连,第十八端口与第四T型结的第二十三端口相连,第三T型结的第二十一端口接第五间接加热式微波功率传感器,第四T型结的第二十四端口接第六间接加热式微波功率传感器。
T型结由CPW中央信号线、传输线地线以及空气桥构成,其中空气桥用于地线之间的互连,为了方便空气桥的释放,在空气桥上制作了一组小孔阵列。
间接加热式微波功率传感器由CPW中央信号线、传输线地线、终端电阻、P型半导体臂、N型半导体臂、热电堆金属互连线、输出Pad构成,用于检测微波信号的功率大小,在终端电阻和热电堆热端下方的Si衬底被刻蚀,用于增大传感器的灵敏度。
开关由CPW中央信号线、传输线地线、悬臂梁、悬臂梁锚区和下拉电极构成,下拉电极上覆盖有一层Si3N4介电层。
待测毫米波信号从第一端口输入,由第二端口相连的间接加热式微波功率传感器检测毫米波功率;进行毫米波频率和相位检测时,首先通过开关将耦合信号输入到间接加热式微波功率传感器测出耦合信号的功率大小,接着通过开关将两路所测信号频率范围内的中心频率35GHz处相位差为90度的耦合信号输入到T型结,同样使用间接加热式微波功率传感器检测合成信号功率大小,由耦合信号和合成信号的大小可以推算出毫米波信号的频率;另外两路所测信号频率范围内的中心频率35GHz处相位差为90度的耦合信号分别和功率等分后的参考信号合成,由间接加热式微波功率传感器检测出两路合成信号功率的大小,联立方程可以求解待测毫米波信号的相位,可实现整个周期范围内相位角的测量。
有益效果:
本发明相对于现有的信号检测器具有以下优点:
1.本发明的信号检测器实现了功率检测、相位检测和频率检测三种功能的单片集成;
2.本发明的信号检测器原理和结构简单,版图面积较小,全部由无源器件组成因而不存在直流功耗;
3.本发明的信号检测器由于采用间接加热式微波功率传感器实现耦合功率测量,线性度好,动态范围大。
4.兼容COMS工艺,适合批量生产,成本低、可靠性高。
5.采用T型结取代常用的威尔逊功分器实现功率合成与分配,无需隔离电阻,简化了结构和工艺。
附图说明
图1为本发明基于硅基悬臂梁T型结间接加热式毫米波信号检测器的实现结构示意图;
图2为本发明悬臂梁耦合结构的A-A’向的剖面图;
图3为本发明T型结的俯视图;
图4为本发明间接加热式微波功率传感器的俯视图;
图5为本发明间接加热式微波功率传感器的B-B’向的剖面图;
图6为本发明开关的俯视图;
图7为本发明开关C-C’向的剖面图。
图中包括:高阻Si衬底1,SiO2层2,CPW中央信号线3,传输线地线4,悬臂梁5,悬臂梁锚区6,Si3N4介电层7,空气桥8,终端电阻9,P型半导体臂10,N型半导体臂11,热电堆金属互连线12,输出Pad13,下拉电极14,悬臂梁耦合结构15,第一开关16,第二开关17,第一端口1-1,第二端口1-2,第三端口1-3,第四端口1-4,第五端口1-5,第六端口1-6,第七端口2-1,第八端口2-2,第九端口2-3,第十端口3-1,第十一端口3-2,第十二端口3-3,第十三端口4-1,第十四端口4-2,第十五端口4-3,第十六端口5-1,第十七端口5-2,第十八端口5-3,第十九端口6-1,第二十端口6-2,第二十一端口6-3,第二十二端口7-1,第二十三端口7-2,第二十四端口7-3。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
参见图1-7,本发明提出了一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器。主要包括:悬臂梁耦合结构15、T型结、间接加热式微波功率传感器和开光。其中,悬臂梁耦合结构15用于耦合待测信号的部分功率,用于频率和相位检测;T型结为三端口器件,可用于功率分配和功率合成,无需隔离电阻;间接加热式微波功率传感器用于检测微波信号的功率,原理是基于焦耳效应和塞贝克(Seebeck)效应;开关用于转换耦合功率检测和频率检测两种状态。
悬臂梁耦合结构15由CPW中央信号线3、传输线地线4、悬臂梁5、悬臂梁锚区6构成。两组悬臂梁5悬于CPW中央信号线3上方,中间隔有Si3N4介电层7和空气,等效一个双介质层的MIM电容,悬臂梁5末端通过悬臂梁锚区6同耦合分支的CPW中央信号线3相连,每组悬臂梁5包括两个对称设计的悬臂梁5,两组悬臂梁5之间的CPW传输线电长度在所测信号频率范围内的中心频率35GHz处为λ/4。通过调整悬臂梁5附近的传输线地线4的形状,改变CPW传输线的阻抗,用于补偿悬臂梁5的引入带来的电容变化。
T型结由CPW中央信号线3、传输线地线4以及空气桥8构成,其中空气桥用于地线之间的互连,为了方便空气桥的释放,在空气桥上制作了一组小孔阵列。
间接加热式微波功率传感器由CPW中央信号线3、传输线地线4、终端电阻9、P型半导体臂10、N型半导体臂11、热电堆金属互连线12、输出Pad13构成,用于检测微波信号的功率大小,在终端电阻9和热电堆热端下方的Si衬底被刻蚀,用于增大传感器的灵敏度。
开关由CPW中央信号线3、传输线地线4、悬臂梁5、悬臂梁锚区6和下拉电极14构成,下拉电极14上覆盖有一层Si3N4介电层7,未施加直流电压时,两个支路处于断开状态,通过在下拉电极14上施加一定的直流偏置,可实现对应支路的导通,进一步实现耦合功率检测和频率检测两种状态的转换。
进行毫米波信号检测时,待测信号从第一端口1-1输入,参考信号从第十六端口5-1输入,在第二端口1-2通过接间接加热式微波功率传感器进行毫米波信号的功率检测。两组悬臂梁5中各选一路耦合信号,中心频率f0=35GHz处相位差为90度,频率f时相位差可表示为:
两路耦合信号可以表示为:
其中,a1和a2分别为两路耦合信号的幅度,ω为输入信号的角频率,为初始相位,通过开关使得耦合信号输入到间接加热式微波功率传感器,可以得到a1和a2的大小。合成信号的功率可表示为:
为获得合成信号的功率P,通过开关使得耦合信号输入到T型结,并由间接加热式微波功率传感器进行功率检测。由(1)和(4)式,信号频率和输出功率的关系可以表示为:
根据上式关系,可由间接加热式微波功率传感器的输出得到待测毫米波信号的频率。
进行相位检测时,另外两路所测信号频率范围内的中心频率35GHz处相位差为90度的耦合信号分别和功率等分后的参考信号合成,功率等分后的参考信号可以表示为:
v3=a3cos(ωt+φ) (6)
则合成信号的功率大小分别为:
P1和P2的大小由终端的微波功率传感器进行检测,根据(7)和(8)所示待测信号相位和合成信号功率的大小的关系,只存在一个未知量,由间接加热式微波功率传感器的输出热电势可以得到待测毫米波信号的相位,并可实现整个周期范围内相位角的测量。
本发明的基于硅基悬臂梁T型结间接加热式毫米波信号检测器的实现结构制备方法如下:
1)准备4英寸高阻Si衬底1,电导率为4000Ωcm,厚度为400μm;
2)热生长一层SiO2层2,厚度为1.2μm;
3)化学气相淀积(CVD)生长一层多晶硅,厚度为0.4μm;
4)涂覆一层光刻胶并光刻,除多晶硅电阻区域暴露以外,其他区域被光刻胶保护,接着注入磷(P)离子,掺杂浓度为1015cm-2,形成终端电阻9;
5)涂覆一层光刻胶,用P+光刻板进行光刻,除P型半导体臂区域暴露以外,其他区域被光刻胶保护,接着注入硼(B)离子,掺杂浓度为1016cm-2,形成热电偶的P型半导体臂10;
6)涂覆一层光刻胶,用N+光刻板进行光刻,除N型半导体臂区域暴露以外,其他区域被光刻胶保护,接着注入磷(P)离子,掺杂浓度为1016cm-2,形成热电偶的N型半导体臂11;
7)涂覆一层光刻胶,光刻热电堆臂和多晶硅电阻图形,再通过干法刻蚀形成热电偶臂和多晶硅电阻;
8)涂覆一层光刻胶,光刻去除传输线、热电堆金属互连线12、下拉电极14以及输出Pad13处的光刻胶;
9)电子束蒸发形成第一层金(Au),厚度为0.3μm,去除光刻胶以及光刻胶上的Au,剥离形成传输线的第一层Au、热电堆金属互连线12、下拉电极14以及输出Pad13;
10)LPCVD淀积一层Si3N4,厚度为0.1μm;
11)涂覆一层光刻胶,光刻并保留悬臂梁5下方的光刻胶,干法刻蚀Si3N4,形成Si3N4介电层7;
12)均匀涂覆一层聚酰亚胺并光刻图形,厚度为2μm,保留悬臂梁5下方的聚酰亚胺作为牺牲层;
13)涂覆光刻胶,光刻去除悬臂梁5、悬臂梁锚区6、传输线以及输出Pad13位置的光刻胶;
14)蒸发500/1500/300A°的Ti/Au/Ti的种子层,去除顶部的Ti层后再电镀一层厚度为2μm的Au层;
15)去除光刻胶以及光刻胶上的Au,形成悬臂梁5、悬臂梁锚区6、传输线和输出Pad13;
16)深反应离子刻蚀(DRIE)衬底材料背面,制作热电堆下方的薄膜结构;
17)释放聚酰亚胺牺牲层:显影液浸泡,去除悬臂梁5下的聚酰亚胺牺牲层,去离子水稍稍浸泡,无水乙醇脱水,常温下挥发,晾干。
区分是否为该结构的标准如下:
本发明的基于硅基悬臂梁T型结间接加热式毫米波信号检测器,结构衬底为高阻Si。待测毫米波信号由第一端口1-1输入,位于CPW中央信号线3上方的两组悬臂梁5耦合部分待测毫米波信号,每组悬臂梁5包括两个对称设计的悬臂梁5,两个悬臂梁5耦合的功率相等,其中一个悬臂梁5的耦合信号用于耦合功率和频率检测,两种状态转换通过开关实现,另一个悬臂梁5的耦合信号用于相位检测;首先通过开关使得耦合信号直接输入到间接加热式微波功率传感器检测耦合功率大小,接着通过开关使得两路在所测信号频率范围内的中心频率35GHz处相位差为90度的耦合信号进行合成并由间接加热式微波功率传感器检测合成功率,从而推算出待测信号的频率;相位检测时,将两路在所测信号频率范围内的中心频率35GHz处相位差为90度的耦合信号,分别同两路等分后的参考信号合成,同样利用间接加热式微波功率传感器检测合成功率,从而获得待测信号的相位。
满足以上条件的结构即视为本发明的基于硅基悬臂梁T型结间接加热式毫米波信号检测器。

Claims (4)

1.一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器,其特征是:该信号检测器由悬臂梁耦合结构(15)、T型结、间接加热式微波功率传感器和开关构成;其中,悬臂梁耦合结构(15)上下、左右对称,由CPW中央信号线(3)、传输线地线(4)、悬臂梁(5)、悬臂梁锚区(6)构成,悬臂梁(5)置于CPW中央信号线(3)的上方,在悬臂梁(5)的下方有一层Si3N4介电层(7)覆盖CPW中央信号线(3);待测信号由悬臂梁耦合结构(15)的第一端口(1-1)输入,第二端口(1-2)接第一间接加热式微波功率传感器;上方两个悬臂梁(5)耦合的信号由第三端口(1-3)和第四端口(1-4)输出,第三端口(1-3)与第一开关(16)的第七端口(2-1)相连,第四端口(1-4)与第二开关(17)的第十端口(3-1)相连,第一开关(16)的第八端口(2-2)与第二间接加热式微波功率传感器相连,第一开关(16)的第九端口(2-3)与第一T型结的第十三端口(4-1)相连,第二开关(17)的第十一端口(3-2)与第三间接加热式微波功率传感器相连,第二开关(17)的第十二端口(3-3)与第一T型结的第十四端口(4-2)相连,最后,第一T型结的第十五端口(4-3)接第四间接加热式微波功率传感器;下方两个悬臂梁(5)耦合的信号由第五端口(1-5)和第六端口(1-6)输出,第五端口(1-5)与第三T型结的第十九端口(6-1)相连,第六端口(1-6)与第四T型结的第二十二端口(7-1)相连,参考信号从第二T型结的第十六端口(5-1)输入,第二T型结的第十七端口(5-2)与第三T型结的第二十端口(6-2)相连,第十八端口(5-3)与第四T型结的第二十三端口(7-2)相连,第三T型结的第二十一端口(6-3)接第五间接加热式微波功率传感器,第四T型结的第二十四端口(7-3)接第六间接加热式微波功率传感器。
2.根据权利要求1所述的一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器,其特征是:T型结由CPW中央信号线(3)、传输线地线(4)以及空气桥(8)构成,其中空气桥用于地线之间的互连,为了方便空气桥的释放,在空气桥上制作了一组小孔阵列。
3.根据权利要求1所述的一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器,其特征是:间接加热式微波功率传感器由CPW中央信号线(3)、传输线地线(4)、终端电阻(9)、P型半导体臂(10)、N型半导体臂(11)、热电堆金属互连线(12)、输出Pad(13)构成,用于检测微波信号的功率大小,在终端电阻(9)和热电堆热端下方的Si衬底被刻蚀,用于增大传感器的灵敏度。
4.根据权利要求1所述的一种基于硅基悬臂梁T型结间接加热式毫米波信号检测器,其特征是:开关由CPW中央信号线(3)、传输线地线(4)、悬臂梁(5)、悬臂梁锚区(6)和下拉电极(14)构成,下拉电极(14)上覆盖有一层Si3N4介电层(7)。
CN201710052649.1A 2017-01-24 2017-01-24 基于硅基悬臂梁t型结间接加热式毫米波信号检测器 Active CN106841786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710052649.1A CN106841786B (zh) 2017-01-24 2017-01-24 基于硅基悬臂梁t型结间接加热式毫米波信号检测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710052649.1A CN106841786B (zh) 2017-01-24 2017-01-24 基于硅基悬臂梁t型结间接加热式毫米波信号检测器

Publications (2)

Publication Number Publication Date
CN106841786A CN106841786A (zh) 2017-06-13
CN106841786B true CN106841786B (zh) 2019-03-05

Family

ID=59120305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710052649.1A Active CN106841786B (zh) 2017-01-24 2017-01-24 基于硅基悬臂梁t型结间接加热式毫米波信号检测器

Country Status (1)

Country Link
CN (1) CN106841786B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087473A1 (en) * 2004-07-13 2006-04-27 Samsung Electronics Co., Ltd. Radar system using quadrature signal
JP2012112886A (ja) * 2010-11-26 2012-06-14 Ntt Electornics Corp 電界センサおよびrf信号の測定方法
CN102735933A (zh) * 2012-06-20 2012-10-17 东南大学 基于微机械硅基固支梁的相位检测器及检测方法
CN103018559A (zh) * 2012-12-26 2013-04-03 东南大学 基于间接式微机械微波功率传感器的相位检测装置及方法
CN103116073A (zh) * 2013-01-18 2013-05-22 东南大学 基于悬臂梁和直接式功率传感器的微波检测系统及其检测方法
CN203310915U (zh) * 2013-06-19 2013-11-27 东南大学 基于微机械直接热电式功率传感器的相位检测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087473A1 (en) * 2004-07-13 2006-04-27 Samsung Electronics Co., Ltd. Radar system using quadrature signal
JP2012112886A (ja) * 2010-11-26 2012-06-14 Ntt Electornics Corp 電界センサおよびrf信号の測定方法
CN102735933A (zh) * 2012-06-20 2012-10-17 东南大学 基于微机械硅基固支梁的相位检测器及检测方法
CN103018559A (zh) * 2012-12-26 2013-04-03 东南大学 基于间接式微机械微波功率传感器的相位检测装置及方法
CN103116073A (zh) * 2013-01-18 2013-05-22 东南大学 基于悬臂梁和直接式功率传感器的微波检测系统及其检测方法
CN203310915U (zh) * 2013-06-19 2013-11-27 东南大学 基于微机械直接热电式功率传感器的相位检测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication of the Different Microwave Power Sensor by Seesaw-Type MEMS Membrane;Zhenxiang Yi 等;《JOURNAL OF MICROELECTROMECHANICAL SYSTEMS》;20160831;第25卷(第4期);全文
基于MEMS技术的差分式微波信号相位检测器;焦永昌 等;《东南大学学报》;20090131;第39卷(第1期);全文

Also Published As

Publication number Publication date
CN106841786A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN106841786B (zh) 基于硅基悬臂梁t型结间接加热式毫米波信号检测器
CN106841782B (zh) 硅基悬臂梁耦合直接加热式未知频率毫米波相位检测器
CN106698326B (zh) 基于硅基微机械悬臂梁t型结直接加热式毫米波信号检测器
CN106841770B (zh) Si基微机械悬臂梁耦合间接加热式毫米波信号检测器
CN106698325B (zh) 硅基悬臂梁耦合直接加热式毫米波信号检测仪器
CN106771557B (zh) Si基微机械悬臂梁耦合直接加热式毫米波信号检测器
CN106680581B (zh) 硅基悬臂梁耦合t型结间接加热式毫米波信号检测仪器
CN107064617B (zh) 硅基悬臂梁耦合间接加热式未知频率毫米波相位检测器
CN106841783B (zh) 硅基悬臂梁t型结间接加热式未知频率毫米波相位检测器
CN106802369B (zh) 硅基悬臂梁耦合间接加热式毫米波信号检测仪器
CN106771601B (zh) 硅基悬臂梁t型结直接加热式未知频率毫米波相位检测器
CN106698324B (zh) 基于硅基悬臂梁t型结直接加热式毫米波信号检测仪器
CN106841802B (zh) 基于硅基悬臂梁t型结间接加热在线式毫米波相位检测器
CN106841784B (zh) 硅基微机械悬臂梁耦合间接加热在线式毫米波相位检测器
CN106841781B (zh) 基于硅基悬臂梁t型结直接加热在线式毫米波相位检测器
CN106814251B (zh) 硅基微机械悬臂梁耦合直接加热在线式毫米波相位检测器
CN108594176A (zh) 自适应雷达中比值法悬臂梁直接微纳微波检测解调系统
CN106872797B (zh) 固支梁t型结间接加热式微波信号检测仪器
CN106872767B (zh) 固支梁间接加热式微波信号检测仪器
CN106872780B (zh) 固支梁t型结间接加热在线式未知频率微波相位检测器
CN106771558B (zh) 固支梁直接加热式微波信号检测仪器
CN106841799B (zh) 硅基缝隙耦合式t型结的直接式毫米波信号检测仪器
CN106645920A (zh) 固支梁t型结间接加热式微波信号检测器
CN106841790B (zh) 固支梁t型结直接加热式微波信号检测仪器
CN106711164B (zh) 固支梁间接加热式微波信号检测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant